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Abstract: In this paper, the researchers have proposed a multi-dimensional knapsack model for project 

capital budgeting problem in uncertain situation which has been modeled through fuzzy sets. The optimistic 

and pessimistic situations were considered and associated deterministic models were yielded. Numerical 

example has been supplied toillustrate the performance of proposed model. The results were promising in 

the sense of helping the decision makers. 
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1. Introduction 

Optimum investment when we are facing a set of 

chances has both practical and theoretical 

importance. The selection should contain set 

investments to meet a high level profit and low 

risk. Generally, this is interpreted as capital 

budgeting which is a common paradigm with 

enough flexibility for standing in many areas.  

Capital budgetinghas also attracted a large 

variety of research efforts due to its adaptability to 

real case conditions. Liang (2008) proposed chance 

programming models for capital budgeting in 

fuzzy environments. Huang (2008) developed 

mean-variance model for fuzzy capital budgeting. 

Chan et al. (2005) proposeda goal-seeking 

approach to capital budgeting. Steuer and Na 

(2003) proposed a categorized bibliographic study 

on multiple criteria decision making combined 

with finance. Bernardo (2001) developed capital 

budgeting and compensation with asymmetric 

information and moral hazard. Badri (2001) 

developed a comprehensive 0–1 goal programming 

model for project selection. Timothy and Kalu 

(1999) proposedan extended goal programming 

approach for capital budgeting under uncertainty. 

An empirical study of capital budgeting practices 

for strategic investments in CIM technologies has 

been accomplished by Slagmulder et al. (1995). 

Lee and Kim (1994) proposed capital budgeting 

model with flexible budget. Liang and Gao (2008) 

proposed dependent-chance programming models 

for capital budgeting in fuzzy environments. 

Knapsackis assumed as a NP-hard problem 

(Fréville, 2004). Knapsackis fitted properly to a set 

of optimization and engineering problems as well 

as capital budgeting and project selection. Balev et 

al. (2008) proposed a dynamic programming based 

reduction procedure for the multidimensional 0–1 

knapsack problem. Kaparis and Letchford (2008) 

proposed local and global lifted cover inequalities 

for the 0–1 multidimensional knapsack problem. 

Bektas and Oğuz (2007) developed separating 

cover inequalities for the multidimensional 

knapsack problem. Akbar (2006) proposed 

multidimensional multiple-choice knapsack 

problem. Fréville (2004) presented an overview of 

multidimensional 0–1 knapsack problem. Stavros 

(2007) proposed a partially ordered knapsack and 

applied it to scheduling problem. 

In this paper, the researchers associated the 

capital budgeting problem as a multidimensional 

knapsack in an uncertain situation which has been 

modeled using fuzzy sets. Total available budget, 

net present value (NPV) of a project and the 

associated project profit are assumed to be positive 

Trapezoidal Fuzzy Numbers (TrFNs). Two 

objectives were considered (i.e. lowest cost and 

maximum profit). 

The following sections are arranged as below. 

Section 2 is allocated to define the problem as a 

multidimensional knapsack. The proposed fuzzy 

model is presented in Section3. Experimental 

results are outlined in Section 4. The conclusions 

are represented in Section 5. 

2. Problem definition 

The classical multi-dimensional knapsackis 

reviewed briefly.Then, it will be associated 

tocapital budgeting problem. 
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2.1. Multi-dimensional knapsack problem 

We are given a set of n objects numbered 1,       

2, …,n and a knapsack of total volume and weight 

capacity which are represented by Wand V, 

respectively. Each object i has weight wi, volume 

vi and utilitypi. Let X = [x1, x2…xn] be a solution 

vector in which xi = 0 if object i is not in the 

knapsack, and xi = 1 if it is in the knapsack.  

The goal is to find a subset of objects to put into 

the knapsack so that the total available volume and 

weight capacity is obeyed and the total utility of 

this set is maximized concurrently. The crisp zero-

one representation of aforementioned problem is as 

Model (1): 

Max ∑
=

n

i

ii xp
1

 

Subject to:  

Wxw
n

i

ii ≤∑
=1

                                                   (1) 

Vxv
n

i

ii ≤∑
=1

 

  1,0=ix                                                  

2.2. Fuzzy multi-dimensional knapsack problem 

In real world problems, it is often impossible or 

non-realistic to gather a crisp value for the 

coefficient of the Model (1).  

The Model (1) can be developed in a fuzzy 

environment as Model (2).  

Max ∑
=

n

i

ii xp
1

~  

Subject to: 

Wxw
n

i

ii

~~

1

≤∑
=

                                              (2) 

Vxv
n

i

ii

~~

1

≤∑
=

 

1,0=ix                                                               

In Model (2) the expected profit of a project, 

weight of objects, objects volume and total 

available resources are assumed to be a fuzzy 

number. 

3. Proposed fuzzy capital budgeting model 

Consider there are several investment chances in 

a full uncertain situation where there are no exact 

information about requirement and outputs of 

investment. A DM likes to invest in a way that the 

total profit of investment is maximized and the 

total available budget for investment is obeyed. It 

is a capital budgeting problem which may be 

solved optimally by fuzzy multidimensional 

knapsack formulation.  

In this section, a fuzzy capital budgeting model 

will be developed. Without loss of generality, the 

main requirement of an investment is human 

resources, facilities/ machines and a raw. The 

investment output is all of its tangible, intangible, 

and probable losses as well as its profits. DM has 

no clear sense about the amount of these 

requirements or output in a deterministic way. This 

vagueness can be reported in TrFNs. Let, describe 

the notations and fuzzy parameters as TrFNs. 

Suppose, we are facing with n projects with the 

following indices and parameters. 

j  Number of projects,  j = 1, 2, …, n. 

i  Type of human resources,  i = 1, 2, …, m. 

k   Machine kind,  k = 1, 2, …, s. 

o  Type of raw material,  o = 1, 2, …, z. 

iH
~

 Available human resource of type i. 

ijh
~

 Requirement of human resource I in 

project  j. 

kM
~

 Available machine- hour of type k. 

ijm~  Requirement of machine- hour of type 

kind project  j. 

oR
~

 Maximum available raw material of type 

o. 

ojr~  Requirement of raw material o in project j. 

j

~
B  Maximum available budget for project  j. 

iC
~

 Per hour cost of human resource i. 

kC
~

  Per hour cost of machine type k. 

oC
~

 Unit cost material. 

jp~  Total net profit of project  j. 
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The decision variable of the model is considered 

as below:  


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By these definitions the proposed fuzzy 0-1 

programming is as Model (3). 
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Where, all fuzzy parameters are TFNs in left and 

right spread formats.  

The objective function is a multi-objective 

function which tries to maximize the net profit of 

the selected projects and minimize their costs, 

simultaneously. These objectives are assumed to 

have the same weights and priorities so they have 

been combined with a simple additive weighting 

method. The first set of constraints, which should 

be held for all projects and all human resources of 

the projects, insures that human resources 

availability is met during project selection 

procedure. The second and third sets of constraints 

have the same description of first set of constraints 

but they are applied for machine-hour and raw 

materials, respectively. The fourth set of 

constraints holds the budget availability for each 

project in the project selection procedure. The fifth 

set of constraints checks if total cost of a selected 

project is less than its profit. The sixth set of 

constraints insures that at least one project is 

selected and finally the zero-one orientation of 

decision variable of the model is reserved in the 

seventh set of constraints. 

Considering the α-cut concept for fuzzy 

parameters of Model (3), an interval 0-1 

programming model is represented as Model (4). 
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Following the interval programming optimistic 

Model (5) and pessimistic Model (6) will be 

emerged.  

The proposed models should be solved for a 

predefined α-cut level in order to complete a full 

analysis. In the next section a full analysis will be 

represented for an illustrative instance. 
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4. Results 

In this section, the proposed model is tested. A 

full analysis is performed with both optimistic and 

pessimistic models. 
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Table 1: Available resources. 

H
u

m
an

 

R
es

o
u

rc
e 

H.R Type1 (5, 7, 11, 15) 

H.R Type2 (32, 40, 44, 50) 

H.R Type3 (41, 43, 47, 48) 

H.R Type4 (8, 16, 26, 32) 

H.R Type5 (10, 18, 23, 32) 

M
ac

h
in

es
 Machine Type1 (35, 44, 52, 59) 

Machine Type2 (47, 53, 55, 63) 

Machine Type3 (32, 35, 36, 42) 

Machine Type4 (9, 17, 23, 24) 

Machine Type5 (37, 45, 48, 48) 

R
aw

 

M
at

er
ia

ls
 Raw Material 1 (43, 43, 50, 57) 

Raw Material 2 (3, 5, 12, 15) 

Raw Material 3 (6, 9, 13, 20) 

Raw Material 4 (25, 27, 28, 33) 

Raw Material 5 (18, 21, 26, 35) 
 

 Table 2: Unit cost for resources. 

H
u

m
an

 

R
es

o
u

rc
e 

H.R Type1 (5, 7, 11, 15) 

H.R Type2 (32, 40, 44, 50) 

H.R Type3 (41, 43, 47, 48) 

H.R Type4 (8, 16, 26, 32) 

H.R Type5 (10, 18, 23, 32) 

M
ac

h
in

es
 Machine Type1 (35, 44, 52, 59) 

Machine Type2 (47, 53, 55, 63) 

Machine Type3 (32, 35, 36, 42) 

Machine Type4 (9, 17, 23, 24) 

Machine Type5 (37, 45, 48, 48) 

R
aw

 

M
at

er
ia

ls
 Raw Material 1 (43, 43, 50, 57) 

Raw Material 2 (3, 5, 12, 15) 

Raw Material 3 (6, 9, 13, 20) 

Raw Material 4 (25, 27, 28, 33) 

Raw Material 5 (18, 21, 26, 35) 
 

Table 3: Available budget & net profit. 

Project No. Available Budget Net Profit 

Project 1 (39304, 39307, 39363, 39372) (7238, 7260, 7265, 7284) 

Project 2 (14140, 14151, 14152, 14192) (7065, 7110, 7143, 7188) 

Project 3 (5789, 5857, 5894, 5913) (3559, 3602, 3620, 3627) 

Project 4 (47219, 47237, 47239, 47251) (7977, 8018, 8033, 8045) 

Project 5 (26336, 26340, 26418, 26419) (8558, 8567, 8580, 8607) 

Project 6 (40169, 40180, 40186, 40186) (6770, 6774, 6836, 6892) 

Project 7 (22964, 22987, 23002, 23038) (1607, 1669, 1687, 1752) 

Project 8 (24694, 24728, 24735, 24780) (8209, 8262, 8274, 8284) 

Project 9 (2239, 2250, 2312, 2331) (4275, 4309, 4312, 4313) 

Project 10 (22029, 22068, 22069, 22092) (4573, 4575, 4581, 4598) 

Table 4: Human resource requirements. 

Project No. H.R. Type 1 H.R. Type 2 H.R. Type 3 H.R. Type 4 H.R. Type 5 

Project 1 (1, 5, 7, 9) (3, 5, 5, 7) (5, 13, 20, 26) (7, 8, 11, 12) (6, 14, 15, 17) 

Project 2 (3, 7, 8, 8) (3, 11, 16, 17) (4, 6, 11, 12) (0, 3, 10, 12) (1, 2, 5, 6) 

Project 3 (2, 3, 9, 9) (2, 2, 5, 12) (9, 12, 13, 13) (5, 12, 16, 22) (1, 4, 10, 10) 

Project 4 (8, 14, 15, 19) (9, 11, 17, 17) (8, 8, 9, 11) (8, 12, 12, 13) (1, 3, 4, 5) 

Project 5 (1, 2, 2, 4) (2, 2, 3, 6) (9, 17, 23, 26) (3, 7, 9, 10) (3, 6, 10, 11) 

Project 6 (8, 8, 10, 18) (4, 6, 9, 14) (3, 9, 11, 11) (1, 3, 8, 14) (0, 1, 8, 10) 

Project 7 (8, 9, 9, 10) (9, 9, 14, 14) (3, 3, 11, 13) (3, 7, 8, 12) (9, 10, 11, 12) 

Project 8 (8, 12, 12, 13) (7, 9, 13, 17) (3, 4, 4, 8) (0, 2, 8, 13) (5, 11, 11, 15) 

Project 9 (3, 6, 8, 15) (4, 9, 9, 14) (2, 3, 3, 3) (10, 17, 17, 20) (0, 5, 9, 14) 

Project 10 (4, 5, 5, 9) (8, 8, 11, 13) (8, 11, 11, 12) (3, 10, 10, 13) (10, 19, 24, 26) 

Table 5: Machine requirements. 

Project No. 
Machine 

Type 1 
Machine Type 2 Machine Type 3 Machine Type 4 Machine Type 5 

Project 1 (0, 1, 1, 1) (6, 6, 6, 12) (9, 10, 11, 11) (3, 3, 4, 4) (7, 10, 18, 19) 

Project 2 (3, 4, 6, 8) (1, 1, 6, 9) (2, 11, 18, 18) (7, 8, 12, 13) (1, 1, 1, 4) 

Project 3 (6, 8, 14, 18) (2, 4, 9, 9) (6, 8, 9, 10) (10, 13, 15, 16) (3, 5, 8, 13) 

Project 4 (7, 10, 11, 11) (4, 5, 9, 16) (8, 16, 18, 22) (1, 1, 3, 3) (1, 3, 4, 6) 

Project 5 (7, 9, 9, 12) (4, 5, 5, 6) (3, 7, 9, 10) (9, 15, 15, 15) (9, 10, 12, 13) 

Project 6 (5, 9, 9, 11) (10, 13, 14, 17) (9, 12, 12, 13) (8, 14, 17, 17) (5, 11, 16, 20) 

Project 7 (2, 9, 9, 16) (2, 4, 9, 15) (8, 9, 11, 16) (4, 6, 7, 7) (7, 7, 10, 14) 

Project 8 (9, 9, 12, 17) (9, 16, 20, 20) (5, 7, 9, 10) (5, 10, 14, 16) (9, 12, 12, 20) 

Project 9 (1, 6, 7, 12) (6, 9, 10, 15) (7, 8, 8, 12) (0, 2, 3, 5) (7, 7, 8, 9) 

Project 10 (7, 9, 9, 13) (1, 2, 9, 11) (2, 9, 10, 14) (5, 7, 15, 17) (7, 12, 19, 20) 

Table 6: Raw material requirements. 

Project No. R. M. Type 1 R. M. Type 2 R. M. Type 3 R. M. Type 4 R. M. Type 5 

Project 1 (5, 6, 10, 10) (8, 8, 8, 9) (7, 8, 10, 11) (5, 7, 7, 8) (5, 9, 15, 21) 

Project 2 (2, 5, 5, 7) (1, 1, 9, 10) (8, 10, 13, 15) (2, 2, 3, 11) (6, 8, 13, 19) 

Project 3 (6, 7, 8, 14) (3, 9, 13, 17) (9, 13, 14, 14) (1, 2, 2, 2) (4, 6, 8, 10) 

Project 4 (8, 9, 15, 22) (8, 13, 15, 15) (2, 3, 3, 5) (0, 8, 10, 12) (6, 7, 8, 10) 

Project 5 (10, 12, 13, 13) (7, 15, 20, 21) (7, 9, 12, 16) (7, 11, 16, 16) (0, 3, 3, 7) 

Project 6 (4, 5, 8, 9) (2, 6, 14, 15) (3, 7, 8, 11) (2, 2, 2, 7) (2, 2, 9, 9) 

Project 7 (2, 5, 5, 7) (5, 10, 10, 13) (9, 10, 15, 16) (6, 13, 15, 21) (4, 9, 9, 10) 

Project 8 (3, 4, 4, 10) (7, 9, 10, 11) (4, 7, 9, 10) (1, 6, 10, 11) (7, 9, 9, 15) 

Project 9 (10, 12, 15, 20) (4, 7, 14, 17) (6, 7, 13, 13) (5, 8, 12, 21) (4, 8, 8, 9) 

Project 10 (6, 7, 8, 11) (10, 12, 21, 22) (1, 4, 4, 9) (9, 10, 11, 11) (10, 11, 12, 16) 
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4.1. Test problem 

Consider 10, 5, 5, 5 as available projects, 

human resource kinds, machine kinds and raw 

material types, respectively. The data of the 

numerical example are presented in Tables 1 to 6. 

4.2. Experimental results 

The described problem was solved optimally by 

LINGO solver through a Branch & Bound 

algorithm. The optimistic and the pessimistic 

model were solved for different α-cut levels. The 

obtained results are summarized in following 

tables. The results show that some projects lie in 

optimum portfolio for all α-cut levels in boths 

proposed models. These projects have high 

priority for investement in these ambiguous 

conditions. Some projects don’t lie in optimum 

portfolio at any condition. These projects are not 

proposed for investment at all. All remained 

project are ranked subject to decreasing order of 

their total selection frequency in both tables 8 and 

10, respectively. These projects are selected for 

invesment due to their calculated ranks.  

5. Conclusion 

In this paper the researchers have developed a 

0-1 programming model for capital budgeting in 

which the process of project selection has been 

accommodated in a full fuzzy environement. We 

developed a fuzzy 0-1 programming in a situation 

which an organization is faced several investment 

opportunities. The developed model consisted of 

two major kinds of constraints. The first one 

guaranteed the requirement resources for a 

candidate investment would not exceed the 

quantity of total available resources while the 

second one held on the spended cost for each 

investment under total available amount of 

considered budget for that project. The objective 

funtion of the model was a multi one with two 

major parts (profit and cost) which were 

combined by simple additive weighting method 

fairly. The researchers used TrFNs to represent 

the vagueness. Using α-cut level concepts, the 

researchers developed 2 different models, one for 

optimistic and the other for pessimistic condition. 

The proposed models were coded in LINGO and a 

numerical example was supplied. The obtained 

results show that the proposed procedure is 

efficient and viable.  

The procedure helps decision makersto selecta 

set of investment plan among several ones in full 

ambiguous conditions. By selecting different α-

cut levels, the decision maker may gain a suitable 

vision about the outcome of his/her chosen 

investment. 

Table7: Optimisstic programming. 

Run α-cut O.F.V. State 

1 0 42923.00 Global Optimum 

2 0.1 41657.67 Global Optimum 

3 0.2 40449.68 Global Optimum 

4 0.3 39204.03 Global Optimum 

5 0.4 37920.72 Global Optimum 

6 0.5 34744.50 Global Optimum 

7 0.6 33536.60 Global Optimum 

8 0.7 32296.10 Global Optimum 

9 0.8 31023.00 Global Optimum 

10 0.9 29717.30 Global Optimum 

11 1 28379.00 Global Optimum 

Table 8: Runs of optimistic programming. 

 Project No. 
ru

n
s 

 1 2 3 4 5 6 7 8 9 10 

1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 0 1 1 1 

3 1 1 1 1 1 1 0 1 1 1 

4 1 1 1 1 1 1 0 1 1 1 

5 1 1 1 1 1 1 0 1 1 1 

6 1 1 1 1 1 1 0 1 0 1 

7 1 1 1 1 1 1 0 1 0 1 

8 1 1 1 1 1 1 0 1 0 1 

9 1 1 1 1 1 1 0 1 0 1 

10 1 1 1 1 1 1 0 1 0 1 

11 1 1 1 1 1 1 0 1 0 1 

 Total 11 11 11 11 11 11 1 11 5 11 

Table 9: Pessimistic programming. 

Run α-cut O.F.V. State 

1 0 3280.000 Global Optimum 

2 0.1 4475.890 Global Optimum 

3 0.2 5652.560 Global Optimum 

4 0.3 6881.970 Global Optimum 

5 0.4 8246.880 Global Optimum 

6 0.5 9588.250 Global Optimum 

7 0.6 10906.08 Global Optimum 

8 0.7 12200.37 Global Optimum 

9 0.8 13471.12 Global Optimum 

10 0.9 14718.33 Global Optimum 

11 1 15942.00 Global Optimum 

Table 10: Runs of optimistic programming. 

 Project No. 

ru
n

s 

 1 2 3 4 5 6 7 8 9 10 

1 1 1 0 1 1 0 0 1 0 0 

2 1 1 0 1 1 0 0 1 0 0 

3 1 1 0 1 1 0 0 1 0 0 

4 1 1 0 1 1 1 0 1 0 0 

5 1 1 0 1 1 1 0 1 0 0 

6 1 1 0 1 1 1 0 1 0 0 

7 1 1 0 1 1 1 0 1 0 0 

8 1 1 0 1 1 1 0 1 0 0 

9 1 1 0 1 1 1 0 1 0 0 

10 1 1 0 1 1 1 0 1 0 0 

11 1 1 0 1 1 1 0 1 0 0 

 Total 11 11 0 11 11 8 0 11 0 0 
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