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Abstract: In this paper, the researchers have investigated a Concatenated Robot Move (CRM) sequence 

problem and Minimal Part Set (MPS) schedule problem with different setup times for two-machine 

robotic cell. They have focused on simultaneous solving of CRM sequence and MPS schedule problems 

with different loading and unloading times. They have applied a Simulated Annealing (SA) algorithm to 

provide a good solution rapidly. A domination rule has been developed and used in SA algorithm that 

strongly reduces the search space and increases speed and solution's quality of the algorithm. Numerical 

experiments indicate the results of the proposed SA from two points of view: quality of solution and 

consumed time. 
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1. Introduction 

Nowadays, robots play an important role in 
flexible manufacturing systems. Flexible manuf-
acturing systems and just in time systems, widely 
use robots for manufacturing and producing 
various types of products. Robots can work in 
variety of fields such as handling, assemblies and 
operations. In robotic scheduling literature, also in 
this paper, the handling robot is considered. 
Robotic cells consist of one input device, a series 
of machines, one output device and robots that 
handle the parts between stations (Dawande et al., 
2005). Also there is no buffer storage between 
machines; therefore, each part at each moment is 
being processed or blocked on a machine or being 
handled by robot (Hall et al., 1998). Trying to 
maximize the throughput rate of cell is a vital 
decision in competitive environments then in 
order to achieve this goal, we must minimize the 
cycle time production. This criterion depends on 
two main variables: sequence of robot moves and 
schedule of parts which are going to enter the cell. 

Robot move sequence is a set of actions, which 

robot repeats at each cycle. Loading parts on, or 

unloading them from a special station, transporting 

parts from one station to another and all sorts of 

these activities are robot's duties in the cell. These 

activities are called Concatenated Robot Move 

(CRM) sequence.  

The part scheduling is the known problem that 

has been described in classical scheduling 

problems literature, in which the parts represent 

the jobs. Some authors investigated this problem 

for single part type that in this case, we have to 

solve one of these mentioned problems, i.e. the 

robot move sequence problem must be solved 

(Brauner, 2008; Crama and Van de Klundert, 

1996; Hall et al., 1997; Sethi et al., 1992). 

On the contrary, some of the researchers have 

had different studies. They determined the robot 

move cycle at first and solved the scheduling 

problem of parts which must enter the cell (see 

Sethi et al., 1992; Chen et al., 1997). Of course 

many of them concentrated on simultaneous 

solving of these two problems to optimize the 

cycle time (Hall et al., 1998; Hall et al., 1997; 

Aneja and Kamoun, 1999). In this study, the 

researchers are going to solve these two problems 

in robotic cell with two machines and multiple 

part types, simultaneously. They consider one-unit 

robot move cycle in the problem. The one-unit 

robot move cycle refers to the state that at each 

cycle, one part could be completed (Hall et al., 

1998).  

Since the automation of production technology 

has been used, production management and planning 

is also changed. In flexible manufacturing systems, 

the families of parts that require similar operations 

are determined and their required operations are 

used in a specialized cell (Aneja and Kamoun, 

1999). However for each family, there are special 

demands in the current period, thereby each 

family contains some of the parts which must be 

produced on their demands. So we should produce 
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Minimal Part Set (MPS) of each part at each cycle 

to meet the demands of period. 

An MPS is the smallest possible set of parts 

having the same contributions as the production in 

period (Hall et al., 1998), e.g. assume that we 

should produce 300 units of product A, 250 units 

of product B and 100 units of product C. Conse-

quently, we should produce 6 units of A, 5 units of 

B and 2 units of C at each cycle. The schedule of 

parts can redefine as MPS schedule problem. Ther-

efore we have two problems (CRM sequence and 

MPS schedule), which are going to be solved 

simultaneously in two-machine robotic cell. 

Figure (1) shows a sample of such problem with 

one robot-centered cell (Logendran and Sriska-

ndarrjah, 1996). In spite of the fact that the 

polynomial time algorithms are developed which 

get the optimal solution for solving these probl-

ems jointly, these studies considered the problems 

with equivalent loading and unloading time, but 

the researchers consider different loading and 

unloading time in this research. In practice, these 

parameters are not equivalent. Before and after 

each operation, the primal setup time is required 

therefore these times should be added to loading 

and unloading times respectively. Thus different 

loading and unloading times are considered.   

Also the time required for solving the large-

scale problems is considerable. Therefore for sol-

ving these problems, simultaneously, the resear-

chers developed a meta-heuristic algorithm (i.e. 

simulated annealing) in order to solve the problem 

in a reasonable time.  In this algorithm they use a 

domination rule to determine the best CRM 

sequence for each schedule of MPS. This rule 

helps to quickly obtain the output with high 

quality. This paper is organized as follows: 

   In Section 2 the literature is reviewed briefly. In 

Section 3 the problem definition and notations are 

described. Simulated annealing framework is 

described in Section 4. In Section 5 the validity of 

algorithm with numerical result in time consumed 

and solution quality investigate. Sections 6 and 7 

present the future researches and conclusion.  

2. Literature review 

Many researchers have concentrated on robotic 

scheduling problems. The main related literature 

review and fundamental concepts about our 

research can be found in Dawande et al. (2005). 

Moreover, Crama et al. (2000) and Brauner 

(2008) have been reviewed and explained related 

papers and concepts, about robotic scheduling 

problems. 

� �

�� ��

 

Figure 1: Robotic cell with two-machine. 

Ashfal (1985) is one of the famous establishers 

of robotic flow shop problem. Sethi et al (1992) 

found the optimal sequence of robot move for 

two-machine and three-machine cells that produce 

a single part type and then solved the part 

scheduling problem for a given robot move 

sequence, for two-machine cell producing mul-

tiple part types. Logendran and Sriskandarajah 

(1996) introduced three different robotic cell lay-

outs. The in-line robotic cell, the robot-centered 

cell, and the mobile-robot cell, have been studied 

in their research. In this paper consider the robot-

centered cell problem has been considered. 

Hall et al. (1997) provided an algorithm with 

order O (n
4
) that jointly optimizes the robot move 

sequence and part scheduling problem in two-

machine robotic cell. After two years, Aneja and 

Kamoun (1999) extended the previous algorithm, 

and developed an algorithm of complexity O (n 

log n) that solves the mentioned problem with 

equivalent load and unload times for all parts on 

all machines. But in this paper, the researchers are 

going to solve the problem with different loading 

and unloading time.  

Hall et al. (1997) calculated the cycle time for 

six possible sequence of robot move in three-

machine cell. They continued their studies in (Hall 

et al., 1998) on three-machine cell producing 

multiple part types and proved that in two out of 

the six potentially optimal robot move sequence 

for producing one unit, the part scheduling 

problem is unary NP-complete. 

Crama and Van de Klundert (1996) provided a 

polynomial time algorithm that optimizes cycle 

time in m machine cell producing single part type 

in one robot-centered cell. Chen et al. (1997) 

considered the problem of sequencing parts of 

different types to minimize the production cycle 

time when the sequence of the robot moves is 

given. They used a mathematical formulation for 

the problem, and then proposed a branch-and-

bound algorithm to solve it. Brauner et al. (2003) 

proved that finding the optimal robot move 

sequence in a robotic cell with general travel time 

is included in NP-hard class of problems. 
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Sriskandarajaha et al. (1998) categorized the part 

schedule problem to four groups for m machines in 

the cell. As a result of this classification, they proved 

that the part sequencing problems associated with 

exactly 2m – 2 of the m! available robot cycles, 

are solvable in polynomial time. The remaining 

cycles have associated part sequencing problems 

which are unary NP-hard.  

Gultekin et al. (2006) investigated the tooling 

constraints in a two-machine robotic cell. They 

solved two problems which are allocating opera-

tions to the machines and robot move sequence, 

simultaneously. They assumed that there are some 

operations that can be processed only on machine 

1 and some operations can be processed only on 

machine 2. The remaining operations can be 

processed on either machine which the problem is 

allocating them to the machines to minimize the 

cycle time. 

Soukhal and Martineau (2005) considered a 

flow shop robotic cell that processes several jobs. 

They developed an integer programming model to 

determine the sequence of jobs that minimizes the 

makespan criterion. Although their model can solve 

the problems with m machines, their criterion is 

makespan and differs from general criterion in cyclic 

robotic scheduling problems (cycle time). Moreover, 

their model determines only the schedule of parts. 

Brucker and Kampmeyer (2008) presented a 

general framework for modeling and solving 

cyclic scheduling problems. Their model covers 

different cyclic problems such as cyclic job shop 

problems and cyclic robotic cell problems. They 

showed that all these problems can be formulated 

as mixed-integer linear programs which have a 

common structure.  

Recently, Drobouchevitch et al. (2010) 

considered scheduling problem in robotic cell 

when each machine has one-unit input buffer and 

one-unit output buffer. In their study, the obje-

ctive is minimizing robot move sequence or maxi-

mizing throughput. 

3. Problem definition and notations 

The main fundamentals of this section are 

derived from Aneja and Kamoun (1999). The 

framework of the problem and main notations are 

borrowed from this reference. To complete 

description, let's explain the problem and nota-

tions here. 

We are going to maximize the throughput or 

minimize the cycle time equivalently. Our robotic 

cell contains one robot-centered cell, two-

machine, one input device and one output device. 

There is no buffer storage between the machines 

and if the processing of the part finished, it must 

be blocked on the machine. In most of such 

problems, loading and unloading time for any 

parts are considered equivalently, but we have 

considered different loading and unloading time 

for all parts. Travel time, are constant and depend 

on a fixed parameter.  

3.1. Problem notations 

The problem notations are as follows: 

K  Number of part types. 

kP  The part type k, which must be produced, 

where Kk ,...,2,1= . 

kr  The minimal ratio of part type k, at curr-

ent period where Kk ,...,2,1= . 

MPS  In one MPS, kr  parts of type i  are pro-

duced. Ki ,...,1= . 

krrn ++= ...1  The total number of finished parts 

in the MPS. 

ia  Processing time of part i  on machine 

1M , where Ki ,...,2,1= . 

ib  Processing time of part i  on machine 

2M , where Ki ,...,2,1= . 

OI ,  Input and output devices respectively. 

0
iε  Pick up time of part i  at I where 

Ki ,...,2,1= . 

1m
iε  Loading time of part i  on machine mM , 

where 2,1=m  and Ki ,...,2,1= . 

2m
iε  Unloading time of part  from machine 

mM , where 2,1=m  and Ki ,...,2,1= . 

3
iε  Drop time of part i  at O , where 

Ki ,...,2,1= . 

δ  Traveling time of robot movement betw-

een I  to 1M , 1M  to 2M  and 2M  to O . 

δ2  Traveling time of robot movement 

between 2M  to I  and O  to 1M . 

δ3  Traveling time of robot movement 

between O  to I . 
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3.2. Problem formulation 

Initially, we have to calculate the objective 

function, i.e. total cycle time of one MPS. At first 

each partially cycle time between consecutive 

part, must be considered. This cycle time depends 

on CRM sequence. For two-machine robotic cell, 

two possible sequence of robot move are defined 

by Sethi et al. (1992), i.e. 1S  and 2S . Hall et al. 

(1997) described calculation of these two cycle time 

(derived by 1S  and 2S , respectively) in details. 

We briefly recalculate them by our notations. 
Let σ  be the permutation function which 

determines the schedule of part i . )(iPσ  indicates 

that part i , is scheduled in the 
thi  position of σ , 

where ni ,...,1= . Also we define 
s

iiT )1()( +σσ  as 

the time between loading part )(iPσ  on machine 

2M  and loading part )1( +iPσ  on machine 2M  by 

CRM sequence sS , where 2,1=s  suppose that 

initial state, starts when part )(iPσ  is loaded on 

machine 2M . The robot moves order in sequence 

1S , is as follows: wait when part )(iPσ  is being 

processed on 2M , unload, move to O , drop part 

)(iPσ , move to I , pick up part )1( +iPσ , move to 

1M , load, wait when part )1( +iPσ  is being 

processed on machine 1M , unload, move to 2M  
and load. Now according to the mentioned order 

we can calculate 
1

)1()( +iiT σσ  as follows: 

21
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We define 
m
iw   as the waiting time of the 

robot before unloading part i  from machine mM , 

if necessary. Again, consider initial state, which 

starts after loading part )(iPσ  on machine 2M . 

The robot moves order in sequence 2S , is as 

follows: move to I , pick up part )1( +iPσ , move to 

1M , load, move to 2M , wait for processing part 

)(iPσ  if necessary, unload, move to O , drop part 

)(iPσ , move to 1M , wait for processing part 

)1( +iPσ  if necessary, unload, move to 2M  and 

load. Thus according to the above order, 

2
)1()( +iiT σσ  could be calculated as the following 

equation: 
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where 

{ }11
)1(

0
)1()(

2
)( 4,0max ++ −−−= iiii bw σσσσ εεδ  

Thereby, 
2

)(iwσ  is positive if )(ibσ  is greater 

than the required time for loading the next part on 

machine 1M  and coming back to 2M . 
1

)1( +iwσ  

could be calculated as following equation: 

{ }3
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Also 
1

)1( +iwσ  is positive if )1( +iaσ  is greater 

than required time for unloading the previous part 

from machine 2M  and return to 1M . Here, we 

calculate term 
2

)(
1

)1( ii ww σσ ++  and then extend 

Equation (2). 
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Thus 
2

)1()( +iiT σσ  could be formulated as 

equation (3). 
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3.3. Domination rule 

Now, the two partially cycle time of two 

possible CRM sequences, i.e. 
1

)1()( +iiT σσ  and 

2
)1()( +iiT σσ , have been computed. Assuming 

predetermined MPS schedule, the parts should be 

entered into cell by one of these sequences. The 

type of CRM sequence drastically affects on 

partial cycle time, while the sum of partial cycle 

times is equal to the total cycle time of MPS. 

�
=

+=
n

i
iiPCTC

1
)1()( σσ                                          (4) 

where TC  is the total cycle time and )1()( +iiTC σσ  

is the partial cycle time between consecutive parts 

)(iPσ  and )1( +iPσ  (i.e. one of these: 
1

)1()( +iiT σσ  or 

2
)1()( +iiT σσ ). Note that )1( +nPσ  is the part which 

begins the MPS cycle, i.e. )1(σP . If the MPS 

schedule is predetermined, we can find the 

optimal total cycle time using domination rule for 

all of consecutive coupled parts )(iPσ  and )1( +iPσ . 

Theorem 1: Assuming the given MPS schedule, 

for any consecutive parts such as )(iPσ  and 

)1( +iPσ ,  
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Finally, if the MPS is given, we can find the 
optimal TC , by using this rule. For each 

consecutive part such as )(iPσ  and )1( +iPσ , if 

δσσ 2)()1( <++ ii ba , the sequence 1S , must be 

used, i.e. under this condition, after loading part 

)(iPσ  on machine 2M , robot must wait for 

processing part )(iPσ , then transfer it to output 

device and then move toward input device. 

Otherwise, the sequence 2S , must be used, i.e. 

after loading part )(iPσ  on machine 2M , at first, 

robot must move toward part )1( +iPσ  and load it 

on machine 1M , then return to machine 2M . In 

section 4, domination rule will be successfully 
used in simulated annealing algorithm. 

Corollary 1: Assuming the given MPS schedule, 

for all consecutive parts such as )(iPσ  and 

)1( +iPσ , 

if δσσ 2)()1( <++ ii ba , then  
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Proof: for any consecutive parts,  
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4. Simulated Annealing 

Although there are rapid computer devices 

which can solve many large-scale problems, many 

problems exist with infinite needed solution time. 

These problems are categorized into NP-Hard and 

NP-Complete class of problems. The scheduling 

problems are usually NP-Hard, but many resea-

rchers have tried to develop polynomial algori-

thms for some types of these problems. Simult-

aneous solving of CRM sequence and MPS sche-

dule problems in two-machine robotic cell with 

equivalent loading and unloading time has been 

solved in polynomial time by Aneja and Kamoun 

(1999). Our problem is similar to their problem, 
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unless the loading and unloading times are 

different. 

Simulated annealing is one of the well-known 

meta-heuristics algorithms, which is very sensitive 

on tuning. Because of searching many solutions 

with very high speed, it is used in this research to 

solve the problem. Figure 5 show that if the SA is 

well-tuned, it will converge to the best solution 

4.1. Search space 

We simply can enumerate the total number of 

possible states. The total possible schedules multi-

plying by the possible CRM sequences for each 

MPS schedule, gives the total search space. It 

means that number of possible solutions which 

could be investigated by SA algorithm equals to: 
nn 2!× . 

Using domination rule, we can reduce the 

search space to !n  possible MPS schedule. This 

rule will be very useful in finding the best CRM 

sequence for each predetermined MPS schedule 

rapidly. Therefore, the speed and solution's quality 

of the algorithm would be strongly increased. 

Domination rule is completely described in 

section 3. 

However, when the size of the problem 

increases, the time taken by the polynomial algo-

rithms will be increased naturally. In this section 

we use simulated annealing algorithm to quickly 

solve such problems with large scales. In this 

algorithm we have to jointly optimize two prob-

lems: CRM sequence and MPS schedule. 

4.2. Solution representation 

Initially, a random solution would be gene-

rated. According to domination rule, only represe-

ntation of schedule of parts would be required. 

Another problem i.e. CRM sequence, could be 

solved by domination rule. In this algorithm, the 

schedule of parts is represented as a vector, e.g. 

suppose our MPS contains n  parts. One of the !n  

possible schedules could be represented as Figure 

2. Diminsion of this vector is )1(1 +× n  and the 

first part in the vector, is repeated at the end of 

vector, because in cyclic programming, the MPS 

cycle must be repeated more times. For any 

solution, there exists a partner vector which 

determines the CRM sequence for all parts. This 

would be considered by domination rule. Dimension 

of partner vector is n×1 . Figure 3 shows a 

sample of partner for schedule in Figure 2. 

Figure 3 reveals how the parts should enter 

into cell, e.g. after part 2, part 6 is entered by 

sequence 1S . 

4.3. Fitness function 

The total cycle time is used to evaluate the fitness 

function. Therefore, the domination rule must be 

investigated. Moreover, for any solution, two 

computations would be performed. 

At first, each of sequential paired parts is 

considered. For each consecutive parts )(iPσ  and 

)1( +iPσ , if δσσ 2)()1( <++ ii ba , then part )1( +iPσ  

enters in cell with sequence 1S .  

It means that for computing partially cycle time 

between parts )(iPσ  and )1( +iPσ , 
1

)1()( +iiT σσ , 

which is calculated in section 3, must be 

considered, otherwise, 
2

)1()( +iiT σσ . The total cycle 

time would be calculated using equation (4), i.e. 

sum of partially cycle times between sequential 

parts, for determined MPS schedule, gives the 

objective function. 

4.4. Neighbourhood search and movement 

Neighbourhood search could be performed 

simply and fast. For neighbourhood search, two 

parts are selected randomly and their places are 

swapped. This exchange usually changes the fit-

ness function. If new solution is better than the 

previous one, the algorithm selects a new seed; 

otherwise, the algorithm calculates the acceptance 

probability for new bad solution by the following 

equation: 

�
�

�
�
�

�

×

−
=

T

TCTC
pr newold

9.0
exp                                (5) 

If acceptance probability is greater than 8.0 , 

the new seed will be selected. In Equation (5), T is 

the temperature. At each temperature, just one 

iteration is run and cooling schema is as Equation 

(6). 

oldnew TT ×= 9995.0                                           (6) 

 

Figure 2: MPS schedule. 
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Using this schema, the algorithm could search 

most of possible solutions at high temperatures, 

however it could search around the optimal 

solution at low temperatures more carefully. The 

main framework of tuned simulated annealing 

using domination rule is presented in Figure 4. 

5. Numerical experiments 

SA algorithm can solve the problem rapidly, 

but does not guarantee the optimal solution. 

However, domination rule, described in section 3, 

helps to find the solutions rapidly with high 

quality. To quickly examine validation of the 

algorithm, we changed the transportation time 

(δ ) for different sizes of the problem. When δ  

value increased, the number of CRM sequence 1S  

increased too, and by decreasing δ value, the 

number of 2S  sequence, increased. 

5.1. Domination rule verification 

In this section the researchers compared two 

types of SA algorithms by numerical experiments. 

 

Figure 3: MPS schedule and CRM sequence. 

oldnew TT ×= 9995.0

8.0)
9.0

exp( >
×

∆

T

TC

  

Figure 4: Dominated SA algorithm flowchart. 

   One of these algorithms employs domination 

rule (DSA), and another one, without the mentio-

ned rule, searches all of 
nn 2!×  possible solutions. 

Framework of the second algorithm is similar to 

ordinary SA algorithm (OSA). In OSA algorithm, 

solution representation is similar to Figure 3, 

where for implementing partner vector neighbour-

rhood search, two sequences should be randomly 

selected and exchanged. After exchanging, one 

random-selected sequence should be replaced 

with number 1 or 2 with probability 50%. 

Because these mentioned algorithms do not 

guarantee the optimality, an exact method is nece-

ssary. Blind-search algorithms will be useful for 

small-sized problems. 

Therefore, the exact solution could be found by 

enumerating all possible  schedules using 

domination rule. The general steps of blind-search 

algorithm are presented below: 

Step 1: calculate all possible !n  schedules. 

Step 2: for each schedule, find the best CRM 

sequence using domination rule (Theorem 1) 

presented in Section 3. 

Step 3: calculate the total cycle time for each MPS 

schedule and its CRM sequence which 

obtained in step 2, using Equation (4) 

presented in Section 3. 

Step 4: find the minimum cycle time for all !n  

solutions as the best solution. 

To examine how the OSA and DSA algorithms 

work, some random test problems are generated 

and solved. Table 1 compares three algorithms for 

small-sized problems: blind-search, DSA and 

OSA. For each algorithm, solution and time are 

two throughputs presented in Table 1. 

Table 1 shows that both of OSA and DSA 

algorithms have good performance for small-sized 

problems, where all the gaps for DSA are 0% and 

for one case, OSA algorithm has 0.3% difference 

with exact solution. According to Table 1, time of 

blind-search algorithm will be increased expone-

ntially. Random data, which generated for prob-

lems in Table (1), are presented in Tables 5, 6 and 

7, respectively. 

 
Figure 5: Three neighbourhood search schemas for OSA algorithm; 

swapping for MPS schedule, exchanging and replacing for CRM 

sequence. 
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    Processing time on machine 1 and 2 is between 

1 to 100 and 1 to 200 respectively, which are 

given in Table (5). The data in Table (6) (loading 

and unloading time) are between 1 to 41, and the 

data in Table (7) (robot travelling time) are 

between 1 to 101. These data are generated in the 

mentioned intervals uniformly. All of the algo-

rithms are run by MALAB on a computer with 

Intel C2D 2GHz CPU and RAM 2GB. 

Due to the intolerable time required using 

exact methods such as blind-search algorithm for 

large-sized problems, meta-heuristics algorithms 

are selected instead. However, another way to 

examine the superiority of the domination rule is 

comparing DSA versus OSA for solving more 

large-sized problems. 

A statistical analysis is applied in order to 

demonstrate the superiority of the proposed app-

roach. Therefore, a randomized complete block 

design is used. The general statistical model for 

both time and solution is as follows: 

ijjiij orithmASizeY εµ +++= lg                   (7) 

Where iSize  represents the block effect (problem 

size), then 
jorithmAlg  stands for two mentioned 

algorithms (OSA and DSA). Variable ijY  is 

throughput of the experiment which can be one of 

the above mentioned criteria. After selecting size 

of the problem randomly, two algorithms have 

been run five times in a random order. The 

obtained solution and the time consumed are 

recorded in Table 2. The behavior of two algo-

rithms is rather same for small problems, but they 

are different in the consumed time and quality of 

solution when the size is increased. To statistically 

analyze the data of Table 2, the SAS software is 

used for the two criteria. The results of Table 3 

show that the difference between the algorithms, 

regarding quality of solutions, is significant. 

Table 4 also shows DSA and OSA outputs, 

attending to the time consumed. Obviously, the 

time required for solving large-scale problems 

will be strongly significant between DSA algo-

rithm and OSA algorithm, because in OSA algo-

rithm the search space is very large, rather than 

DSA algorithm, which its search space is reduced 

using the domination rule. 

According to Tables 2, 3 and 4 three conseque-

nces are presented below: 

1. In large-scales, the DSA algorithm can 

obtain better solutions than OSA 

algorithm. 

2. Time required for DSA algorithm is 

significantly low comparing with OSA 

algorithm. 

3. The two types of algorithm almost 

converge to the optimal solution. 

Figure 6 shows that how DSA algorithm 

behaves at size 50. At first, the algorithm has 

many alternatives to move, then due to the cooling 

schema, it will be converged to the best solution. 

Finally, according to the above results, we can 

employ dominated simulated annealing algorithm 

when we have to solve large-scale problems, 

requiring time saving and good solution. 

6. Future researches 

For future works we suggest following 

researches:  

A. Considering the uncertainties in the robotic cell 

problems. Probabilistic or fuzzy times for 

loading and unloading operation can be 

investigated for two or more machines. 

B. Developing an exact model for solving robotic 

scheduling problem with two-machines with 

different loading and unloading time. 

C. Developing a same research for solving CRM 

sequence and MPS schedule problems 

simultaneously in robotic cell with three 

machines. 

Table 1: DAS and OSA algorithms verification. 

Problem Size 
Exact Solution Dominated SA (DSA) Ordinary SA (OSA) 

Solution Time (s) Solution Time (s) Gap (%) Solution Time (s) Gap (%) 

3 1838 0 1838 0.2 0.0% 1838 0.2 0.0% 

4 3203 0 3203 0.2 0.0% 3203 0.3 0.0% 

5 2030 0 2030 0.4 0.0% 2030 0.6 0.0% 

6 4081 0 4081 0.4 0.0% 4081 0.8 0.0% 

7 5292 0.1 5292 0.5 0.0% 5292 0.9 0.0% 

8 6722 0.7 6722 0.6 0.0% 6722 0.9 0.0% 

9 7320 3.4 7320 0.6 0.0% 7340 1 0.3% 

10 8018 51.8 8018 0.7 0.0% 8018 1 0.0% 
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Table 2: Comparison of DSA and OSA algorithms. 

Problem Size 
Ordinary SA (OSA) Dominated SA (DSA) 

Solution Time (s) Solution Time (s) 

3 

1133 8 1133 1 

1133 6.9 1133 1 

1133 7.3 1133 1 

1133 8.9 1133 1 

1133 7.6 1133 1 

5 

2311 8.5 2311 1.2 

2311 8.7 2311 1 

2311 8.6 2311 1 

2311 8.6 2311 1.1 

2311 8.7 2311 1 

 6814 12.7 6779 1.5 

 6805 13 6779 1.9 

10 6805 13.9 6779 1.3 

 6823 13.8 6779 1 

 6842 12.5 6779 2 

 6926 15.7 6619 2.4 

 7012 15.4 6619 2 

15 6945 13.7 6619 2.1 

 6934 14.5 6619 1.9 

 6995 15.7 6619 2.5 

 8142 25.7 7874 5.2 

 8103 26.3 7874 5.2 

20 8091 27.6 7874 5.5 

 8038 28.6 7874 5.2 

 8152 25.4 7874 5.3 

 5423 39.9 4880 5.8 

 5298 36.9 4880 5.9 

25 5320 37.8 4880 5.4 

 5276 38 4880 5.5 

 5284 35.6 4880 5.6 

 17344 42.2 16937 5.4 

 17890 44.1 16937 5.6 

30 17465 45.8 16937 5.1 

 18030 42.3 16937 5.7 

 17268 44.4 16937 5.4 

 21300 39.1 20856 5.1 

 21109 42.4 20856 4.2 

35 21117 38.7 20856 5.9 

 21094 47.3 20856 5.7 

 21100 46.6 20856 6.1 

 22430 42.3 22027 4.8 

 22427 50.9 22027 5.2 

40 22655 46.6 22027 6.5 

 22498 48.7 22027 4.8 

 22794 49.9 22027 5.9 

 70171 61.5 58274 7.1 

 62962 66.4 58262 5.4 

50 64104 59.8 58265 6.5 

 65152 57.1 58261 6.7 

 70654 62.1 58302 6.2 

 

 

Table 3: SAS results for quality of solution using data of Table 2. 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 10 29820616540 2982061654 1337.29 <.0001 

Error 89 198463352 2229925   

Corrected Total 99 30019079893    

 R-Square Coeff Var Root MSE Y Mean  

 0.993389 9.752082 1493.293 15312.56  

Source DF Sum of Squares Mean Square F Value Pr > F 

Algorithm 1 29558794 29558794 13.26 0.0005 

Size 9 29791057746 3310117527 1484.41 <.0001 
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Table 4: SAS results for time consumed using data of Table 2. 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 10 27358.40460 2735.84046 37.29 <.0001 

Error 89 6529.42290 73.36430   

Corrected Total 99 33887.82750    

 R-Square Coeff Var Root MSE Y Mean  

 0.807322 49.81272 8.565296 17.19500  

Source DF Sum of Squares Mean Square F Value Pr > F 

Algorithm 1 17580.10810 17580.10810 239.63 <.0001 

Size 9 9778.29650 1086.47739 14.81 <.0001 

Table 5: Random processing time of parts on each machine related to Table 1. 

Problem Size Machine Time 
Parts 

1 2 3 4 5 6 7 8 9 10 

3 
a 45 89 2        

b 132 103 164        

4 
a 97 59 54 25       
b 38 143 170 169       

5 
a 10 60 71 9 92      
b 91 33 74 187 155      

6 
a 88 85 27 73 10 99     
b 108 171 150 91 176 192     

7 a 58 8 66 51 25 76 1    
 b 52 59 14 37 164 164 147    

8 a 66 80 82 60 55 94 84 73   
 b 161 13 159 141 16 108 93 84   
9 a 41 88 68 68 13 51 46 3 10  
 b 43 145 56 100 43 77 48 127 110  

10 a 5 34 13 39 67 96 38 67 53 50 
 b 47 55 195 74 52 45 172 118 98 43 

Table 6: Random loading and unloading time at each station related to Table 1. 

Problem Size 
I 

M1 M2 
O 

load unload load unload 

0 11 12 21 22 3 

3 
19 20 40 15 36 20 
13 13 25 28 9 8 
19 39 28 19 29 33 

4 

32 23 13 25 11 33 
25 15 31 29 30 3 
21 13 37 5 35 37 
20 6 2 3 28 23 

5 

20 26 26 26 12 2 

14 33 3 16 33 25 
16 39 23 9 19 35 
17 6 5 28 23 28 
3 37 33 30 30 3 

6 

36 27 13 27 24 19 
15 12 17 39 3 11 
10 18 37 8 17 23 

20 28 2 17 18 10 
4 33 32 16 14 20 
36 15 7 41 32 20 

7 

26 4 15 21 8 5 
9 36 35 29 24 25 
27 32 40 28 25 34 
40 24 21 4 23 4 
34 13 37 7 10 15 

35 2 8 28 7 27 
31 7 39 17 28 33 

8 

8 38 3 37 31 8 
36 10 23 7 24 29 
25 16 33 7 14 4 
23 30 18 14 16 16 
8 15 8 25 23 33 
33 34 7 24 22 13 

11 20 29 11 31 24 
39 19 14 10 36 39 

9 

15 18 10 22 31 24 
13 24 7 6 25 26 
23 20 23 15 9 36 
16 21 11 6 38 5 
17 5 10 39 13 34 
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Table 6: Random loading and unloading time at each station related to Table 1 (continued). 

Problem Size 
I 

M1 M2 
O 

load unload load unload 

0 11 12 21 22 3 

 

2 7 12 36 16 40 
1 40 8 23 37 26 
13 20 37 23 18 21 
35 40 15 28 11 30 

10 

33 3 31 25 24 39 
13 40 22 36 35 33 
32 27 39 35 23 2 
37 4 2 23 5 15 
40 21 40 25 28 25 
9 20 25 36 9 23 
27 40 25 35 24 33 
17 17 18 29 26 29 

1 25 3 22 12 3 
20 14 16 14 27 10 

Table 7: The travelling times of robot movement between I toM2, M2 to M2 and M2 to O ( Ô ). 

Problem Size 3 4 5 6 7 8 9 10 

travelling time 60 88 36 71 86 94 95 91 

 

 
Figure 6: DSA behavior for size 50. 

7. Conclusion 

The researchers investigated the robotic 

scheduling problem with two-machine which 

defined by Hall et al. (1997). They concentrated 

on setup times, i.e. different loading and unload-

ding time for all parts. For simultaneous solving 

two related problems (CRM sequence and MPS 

schedule), three algorithms have been applied: 

blind-search, dominated SA (DSA) and ordinary 

SA (OSA). Because of using domination rule in 

DSA, the numerical experiments showed the 

superiority of DSA against other algorithms, espe-

cially in large-sized problems, from quality of 

solution and time consumed observations. 
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