J. Ind. Eng. Int., 7 (12), 45-51, Winter 2010
ISSN: 1735-5702
© IAU, South Tehran Branch

Non-discretionary imprecise data in efficiency
measurement

S. Razavyan'; G. Tohidi**

!Assistant Professor, Dep. of Mathematics, Islamic Azad University, South- Tehran Branch, Tehran, Iran

?Assistant Professor, Dep. of Mathematics, Islamic Azad University, Tehran-Central Branch, Tehran, Iran

Received: 16 February 2008; Revised: 20 August 2008; Accepted: 9 November 2008

Abstract: This paper introduces discretionary imprecise data in Data Envelopment Analysis (DEA) and
discusses the efficiency evaluation of Decision Making Units (DMUs) with non-discretionary imprecise
data. Then, suggests a method for evaluation the efficiency of DMUs with non-discretionary imprecise data.
When some inputs and outputs are imprecise and non-discretionary, the DEA model becomes non-linear
programming problem. By a Theorem, we use the translation of imprecise data into exact data and then use
the standard linear DEA model for evaluating DMUs with non-discretionary and imprecise data, which is
the generalized form of envelopment form in input oriented of CCR model. To illustrate the proposed
method, a numerical example with non-discretionary imprecise data is solved.
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1. Introduction

Data Envelopment Analysis (DEA) is a math-
ematical programming technique for identifying
efficient frontiers for peer Decision Making Units
(DMUs). The original DEA models, say CCR
model (Charnes et al., 1978), assume that inputs
and outputs of DMUs are homogeneous and pre-
cise, i.e. they perform the same task with similar
objective, consume similar inputs and produce
similar outputs, and operate in similar operational
environments (Golany and Roll, 1993); and inputs
and outputs are measured by exact values (do not
take into account non-discretionary or imprecise
inputs and outputs). Often the assumption of ho-
mogeneous environments is violated and factors
that describe the differences in the environments
need to be included in the analysis. These factors,
and other factors outside the control of the DMU,
are frequently called non-discretionary factors,
(Fired et al., 1993; Ruggiero, 1996). On the other
hand, the CCR model assumes that all inputs and
outputs are known exactly. However this assump-
tion may not be true, i.e. some or all of inputs and
outputs may be imprecise. Imprecise data means
that some data are known only to the extent that
the true values lie within prescribed bounds while
other data are known only to satisfy certain ordin-
al relations (Zhu, 2003). If we incorporate impre-
cise data into the standard linear CCR model, the
resulting DEA model is a nonlinear and non-
convex program, and is called imprecise DEA
(IDEA) (Zhu, 2003). Cooper et al. (1999) ad-
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dressed the problem of imprecise data in DEA in
its general form. Kim et al. (1999) discuss how to
deal with bounded data, ordinal data, and ratio
bounded data with an application to a set of tele-
phone office.

In a recent study Zhu (2003), the nonlinear Im-
precise DEA (IDEA) is solved in the standard li-
near CCR model and discusses the incorporation
of weight restrictions in IDEA.

A number of different approaches have been
developed to take into account non-discretionary
inputs and outputs, when DMUs are evaluated.
The first approach to account for difference in
non-discretionary inputs and outputs was intro-
duced by Banker and Morey (1986). Lovell
(1994) and Ruggiero (1996) suggest an alternative
approach. Golany and Roll (1993) generalize the
approach introduced by Banker and Morey (1986)
to account for both non-discretionary inputs and
nondiscretionary outputs. Also, a number of mul-
tiple stage models have been suggested. Ray
(1991) and Fried et al. (1993) introduced two-
stage approaches. The first stage consists of a
standard DEA with only discretionary factors. In
the second stage, the efficiency score are cor-
rected using regression analysis, in which non-
discretionary factors are used as independent va-
riables. Ruggiero (1998) and Fried er al. (1999)
have further extended the two-stage approaches.
But in this paper the researchers discuss the effi-
ciency evaluation of DMUs with non-discretio-
nary imprecise data in DEA and suggest a method
for evaluation the efficiency of DMUs.
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The rest of the paper is structured as follows:
Section 2 briefly introduces the background of
DEA and IDEA. In Section 3, the researchers in-
troduce the non-discretionary imprecise data and
propose a method for evaluating DMUs with non-
discretionary imprecise data. In Section 4, the re-
searchers obtain the efficiency of DMUs through
an example. Conclusion is given in Section 5.

2. DEA and imprecise data

To describe the DEA efficiency measurement,
we assume that there are n DMUSs to be evaluated,
indexed by j(j =1L...,n) and each DMU is as-

sumed to produce s different outputs from m dif-
ferent inputs. Let the observed input and output

vectors of DMU; be x;= (xlj,...,xmi) and
¥; =(Yjs---s Yy respectively, that all compo-
nents of vectors x; and y; for all DMUs are

non-negative and each DMU has at least one
strictly positive input and output.

To obtain efficiency of DMU, we use the CCR
model, which is as follows:

Maxiuryro

r=1

Subject to:

S v, =1 ()
r=l1

S m
Zuryrj —Zvixij <0, j=Ll.,n
r=l1 i=1

where v, and u, are the weights associated, re-
spectively, with input iand output r and
X, =1, x,,) and Yy, =(V1,s.--»V,,) are
inputs and outputs of DMU,, respectively. When
x; (for some i) and Vi (for some r) are imprecise
and unknown decision variables such as bounded
and ordinal data, Model (1) becomes a nonlinear
programming and is called imprecise DEA
(IDEA) (Cooper et al., 1999). The bounded data
can be expressed as:

Y, <Yy SV re BO
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x;<x;<X;,  ieBl )

where x; and Yy, are upper bounds, X, and
y are lower bounds and BO and BI represent the

associated sets containing bounded outputs and
inputs, respectively. The weak ordinal data can be
expressed as:

X: <X

ij io

and

Vi<V Vi#o,ie WI,re WO 3)

or to simplify the representation,

Vi<V <fy,<..<y,, reWo

X SXxp <. Sx; <SS x ieWl (4

in°

where WO and WI represent the associated sets
containing weak ordinal outputs and inputs, re-
spectively. The strong ordinal data can be ex-
pressed as:

VSV Sy, <<y, re SO

X SXp S.Sxy; S..Sx ieSI (5

= %in>°

where SO and SI represent the associated sets con-
taining strong ordinal outputs and inputs, respec-
tively.

If we incorporate Equations (2) to (5) into
Model (1), we have:

N
Max D u,y,,

r=l1

Subject to:

ivixio =1 (6)
r=l1

S m
Zu,yrj —Zvixij <0, j=L...,n
r=1 i=1

- +
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where (xij )e H; and (yrj)e H ' represent any

of or all of (2)-(5). The following theorem pro-
vides the theoretical foundation to the approach
developed by Zhu (2003) where the standard DEA
model is used to solve the IDEA Model (6).

Theorem 1. Suppose H, and H; are given by
(2). Then for DMU, the optimal value to (6) can
be achieved at x;,,=x, and y, =y, for

DMU, and x; =x; and y, =y = for DMU;
(j#o0).

Proof. See Zhu (2003).

Theorem 1 shows that when DMU, is under
evaluation we can have a set of exact data via set-

ting at x;,, =x,;, and y, =y, for DMU, and
X; =X; and y,; =Y, for DMU; (j # 0).

3. Non-discretionary imprecise data

For simplicity and without loss of generality,
all the models presented are formulated in an in-
put oriented form and without non-discretionary
imprecise outputs. These assumptions can be re-

laxed. Suppose x ; € R* and Z; € R’ present the

discretionary and non-discretionary inputs, re-
spectively, where m =k +1. When x; (for some

i) and z ki (for some k) are imprecise and nondi-

scretionary imprecise inputs and unknown deci-
sion variables such as bounded and ordinal data,
Model (1) becomes a nonlinear programming and
is called non-discretionary imprecise DEA (ND-
IDEA). The discretionary and non-discretionary
bounded inputs can be introduced as:

X; SX; S Xy, i€ DBI

2y S 2,5 S 7y, K e NDBI (7

where, X; and Zz;; are upper bounds, x, and

Zy; are lower bounds and DBI and NDBI represent

the associated sets containing bounded imprecise
and non-discretionary imprecise inputs, respec-
tively. The discretionary and nondiscretionary
weak ordinal data can be introduced as:

Xj SXis 2 S 24 j £0,i€ WDLKEWNDI (8)

i
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or to simplify the representation,

X SXp S.Sx, L2 ie WDI

ip in?

Zp S2n S S 2y, .S 2y, k€ WNDI (9)

where WDI and WNDI represent the associated
sets containing weak ordinal imprecise and non-
discretionary imprecise inputs, respectively. The
discretionary and non-discretionary strong ordinal
data can be expressed as:

Xj <Xpp << Xy, <...<Xy, (€ SDI
Zpy < Zgp << Zyy <o <2y, k€ SNDI (10)

where SDI and SNDI represent the associated sets
containing strong ordinal imprecise and non-
discretionary imprecise inputs, respectively.

Banker and Morey (1986) suggested the follow-
ing model for evaluation DMUs with non-
discretionary inputs:

MB =Min @

Subject to:

DAy 2y, (11)
j=1

-> A x;+6x,20

j=1
j=1 j=1
ﬂj >0, j=1..,n

The dual of the model (11) is as follows:

Max uy,

Subject to:
vix =1 (12)
uy; —lej —vz(zj -2,)<0, j=1..n
u =0, ! >0, v2>0

Now suppose some of the inputs are imprecise
data in the forms of bounded data, ordinal data
and ratio bounded (discretionary and non-
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discretionary imprecise inputs). If we incorporate
(2)-(6) and (7)-(10) into Model (12), we have:

s
Max zur Vo
r=1

Subject to:
D vix, =1 (13)
i€l
IRIES W)

iel,

— D iz = 2,) <0

kel,

j=1..,n, (xij)e Hi_,(zkj)e H,, (yrj)e H:
u, 20, v} 20, v >0

r=1..sVie l,,Vke I,

where, I, and I, are the index sets of discretion-

ary and non-discretionary inputs, respectively.
The above model is nonlinear, but its ratio form is
as follows:

Max Zﬂryl'() /Zvl 'xl()

il
Subject to: (14)
Zluryrj/(zvl U+ka(zk] Zko))<1
il kel,

j=1..,n, (x )e H,_,(zkj)e H,, (yrj)eH
M. =20, vi1 >0, v,f >0,r=1,...,s,

Viel,,Vkel,

The Models (13) and (14) are equivalent. By
Theorem (2), Model (13) can be converted a li-
near programming problem.

The following theorem provides the theoretical
foundation to the approach developed by Zhu
(2003), where the DEA Model (12) is used to
solve the ND-DEA model.
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Theorem 2. Suppose H; and H; are given by (2)

and (7). Then for DMU, the optimal value to (13)
can be achieved at

Xy =X,.1€l;, 24, =24,.ke 1,

Zio?
and y,, =Yy, for DMU, and x;=x;,
ij:ij’kGIZ and y;jj :X’T]_fOI' DMUJ

(j#o0).

Proof. Suppose the optimal value to (13) or (14)

is achieved at x;, y;} and z;- for DMU;
(j # 0) such that:

X; Sx <XU,lE DBI

2y < 24 < Ziyr i€ ND — BI

¥y, < Yy <3, r€ BO (15)

where DBI and ND-BI are discretionary bound
inputs and non-discretionary inputs, respectively
and for ré¢ BO,y,is exact output. So, for all

Jjj=1..,

(X 4,y

n) we have:

+ > M Y,)

re Bo r¢ Bo
1= 2
/( Z"i X+ ka (Zyj — Zko)
re DBI ke ND-Bi
1 2%
+ Z"i X+ ka (2 = Zko))
i¢ DBI ke ND—Bi
<Y H Yy DY)
re Bo re Bo
1% 2k,
/( Z"i X+ ka (Zyj = Zko)
re DBI ke ND—Bi
+ zvi X+ zvk (ij — Zk)) (16)
iz DBI ke ND—Bi

So,

(u,,Vr,v; ,ie DBI,v{ , ke ND-BI,

v',ie¢ DBI,v} ,k¢ ND—BI,

l b
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X; =X, 1€ DBI,zkj = Zyj»

ke ND - Bi, Y, =er, re BO) a7n

is a feasible solution to (14). Therefore, the op-
timal value to (14) can be achieved at X = )_clj,

and y,; = yrjfor DMU; (j #0).
By contradiction suppose that for DMU, the
4 <X,,,i€ DBI,

optimality is achieved at x,, <x;, <X,,,

Xmsyjo<yro’rEBO and §k0<ZZ()Szk()’
k e ND — BI with:

DYt DYy

re BO r¢ BO
1 = 13
zvi Xip + zvi Xio
ie DBI ig DBI
* *
2Vt 2 MY
re BO ré BO
< " = (13)
Z"i Xip T Zvi Xio
ie DBI ig DBI

which is a contradiction. O

Theorem 2 asserts that for obtaining efficiency
score of DMU, we can have a set of exact data via
setting at x;, = x, ,i€ I;, z;, =24,.k€ I, and

Yo = Vo for  DMU, and  x; =X,

i =%pkel, and y,; = Y oT€ BO for DMU;

(j # 0), while the Model (13) maintains the effi-

ciency score rating for DMU,. In this case the
Model (13) is converted to the following linear
programming model:

@, =Max D U5, + D M.,

re BO ré¢ BO
Subject to:
D MY DYy (19)
re BO re¢ BO
- 2 = 1
- Zwixij - za)k (T = Zpo) — za)ixij
ie DBI ke ND—BI i DBI
- Zalf(zkj—zko)ﬁ(), ]:1,,7’!,]?50

k¢ ND-BI

Zluryro + Zlurym - Za)ilicio - za)ilicio <0

reBO B0 ieDBI iz DBI
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Za)ilzio + Za)i2xi0 =1

i€ DBI ig DBI
1 2 Y. k
O, @ s Vs K, 1

The dual of the Model (19), which is used for
evaluating of DMUs, is as follows:

Min 6,
Subject to:

> A x;+A,x,<6,x,, i€ DBI

Zio”’
j=1, j#0

> Ax; <6,x,, i€ DBI (20)
j=1

Z ljzrj+/lozr02§m, re BO

j=1.j#0

Zﬂ’]yrj 2 yr()’ ré BO
j=1

> A,z —24,)S0, ke ND-BI

j=L j#0

Z;Lj(zkj ~2,,)<0, k& ND—BI

j=1, j#0

4,20, j=l,n, j#0.

Theorem 3. The Problem (20) is feasible and
bounded.

Proof. It can be seen that (6, =1,4, =1,41 =0,
j=1,--,n,j#0) is a feasible solution of the

Model (20) and 60* <1. Therefore, the Model
(20) is feasible and bounded.o

Zhu (2003) proposed a procedure to convert the
weak and strong ordinal data, into a set of exact
data. In this paper, we apply Zhu’s method, Zhu
(2003), for converting the discretionary and non-
discretionary weak and strong ordinal data, into a
set of exact data.

4. Numerical example

The researchers provide a numerical example
via Table 1. This Table portrays 14 DMUs that
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produce 4 outputs using 4 inputs. Table 1 reports
the data x;, x, x;and x, as the four inputs and y;,,
v2, y3 and y, as the four outputs. Note that x,and y,
are ordinal inputs and outputs, respectively. Sup-
pose that the relations between x, and y, are weak
ordinal and factor of x,1is outside of the control of
the DMU and is non-discretionary imprecise input
and have 4 ordinal scales, i.e. "4" for the worst
and "1" for the best. y, have 14 ordinal ranks. The
current paper reports y, differently with "1" for
the worst and "14" for the best. Since small input
values and larger output values are preferred in
DEA. y, imprecise and x, non-discretionary im-
precise and they hold in (5) and (9), respectively.
Therefore, we can convert y, and x, into bounded
data by Zhu's method.

Then by Theorem 1 and Model (20), the enve-
lopment form in input oriented, we obtain the ef-
ficiency of DMUs. To illustrate the proposed me-
thod we considerz, . From column 10 of Table 1

we have:

2104(F DS94 2542345294

S254 552114 5214(=14)

Now, for the input z, in weak ordinal relations,
we set up the following intervals, Zhu (2003):

zz€lol1], (j=10)

7 €lL14], (j=12...9.11,...14) 1)
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Suppose DMU,y is under evaluation by Model
(20). Based upon Theorem 1, we know that op-

timal value of Model (20),91*0, remains the same
and (21) is satisfied if 2,y4 = 0 (lower bound) for
DMU,, and Z_4j =14,(j #10) (upper bound for

other DMUs). A similar illustration holds
about y,. The column 10 of Table 1 shows the

efficiency scores under the assumption of weak
ordinal relations when they evaluated by Model
(20). For oe A ={2,5,6,10,12,14} using Model
(20) DMU, is efficient and other DMUs are inef-
ficient. Finally, the researchers obtained a model,
Model (20), which is the generalized form of en-
velopment form of CCR model in input oriented.
The proposed method can be generalized to
DMUs with variable retunes to scale.

5. Conclusion

In some situations, some inputs and outputs of
DMUs are non-discretionary and imprecise. In
this paper, the researchers introduced these data
and proposed a method, by CCR model, for effi-
ciency evaluation of DMUs with non-discre-
tionary imprecise data. The CCR model with non-
discretionary imprecise data is a non-linear prob-
lem. By the second Theorem, the researchers con-
vert resulted non-linear problem to a linear prob-
lem. Therefore, the presented procedure uses the
linear programming problem for efficiency evalu-
ation, which is always feasible and bounded.

Table 1: Data for the 14-DMUs and efficiency scores with weak ordinal relations.

DMU xl )C2 )C3 Xy =24 y1 y2 y3 y 4 Efficiency
1 217 4.11 131 14 11.39 4.38 29.41 2 0.8226
2 441 7.71 214 5 25.59 33.01 61.2 3 1
3 204 3.64 163 4 9.57 3.56 32.27 4 0.7894
4 216 3.24 154 9 11.46 9.02 32.81 2 0.8573
5 242 5.12 270 6 24.57 20.72 65.06 1 1
6 234 2.52 126 11 8.55 7.27 31.55 2 1
7 204 4.24 174 8 11.15 2.95 32.47 3 0.7336
8 356 7.95 299 3 22.25 14.9 66.04 2 0.8527
9 292 4.52 236 2 14.77 16.35 49.97 3 0.8725
10 141 5.21 63 1 9.76 16.26 21.48 2 1
11 220 6.09 179 13 17.25 22.09 47.94 2 0.9853
12 239 7.03 158 12 16.67 34.04 47.1 2 1
13 261 3.94 163 10 14.11 19.97 37.47 3 0.9904
14 170 2.1 90 7 6.8 12.64 20.7 3 1
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