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          Abstract 

The aim of this study is to propose a new mixed integer linear programming (MILP) model to find the 

minimum required number of yard cranes, Rubber tyred gantry cranes (RTGCs), for completion the total 

amount of works at the end of planning horizon. In other word, we find the optimal number of yard cranes in a 

container terminal which completes the total amount of works. The paper supports the proposed method using 

a numerical example.   
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1. Introduction 

A container terminal in a port is the place where 

container vessels dock on berths and unload inbound 

containers and load outbound containers. Three dif-

ferent types of containers are handled in a container 

terminal: inbound, outbound, and transshipment con-

tainers [4, 7, 8]. Inbound containers which are usually 

import containers from abroad are discharged from a 

vessel in a short time when the vessel arrives at a 

berth, and kept in temporary storage at a container 

yard for a few days until they are transferred to out-

side trucks. Outbound containers which are usually 

export containers bound for other countries arrive at 

the terminal from several days before the arrival of 

the corresponding vessel and are loaded onto the ves-

sel in a short amount of time when she arrives at a 

berth. Transshipment containers are unloaded from a 

vessel, stay in the yard for several days, and loaded 

onto another vessel [4, 7, 8]. The storage yard in a 

terminal is usually divided into blocks. A typical 

block has seven rows of spaces, six of which are used 

for storing containers and the seventh reserved for 

truck passing. The placing of a container in a yard is 

carried out by huge cranes called yard cranes. The 

most commonly used yard cranes are Rubber Tyred 

Gantry Cranes (RTGCs) [10]. The daily operations of 

a container terminal are complex and involve a vari-

ety of decisions to be made under conditions varying 

with time. To perform a large number of container 

handling jobs a series of planning problems need to 

be solved and several expensive terminal resources 

should be allocated as well [8, 10]. Therefore manag-

ing a container terminal is a challenging task. Re-

searchers have paid attention to the operational view-

points of container terminals.  

Kim and Kim [2] suggested a method of determin-

ing the optimal amount of storage space and the 

number of transfer cranes for handling import con-

tainers as well. Zhang et al. [10] assumed the given of 

workload of each block in each period of a day and 

formulated a dynamic crane deployment problem. 

Their mathematical model [10] minimized the total 

delayed workload in the yard and also proposed the 

optimal routes of crane movements among blocks. 

Also Kim and Park [4] discussed a dynamic space-

allocation method for outbound containers. Recently, 

Wang [11] introduced container information tracing 

system. A comprehensive literature review on the 

application of operations research for container ter-

minal is presented by Steenken et al. [9]. Recently, 

Kim and Kim [3] have offered a method of determin-

ing the optimal price schedule for storing inbound 

containers in a container yard.  
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Also Lee et al. [5] introduced a new simulated an-

nealing based algorithm for scheduling of port con-

tainer terminals. More recently, Canonaco et al. [1] 

introduced a network model for managing the berth 

crane operations. Further by introducing the non-

interference constraints in port container terminals a 

quay crane scheduling scheme is proposed [6].  

This paper borrows the mixed integer linear pro-

gramming (MILP) model initiated by Zhang et al. [10] 

for dynamic crane deployment in a container storage 

yards and extends a new model for finding the mini-

mum required number of yard cranes for completion 

the total amount of works at the end of planning hori-

zon. Therefore the contribution of the current paper is 

that it provides the optimal number of yard cranes in 

a container terminal for completion the total amount 

of works.  The rest of this paper is organized as fol-

lows:  

Section 2 shows a quick explanation of dynamic 

crane deployment proposed by Zhang et al. [10]. The 

minimum required number of yard cranes need to be 

considered for completion the total amount of works 

is given in Section 3. Section 4 illustrates the pro-

posed model by a numerical example.  Section 5 ends 

the paper with conclusion.  

2. Dynamic crane deployment  

In a container terminal for optimal deployment of 

yard cranes or minimizing the total works delayed at 

the end of a planning horizon, Zhang et al. [10] pro-

posed an integer linear programming model as well 

as a Lagrangean relaxation heuristic algorithm for 

finding the near-optimal solution. Their model [10] 

has some important practical assumptions given in 

Zhang et al. [10], pages 542. As they assumed in the 

container terminal a yard is divided into some blocks. 

Also there is a specified number of yard cranes and a 

planning horizon containing some periods. The fol-

lowing notations (including the model parameters and 

decision variables) are also introduced in their paper 

[10]. 

2.1. Parameters 

1) The number of cranes assigned for block i   
( Ni ,,1K= ) at the beginning of the planning hori-

zon denoted by 0iix . Therefore the total number of 

available cranes is∑
=

N

i

iix
1

0 . 

2) The capacity of each crane within a planning pe-

riod is shown by 240=C  minutes. 

3) The total number of blocks under consideration 

is denoted byN . 

4) The total number of planning periods in a plan-

ning horizon is 6=T  periods. 

5) The workload in block i  within planning pe-

riod t  is given by itb , for each Ni ,,1K=  and 

Tt ,,1K= . 

6) The traveling time of a crane from block i  to 

block j  is indicated by ijt , jiNji ≠= ,,,1, K . 

2.2. Decision variables 

1) The number of cranes moving from block i  to 

block j  during a planning period t  is denoted by ijtx . 

Note that when ji = , these cranes stay in the same 

block during period t , for each Nji ,,1, K=  and 

Tt ,,1K= . 

2) The workload fulfilled in block i  by cranes that 

move from block i  to block j  during planning pe-

riod t  is indicated by ijtz , TtNji ,,1,,,1, KK == . 

3) The workload fulfilled in block j  by cranes that 

move from block i  to block j  during planning pe-

riod t  is denoted by ijty , TtNji ,,1,,,1, KK == . 

4) The workload left in block i  at the end of plan-

ning period t  denoted by itw , ,,,1 Ni K=  

Tt ,,1K= . 

Now we give the constraints of the dynamic crane 

deployment model used in Zhang et al. [10].  

Constraints (1) ensure the crane flow or movement 

conservation in each block when cranes are deployed 

from one period to the next. That is  

 

T,,1,N,,1
N

1

)1(

N

1

KK ===∑∑
=

−

=

tixx
j

tji

j

ijt      (1) 

Constraints (2) warrant that only two cranes can 

serve a block in a planning period. These constraints 

assure us the number of existing cranes in each block 

at the beginning of a planning period (and during a 

period) is at most two.  
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T,,1,N,,12
N

1

N

1

KK ==≤+∑∑
≠
==

tixx

ij
j

jit

j

ijt          (2) 

Constraints (3) imply the balance between the 

workload that should be finished ( it)t(i bw +
−1 ) and 

the workload that can be finished (∑ =
+

N

j jitijt yz
1

)( ) 

in each block by using slack variables itw . That is  

0
N

1

N

1

)1( =−













+−+ ∑∑

==

− it

j

jit

j

ijtitti wyzbw  

  T,,1,N,,1 KK == ti                                (3) 

 

Constraints (4) assure that the total workload ful-

filled by a crane in each planning period cannot ex-

ceed its total net crane capacity.  

0)( ≤−−+ ijtijijtijt xtCyz  

T,,1N,,,1,N,,1 KKK === tji                 (4) 

 

Constraints (5) initialize workload at the beginning 

of a planning horizon; any delayed workload from the 

previous planning horizon is counted as the workload 

in the first planning period. 

 

N,,100 K== iwi                                        (5) 

 

Constraints (6), together with the parameters 0iix , 

define the initial locations of the cranes. 

 

jijixij ≠=== N,,,1,N,,100 KK         (6) 

 

Constraints (7) and (8) are non-negative and integer 

constraints. Constraints (8) also restrict that at most 

one RTGC (crane) can be moved from one block to 

another in a period. 

 

0,0,0 ≥≥≥ jitijtit yzw  

T,,1N,,,1,N,,1 KKK === tji                         (7) 

 

{ } { }1,0,2,1,0 ∈∈ ijtiit xx                                  (8) 

T,,1,N,,,1,N,,1 KKK =≠== tjiji  

 

Therefore Zhang et al. [10] introduced the follow-

ing mathematical model for the optimal crane de-

ployment in a container storage yard. 

(8),(2),(1),Constrains K

tosubject

w
t i

it∑∑
= =

T

1

N

1

min

               (9) 

 

The next section of this paper proposes a new 

MILP model to find the minimum required number of 

yard cranes for completion the total amount of works 

at the end of planning horizon.  

3. The optimal number of yard cranes  

As it can be seen Zhang et al. [10] proposed a 

novel MILP model and a heuristic based solution 

procedure as well to solve the dynamic crane de-

ployment problem in a container terminal. One im-

portant issue related to model (9) is assigning the ini-

tial values of yard cranes for each block N,,1K=i . 

As they have assigned }{ 2,1,00 ∈iix  crane(s) to the 

i
th
 block subjectively ( Ni ,,1K= ). For example 

those authors [10] assigned the available yard cranes 

as follows: 

Assuming 20=N  blocks if the proportion of the 

available number of yard cranes and the number of 

blocks is equal then one crane assigns to each block. 

When the proportion is 1.5, that is the number of yard 

cranes is 30 , then the order of assignment of cranes 

to the blocks is as 2, 1, …, 2, 1, respectively. That is 

they assigned 2 cranes to the first block, one crane for 

the second block, and so on.  

In order to find the optimal number of cranes or the 

minimum number of required yard cranes for comple-

tion the total amount of delayed works at the end of 

planning horizon, this paper considers the initial posi-

tion of yard cranes as the new decision variables. 

Therefore Constraints (1) of model (9) is converted to 

the following constraints: 

 

T,,1,N,10
N

1

)1(

N

1

KK ===−∑∑
=

−

=

t,ixx
j

tji

j

ijt    (1-1)
 

kx
i

ii =∑
=

N

1

0                                                        (1-2)
 

{ } N,12,1,00 K,ixii =∈                                 (1-3)
 

where, k  is the number of initial yard cranes that we 

consider it as unknown. Here Constraints (2) of 

model (9) remain unchanged. Regarding the objective 
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of this paper Constraints (3) of model (9) is also con-

verted to the following constraints: 

 

0
N

1

N

1

)1( =−













+−+ ∑∑

==

− it

j

jit

j

ijtitti wyzbw    

 1-T,,1,N,,1 KK == ti                               (3-1) 

 

0
N

1

N

1

)1( =













+−+ ∑∑

==

−

j

jiT

j

ijTiTTi yzbw  

N,,1K=i                 (3-2) 

 

Because to find the minimum number of required 

cranes for completion the total amount of works at 

the end of planning horizon we have 0=iTw  for 

each block Ni ,,1K= . In fact Constraints (3) dis-

joined into two constraints. The first type for 

1,,1 −= Tt K  is denoted as (3-1) remain unchanged 

and the second type for Tt =  is shown as (3-2). 

Note that for Tt =  the left hand side of (3-2) is 

equal to iTw  and therefore should be vanished. To 

find the optimal number of required yard cranes the 

remaining constraints of model (9) remain unchanged 

except for constraints (5) and (8) which are modified 

as follows: 

 

N,,100 K=== iww iTi                   (5-1) 

 

{ } { }1,0,2,1,0 ∈∈ ijtiit xx        (8-1) 

T,1,0,N,,,1,N,,1 KKK =≠== tjiji  

 

Because it is needed to finish the amount of works 

at the end of planning horizon for each of the blocks, 

in constraints (5), 0=iTw  and also 0iix  is consid-

ered as a new decision variable, in constraints (8). 

Therefore we propose the following model (10): 

   

 kk min*
=  

  Subject to 

T,,1,N,10
N

1

)1(

N

1

KK ===−∑∑
=

−

=

t,ixx
j

tji

j

ijt      

 

  

kx
i

ii =∑
=

N

1

0  

 

{ } N,12,1,00 K,ixii =∈  
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1-T,,1,N,,1 KK == ti  

 

N,,10
N

1

N

1

)1( K==













+−+ ∑∑

==

− iyzbw
j

jiT

j

ijTiTTi  

  

0≤−−+ ijtijijtijt xtCyz )(  

T,,1N,,,1,N,,1 KKK === tji                (10) 

 

N,,100 K=== iww iTi  

 

jijixij ≠=== N,,,1,N,,100 KK  

 

0,0,0 ≥≥≥ jitijtit yzw  

T,,1N,,,1,N,,1 KKK === tji  

 

{ } { }1,0,2,1,0 ∈∈ ijtiit xx  

T,1,0,N,,,1,N,,1 KKK =≠== tjiji  

 

Clearly the objective of the above model is finding 

the minimum required number of yard cranes in such 

a way that at the end of planning horizon the amount 

of workloads in each of the blocks is zero. According 

to the constraints of the above model, Constraints (2) 

and (8-1), at most two yard cranes can work in each 

of the blocks at every time period, so if the amount of 

workloads is very large, model (10) may be infeasible. 

In such case changing the parameter C  rectifies this 

problem. The next section gives a numerical illustra-

tion for the new model (10). 
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Table 1. The optimal initial positions of yard cranes. 

*

110x  
*

220x  
*

330x  
*

440x  
*

550x  
*

660x  
*

770x  
*

880x  
*

990x  
*

0,10,10x  

1 2 2 2 1 1 2 1 0 0 
*

0,11,11x  
*

0,12,12x  
*

0,13,13x  
*

0,14,14x  
*

0,15,15x  
*

0,16,16x  
*

0,17,17x  
*

0,18,18x  
*

0,19,19x  
*

0,20,20x  

0 0 1 0 0 2 1 0 0 0 

 

 

  

4. A numerical illustration  

As a numerical demonstration for the proposed 

model, we use the numerical example regarding the 

container terminal consisting 20 blocks given in 

Zhang et al. [10]. The problem contains two tables, 

table 1 as appeared in Zhang et al. [10] gives the 

crane traveling time between blocks, ijt , for 

20,,1, == Nji K  and Table 1 shows the workload 

in each block i within every planning period t, itb , 

for 6,,1,20,,1 ==== TtNi KK , where 6=T  

indicates the number of planning periods. Also Zhang 

et al. [10] assigned an initial position for the available 

30 cranes into 20 blocks. Furthermore the capacity of 

one crane within a planning period is denoted as C. 

Two importance issues corresponding to comparison 

of the proposed model in this paper, model (10), and 

the model introduced by Zhang et al. [10], model (9), 

are, the proposed model (10) takes the initial position 

of yard cranes as decision variables, 

20,,1,0 == Nixii K , and the number of yard cranes 

is also considered as unknown, k, in our new model. 

Without loss of generality we consider C=600. Also 

to obtain the exact optimal solution of the proposed 

model we used LINGO software. Solving model (10) 

for the stated numerical data gives the optimal num-

ber of yard cranes 16*
=k . Table 1 shows the opti-

mal initial position of yard cranes, 20,,1,*
0 K=ixii , 

when C=600 minutes and the optimal number of 

cranes is also identified as 16*
=k . As the above ta-

ble shows assigning the initial position of yard cranes 

based on a subjective method, as Zhang et al. [10] 

assigned, may not produce an optimum position for 

yard cranes. For example if one uses the scheme used 

in Zhang et al. [10] it assigned the initial position of 

yard cranes for the given example as 10 =iix  for 

16,,1K=i  and ,00 =iix  20,19,18,17=i . Fur-

thermore, the optimal solution shows 0*
6 =iw  for 

every block 20,,1K=i . This indicates the comple-

tion amount of existing workloads at the end of plan-

ning horizon for each block is achieved.   

5. Conclusion  

This paper has proposed a modified mathematical 

model to obtain the optimal number of yard cranes 

for completion the amount of workloads at the end of 

planning horizon in a container terminal. We have 

formulated the problem as a mixed integer program-

ming model and using a numerical example the re-

sults of the proposed model have been illustrated. 

Finding the optimal capacity of every crane within a 

planning period and relationship between C and k 

needs further investigation.         
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