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           Abstract 

This paper proposes a family of robust counterpart for uncertain linear programs (LP) which is obtained 

for a general definition of the uncertainty region. The relationship between uncertainty sets using norm bod-

ies and their corresponding robust counterparts defined by dual norms is presented. Those properties lead us 

to characterize primal and dual robust counterparts. The researchers show that when the uncertainty region is 

small the corresponding robust counterpart is less conservative than the one for a larger region. Therefore, the 

model can be adjusted by choosing an appropriate norm body and the radius of the uncertainty region. We 

show how to apply a robust modeling approach to single and multi-period portfolio selection problems and 

illustrate the model properties with numerical examples. 
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1. Introduction 

Robust optimization methodology (ROM) has been 
developed to deal with uncertainty in convex pro-
gramming problems to design solutions that are im-
mune to data uncertainty. In 1970, a robust formula-
tion for uncertain linear programs (LP) was proposed 
by Sengupta [23] based on the statistical approach. 
He analyzed the implications of a non-normal but 
independent distribution of the random parameters of 
an LP in the framework of probabilistic linear pro-
gramming. Afterwards, this was addressed by Soyster 
[25] who considered uncertainty in the columns of 
constraint coefficients belonging to a convex set. In 
1991, Sengupta defined robust solutions based on 
non-parametric methods which are applicable in 
situations of incomplete knowledge and partial uncer-
tainty. He had shown that this class of methods pro-
vides a measure of robustness through the adoption of 
a cautious policy [24]. 

Recently, ROM has become more popular (El 
Ghaoui, et al. [12], Ben-Tal and Nemirovski [3-4]). A 
unified robust modeling approach has been also sug-
gested for Design Centering in engineering applica-
tion by Seifi et al. [22]. The reasons for the popularity 
of ROM are: (i) The size of the robust counterpart 
essentially remains the same as the original problem, 
(ii) No need to generate scenarios, and (iii) Usually 
results in convex programming problems that can be 
efficiently solved using interior point methods [6].  
Bertsimas and Melvyn [8] have a relaxed robust 
counterpart using general conic optimization to re-
duce the computational complexity especially for ro-
bust semi-definite programming problems (SDP). 

Generalization of robust LP with any pl -norms has 

also been done in Hanafizadeh and Seifi constraint-
wise [15] and also by Bertsimas, et al. column-wise 
[7]. An extension of the robust optimization for un-
certain linear programs is called the adjustable robust 
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solution as proposed by Ben-Tal et al. [1]. They de-
fine adjustable variables to represent "wait and see" 
decisions, that is, those that can be made when a part 
of the uncertain data becomes known. 

In ROM, the uncertain parameters are assumed to 
be bounded in an interval or an ellipsoidal region. 
Considering the worst-case behavior of the parame-
ters, the robust counterpart of an uncertain LP be-
comes another LP or a second-order cone program-
ming (SOCP) model. Ben-Tal and Nemirovski [5] 
claim that the ellipsoidal model of uncertainty is sig-
nificantly less conservative than the interval region, 
and thus, leads to more practical solutions.  In this 
paper, the researchers define a family of robust coun-
terpart (FRC) for uncertain LP using different norms 
and present its properties in terms of the uncertainty 
sets, feasibility regions and the value of objective 
functions. The authors show that using higher norms 
in the robust counterpart leads to less conservative 

model than using lower norms. Based on the prop-
erties, the authors define the primal and dual ro-
bust counterpart of an uncertain LP. In order to 
make the advantages of these properties clear, the 
authors bring examples from portfolio selection prob-
lems in single and multiple periods.  

Portfolio selection is an area where researchers 
have been interested in applied ROM. Ben-Tal, Mar-
galit and Nemirovski [2] formulated a multi-period 
portfolio selection problem. Their model, the uncer-
tain outcomes of earlier stages have an effect on the 
decisions of the later stages and the decision variables 
must be chosen to satisfy certain balance constraints. 
El Ghoui, Oks and Oustry [11] modeled the portfolio 
selection problem to maximize Value at Risk (VaR) 
ratio. This problem was reformulated as a SDP. Hall-
dorson and Tutuncu [14] considered mean vector and 
covariance matrices in interval regions and made a 
saddle point nonlinear program. Goldfarb and Iynegar 
[13] applied robust optimization to portfolio selection 
with mean-variance, maximum Sharpe ratio and VaR 
measures and showed that their robust counterparts 
are SOCPs. They proposed statistical procedures for 
estimating the uncertainty regions. Tutuncu and 
Koenig [26] presented a new formulation for identify-
ing robust portfolios with the largest Sharpe ratio and 
also addressed the issue of generating uncertainty 
sets. Pinar and Tutuncu [21] proposed the concept of 
a robust profit opportunity as an alternative to arbi-
trage opportunities and formulated the problem of 
finding the “most robust” profit opportunity. They 
showed that it can be solved as a convex quadratic 
programming problem. 

This paper also shows how to apply a robust mod-
eling approach to single and multi period portfolio 
selection problems. It is also shown how the robust 
model of an uncertain portfolio selection can be ad-

justed according to the chosen pl -norms. 

The rest of the paper is outlined as follows: Section 
2 presents FRC, its properties and primal and dual 
robust counterparts.  In Section 3, the authors apply 
the proposed model to a single-period portfolio selec-
tion problem and describe the numerical example. In 
Section 4, robust multi-period portfolio selection 
problems and the corresponding numerical results are 
presented. Section 5 concludes the whole paper. 

2. Family of robust counterparts 

An uncertain linear optimization problem is de-
fined as: 
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Let  ) ; ( ii ba denote the column vector obtained 

from the column vector ia  by appending the sca-

lar ib . Similarly, 
T

xx )1;ˆ( −= . It is assumed that 

 ) ; ( ii ba are not known exactly; but must lie in a 

given uncertainty set iU  for mi ,,1�= . The uncer-

tainty in c  may also be absorbed in the constraints, 

as shown later in Equation (8). An ql -norm body is 

defined as: 
 

{ }ruurB
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The authors are interested in the ellipsoidal-norm 

body, which is an ellipsoidal region and is defined by 
the quadratic-norm as follows: 

 
1/21 ) (     uCuu

T

C

−= (quadratic-norm),         (3) 

 

where C  is a symmetric and positive definite nn ×  

matrix . 

Definition 1. The Partial uncertainty set which is as-
sociated with the i-th constraint is defined as: 
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where, 
i

W  is an nn ×  symmetric and positive defi-

nite matrix, ) ; ( 00

ii ba is the nominal value for 

) ; ( ii ba .  

 

Definition 2. The complete uncertainty set U  for all 

uncertain parameters of an LP in (1) is the Cartesian 

product of the partial uncertainty sets iU  for 

mi ,,1,0 �= : 

 

 mUUUU ×××= �10 .   

                                                                   

0U is the partial uncertainty set related to random 

parameters in the objective function. Constructing the 

complete uncertainty set is constraint-wise. Each iU  

is the set of all possible realizations of i-th row in the 
constraint matrix and is obtained by the projection of 

U on to the space of data of the i-th constraint. 

U does not consider the dependencies (if any) among 

the uncertain parameters in different constraints. 
 
Definition 3. Any generation of partial uncertainty 
set is related to using different degrees of  
norm in its norm-body and is denoted by 

∞= ,,2,1,),( �qrqU i . Any generation of complete 

uncertainty set is related to any distinct combination 
of different generation of partial uncertainty sets and 

is denoted by ∞= ,,2,1,),,,( 10 �� im qrqqqU  for 

mi ,,1,0 �= . ),( rqU  is used when the degree of 

norms for all partial uncertainty sets, characterizing 
the complete uncertainty set, is the same. 
 
Proposition 1. Using different generation of partial 
uncertainty sets brings the following relation for the 
generation of  the complete uncertainty sets: 
 

),,(),,,(),1( 10 rUrqqqUrU m ∞⊆⊆ �   

 

∞<<∀ ii qq 1 ,   and  mi ,,1,0 �= . 

 
Proof. The following relation exists when using     

ql -norm bodies: 
 

∞<<∀⊆⊆ ∞ qqrBrBrB q 1 and ),()()(1 . 

The above relation is invariant under all affine 

transformation uWba
i

ii +);( 00
, therefore: 

 

),,(),(),1( rUrqUrU iiii ∞⊆⊆                 (5) 

∞<<∀ ii qq 0 ,  and  mi ,,1,0 �= . 

 
Since the complete uncertainty set is constraint-

wise of the partial ones, the proposition is proved. 

Result 1. For a given r, the smallest uncertainty re-

gion among all regions defined by ql -norms, is asso-

ciated with using the 1l -norm in the definition of the 

uncertainty region. 
A robust counterpart formulation is obtained by re-

placing iU in the problem (1) by ),( rqU i . Consider 

the worst-case behavior of the i-th constraint: 

0) ; ( ≤xba
T

ii  , and according to the definition of 

the  partial uncertainty set, we have:  
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Here, we define xWxw
ii =)( . Based on the defini-

tion of the dual norm, the dual of the ql -norm is the 

pl -norm, where q satisfies 1
11

=+
qp

, see for in-

stance Boyd and Vandenberghe [9]. Therefore: 

{ }
p
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q
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Then the robust version of the i-th constraint is: 
 

0.)( ˆ);( 00 ≤+
ip
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Therefore, the corresponding deterministic model 
of a general robust counterpart is:  
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The robust counterpart in (8) is a constraint-wise 
construction. We call (8), a Family Robust Counter-
part (FRC) for the uncertain linear program in (1).  

   If the same ql -norm is used in all the partial uncer-

tainty sets of (1), FRC with different norms have 
properties as defined in the following propositions: 
 
Definition 4. The robust counterpart feasibility set of 

problem (8) using pl -norm is defined by pS , where 

pS  is the intersection of all inequality constraints 

i

pS s for mi ,,1,0 �=  and also the nonnegative con-

straints. Each
i

pS is a subset related to the i-th inequal-

ity constraint.  
 

Proposition 2. The robust counterpart feasibility sets 
using different norms in the constraints of FRC (8) 
bring the relation: 

∞⊆⊆ SSS p1 ,                                     (9) 

where pS  is the robust counterpart feasibility set of 

problem (8) using pl -norm, for .,1 and ∞≠∀ pp  

 

Proof. )(tB i

p is defined as a norm-body which is re-

lated to the i-th constraint of FRC (8): 
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 Generally, there is the following relation for any 

pl -norm bodies: 
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a scalar then with above changing variable, )(tB i
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can be defined as: 
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which is related to the i-th constraint using pl –

norms. Therefore we have: 

miSSS ii

p

i ,,1,1 �=⊆⊆ ∞  and also the intersec-

tion of these m subsets brings the following relation: 
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⊆⊆ and also the nonnegative 

constraints are the same for all problems, therefore, 

∞⊆⊆ SSS p1 . 

 
Result 2. The above theorem shows that using 

∞l -norm in the original definition of uncertainty re-

gion, bring the smallest robust counterpart feasibility 
region.  

 
Corollary 1. If there is at least one feasible solution 

in 1S  then any robust counterpart feasibility 

sets pS will be feasible. 

 
Proof. Corollary 1 is an immediate consequence of 
the proposition 2. But the converse of Corollary 1 is 
not true. 
 

Proposition 3. Using different norms in problem (8) 
bring the inequality relation for the value of robust 
counterpart objective functions: 
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where pl
x is the optimal solution for problem (8)  

using pl -norm, and },,2,1{ ∞= �p  and 

p

TT

p xWrxcxZ 00)( −=  is the robust counterpart ob-

jective function of problem (8). 
 
Proof: 

I) )()( 1

1
pl

p

l
xZxZ ≤  

Problem (8) using 1l -norm is a linear program (see 

Hanafizadeh and Seifi [15]) therefore, optimal solu-
tion becomes: 

011 bBx
l −= , where 

1−
B is the inverse matrix 

which is formed by the column vectors related to ba-
sic variables in optimal solution, then: 

 

1
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B
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where 
0

BW is a sub matrix of 
0

W  and Bc  is a vector 

which are related to basic variables of the optimal 
solution. 

Since pl
x is optimal for problem (8) using pl -norm, 

we can write:  
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where pS is the feasible region for problem (8) using 

pl -norm.   

From proposition 1, pSS ⊆1  and then p

l
Sx ∈1 . 

Now, the value of )(xZ p  in 1lx  is computed as fol-

lows: 

p

T

B

T

B
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p bBWrbBcxZ
010010)( 1 −− −= . 

 
Since we generally have: 
 

1

010010 bBWbBW
T

B
p

T

B

−− ≤ , then I is proven. 

II) )()( ∞

∞≤ ll

p xZxZ p  

In the same way, ∞lx is optimal for problem (8) us-

ing ∞l -norm, it means: 

 

∞∞∞ ∈∀≥∞ SxxZxZ
l )()( , 

 

where ∞S is the feasible region for problem(8) using 

∞l -norm. 

From proposition 1, ∞⊆ SS p and then ∞∈ Sx Pl . 

Now we compute the value of )(xZ∞  in pl
x  which 

is equal to: 
 

∞
∞ −≥∞ pp llTl

xWrxcxZ 0)(  

 

Since, 
p

llTl

p

ppp xWrxcxZ −= 0)( and for a 

given pl
x , generally we have: 

 

∞
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xWxW , therefore II is proven. 

 

Result 3. For a given 0>r , the uncertainty set cor-

responding to 1l -norm in the original problem (1) 

leads to the largest value for the robust counterpart 
objective function. 

Definition 5. Any family of robust counterparts of 
problem (1) has a dual as defined in the following 
table: 

Table 1. The comparison of the primal and dual robust counterparts. 

 

where p and q have the relation in 1
11

=+
qp

. 

Let us assume that qp ≤ , then 

),(),( rqUrpU ⊆ , qp SS ⊆ and )()( xZxZ qp ≤   

and if the primal is feasible then the dual is also fea-
sible, but the converse is not necessarily true. It 
means that the primal robust counterpart is more con-

servative than the dual one (however, if 2== qp , 

primal and dual are the same). 

3. The robust model of single-period portfolio se-
lection problem 

Suppose that there are n different assets in the mar-

ket. The return of $1 invested in asset j is a random 

variable, which is assumed to be distributed symmet-
rically in its domain. The problem is to allocate $1 
among the assets in order to get the highest possible 
total return on the selected portfolio. A model with 
uncertain parameters of this problem is: 
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where jc  is the uncertain return of the asset j . The 

nominal optimal solution result: the budget should be 
invested in the assets which have the maximal nomi-
nal returns. Mathematically, there is always an ex-
treme point solution that is optimal. The extreme 
points of the underlying feasible region are the unit 

vectors in 
nℜ in this case. Therefore, there always 

exists a unit vector which is optimal. This solution, 
however, is unreliable and risky. The robust version 
of the uncertain LP (11) is: 

Assume qp ≤  Dual robust 
counterpart 

�Primal robust 
counterpart 

qp SS ⊆  

)()( xZxZ qp ≤  
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This is a general model for measuring risk and we 

can specialize it for different optimization problems 
for modeling uncertainty in returns and getting differ-

ent results. The model for the 1l -norm is similar to 

the mean-absolute deviation (MAD) model in Konno 
[16] and, Konno and Yamazaki [17].  

The model for 2l -norm and Cl -norm (matrix-

norm) is an SOCP problem which is similar to 
Markowitz [18-19] mean-variance model. The model 

for ∞l -norm is similar to the minimax model intro-

duced in Young [27]. In the later example, the effect 
of using different norms on the total returns will be 
shown. 

3.1. Example 1  

Consider eight risky assets from [Yahoo.com] for 
years 2002-2003. Model (12) needs the vector of 

nominal value c  and the positive definite matrix C  

to define the uncertainty region. Here it is important 

to note that 
2/1

CW = , 
T

VVDC
2/12/1 = in which D  

is the diagonal matrix of eigenvalues and columns of 

V  correspond to eigen vectors.   

Figure 1 shows the efficient frontiers (EF) using 
different norms in model (12). All cases were solved 
using the MATLAB ®.  In this figure, the solid line 

with dots is related to the 2l -norm, the dashed line 

with triangles is related to the 1l -norm and the dotted 

line with squares is related to the ∞l -norm solutions 

(these descriptions are used through out the paper). 
The standard deviation is used to measure risk in any 

pl -norm solutions.  

   In Figure 2, EFs have been depicted when risk 

measurements are considered in different pl -norms.  

The graphs in the left side of Figure 2 present the    

1l -norm risk measurements for different pl -norm  

 

solutions. The 1l -EF (the dashed line with triangles) 

 is dominating the other ones, because we directly 

minimized the 1l -norm risk measurement. The 

graphs in the middle of Figure 2 are related to the 2l -

norm risk measurement for different pl -norm solu-

tions. The 2l -EF (the solid line with dots) is usually 

dominating the other ones, because we directly 

minimized the 2l -norm risk measurement. Lastly, the 

graphs in the right side of Figure 2 are related to the 

∞l -norm risk measurement for different pl -norm 

solutions and here the ∞l -norm solutions dominate 

others. The EFs in Figure 2 show that any norm can 
be applied to measure dispersion. But the question to 
ask is what kind of norm is appropriate for modeling 
risk?  

In Figure 3, the value of the robust counterpart of 

the total return for the ∞l -norm is the largest. This is 

what we obtained in proposition 4. Can we expect 
that we have the same result when the uncertain re-
turns are realized? 
   In Figure 4, based on simulating the uncertain re-

turns, we evaluate the real total returns for any pl -

norm solutions for each value of r (with1000 simu-

lated returns for each r, we compute plT

s xc where 

sc is the vector of simulated returns).   

   The result of Figure 4 is that, the ∞l -norm yields 

almost the best value for total returns but the values  
of total returns for different norms decreases for in-
creasing radius of uncertainty. The graph may be di-
vided in three parts in terms of the radius value: being 
small, medium and large. When the radius r is less 
than 0.2, the values of total returns are close to each 
other with less than 0.008 differences. If radius r is 
between 0.2 and 0.9, the difference between total re-

turns of the ∞l and of the 1l -norms in some parts is 

more than 0.045. For the radius r greater than 0.9, the 

value of total returns of the ∞l -norm is still the best 

and the difference from that of the 1l -norm is about 

0.012. It stays constant for the rest of the graph.  

   It can be concluded that when the uncertainty is 
small (r less than 0.2), there is no significant differ-
ence in using different norms (between primal and 
dual) but when the uncertainty is large (r more than 

0.5) the ∞l -norm is the best choice. 
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Figure 1. The comparison of Efficient Frontier of 8 stocks using standard deviation as a risk measurement in single-period portfolio selection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The comparison of efficient frontier of 8 stocks using different pl -norms as risk measurements in single-period portfolio selection. 
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Figure 3. The value of optimal robust counterpart objective functions for different pl -norms in single-period portfolio selection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The comparison of real total returns in simulation with different pl -norm solutions in the single-period portfolio selection. 
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4. The robust model of multi-period portfolio se-
lection problem 

   Consider an investor who currently holds the fol-

lowing portfolio:
n

Rx ∈0
, where 

0

jx  denotes the 

number of shares of asset j in the portfolio for 

nj ,...,1= . Also, let 
0

0x  denote the investor's cash 

holding. The investor is trying to determine how to 

adjust his/her portfolio in the next L  investment pe-
riods to maximize his/her total wealth at the end of 

final period L .The following decision variables are 
used to model this multi-period portfolio selection 

problem: 
l

jb denotes the number of additional shares 

of asset j bought at the beginning of period l  and 
l

js denotes the number of shares of asset j sold at the 

beginning of period l , for nj ,...,1= and Ll ,...,1= . 

   Let 
l

jP denote the price of a share of asset j in pe-

riod l . For initial prices, without loss of generality, 

we choose 10 =jP  for all nj ,...,1,0= , we can always 

normalize the 
0

x quantities if necessary.  We make 

the assumption that the cash account earns no interest 

so that lP
l ∀=  ,10 .  

It is assumed that proportional transaction costs are 
paid on each purchase and sale and denote them with 

l

jα and 
l

jβ  for sale and purchase respectively for as-

set j  and period l . It is assumed that 
l

jα 's and
l

jβ 's 

are all known at the beginning of period 0 , although 

they can vary from period to period and from asset to 
asset. Transaction costs are paid from the investor's 
cash account (see Figure 5). 

Since the objective function involves uncertain pa-

rameters
L

jP , the problem is formulated such that all 

the uncertainty is moved in the constraints: 

    Max ,,, ttbsx   
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This is a linear programming problem as stated by 

Dantzig and Infanger in [10] when the parameters are 
certain and can be solved easily using the simplex 
method or interior-point methods. The first two sets 
of constraints of this reformulation are the constraints 
that are affected by uncertainty and we would like to 
find a solution that satisfies these constraints for most 

possible realizations of the uncertain parameters
l

jP . 

To determine the robust version of these constraints, 

a general uncertainty region for 
l

jP  is defined as fol-

lows: 
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where vector
l

P is the nominal for 
l

P and 
l

W is a 

symmetric positive definite matrix. 
According to the definition of uncertainty region, 

the first constraint that is defined in (13) becomes: 
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Considering the worst-case behavior, we have: 
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Based on the definition of the dual norm: 
 

txWrxP
p
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the second constraint is also affected by uncertain 

parameters
l

jP . The second constraint is also written 

as: 

llTlllTlll bDPsDPxx βα )()(1
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where 
l

Dα and 
lDβ are the diagonal matrices as fol-

lows:  
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Now, we define 
lll

s sDαλ =  and 
ll

b

l

b bD=λ , 

which are deterministic. So the constraint in (16) can 
be written as: 
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According to the definition of uncertainty region, 

the robust version of the constraint may be obtained 
by: 
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Using the worst-case approach: 
 

)]()[(inf1

00

l

b

l

s

Tl

UP

ll
Pxx

ll
λλ −≤−

∈

−
 

 

)()[(inf1

00

l

b

l

s

TL

ru

ll
Pxx

q

λλ −≤−
≤

−
 

               )]()( l

b

l

s

TlT
Wu λλ −+  

 

)()(1

00

l

b

l

s

Tlll
Pxx λλ −≤− −

 

            )()(sup l

b

l

s

TlT

ru

Wu
q

λλ −−
≤

 

 

.)()()()(1

00
p

l

b

l

s

Tll

b

l

s

Tlll WrPxx λλλλ −−−≤− −

 
Therefore, the corresponding deterministic model of 

a general robust counterpart is: 

    Max ,,, ttbsx            
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We obtain a general robust counterpart of the un-

certain model. This model can guarantee that the 
original constraint will "almost surely" be satisfied 
depending on r and norms. 

The resulting problem has nonlinear constraints be-
cause of the general norm formulations. However, 
these constraints can be written as SOCP and LP con-
straints and result in SOCPs and LPs optimization 
problems respectively. In the next section, we derive 
some versions of the general robust multi-period port-
folio selection models. 

4.1. Robust multi-period portfolio selection model  corre-

sponding to the 1l -norm 

At the first constraint and using 1l -norm in the con-

straints of general model in (17) we have: 
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where nknjw
L

kj ,,1  ,,,1  , �� ==  are elements of 

L
W . Since we want to make the constraint linear, we 

define two auxiliary variables as follows: 
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The above equations are equivalent to: 
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   The last condition will be satisfied automatically by 
any basic feasible solution (e.g., an optimal solution 
delivered by the simplex algorithm); therefore, the 
first constraint becomes linear as: 
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By extension, the above concept for the other con-

straints in (17) yields the following formulation: 
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This is a new robust formulation for the multi-

period uncertain portfolio problem (13) associated 

with the 1l -norm. 

4.2. Robust multi-period portfolio selection model corre-

sponding to the 2l -norm 

Choosing 2l -norm in the first constraint of (17): 
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and substituting it in the constraint, we obtain: 
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By extension, the above concept for the other con-
straints in (17) yields the following formulation: 
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   This is an SOCP model and similar to a 3-sigma 
approach, which was introduced in Ben-Tal and  
et al. [2].  

4.3. Robust multi-period portfolio selection model corre-

sponding to the ∞l -norm 

Taking ∞l -norm and assuming 
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and substituting it in the first constraint in (17), we 
obtain: 
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Similarly, proceed to the second constraint: 
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then it can be substituted in the first constraint in (17) 
to obtain: 
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Then, the optimization problem becomes: 
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This is a new robust formulation for multi-period 

uncertain portfolio problem (13) associated with the 

∞l -norm. 

4.4. Example 2 

  Suppose that there are eight different assets in the 
market and we are going to consider three periods in 
our planning horizon. Model (17) needs nominal val-
ues and covariance matrices for different periods 
which are related to the specification of uncertainty 
regions. Here in order to simplify, we assume that the 
covariance matrix does not change during the plan-
ning horizon, only the nominal values are changing 
period to period. Figure 6 shows the efficient fron-
tiers (EF) using different norms in models (17) which 
are nonsmooth and nonconvex. This issue for multi 
period EF has been also reported in Mulvey [20].  

   In Figure 7, EFs have been depicted when risk 
measurements are considered with different  

pl -norms. The graphs in the left side of Figure 7 are 

related to the 1l -norm risk measurement for different 

pl -norm solutions. The graphs in the middle of Fig-

ure 7 are related to the 2l -norm risk measurement for 

different pl -norm solutions and the graphs in the 

right side of figure 7 is related to the ∞l -norm risk 

measurement for different pl -norm solutions. The 

EFs show that any norm can be applicable to measure 
dispersion. 

As shown in Figure 8, the value of the robust coun-

terpart of the total return for the ∞l -norm is the larg-

est. This is what we obtained in proposition 4. It can 
be concluded that when the uncertainty is small(r less 
than 0.2), there is no significant differences among 
solutions using different norms but when the uncer-

tainty is large ( r greater than 0.5) the ∞l -norm is the 

best choice. 

5. Conclusion 

  In this paper, a general definition for uncertainty 
sets was given based on the definition of norm bod-
ies. The uncertainty region size can be adjusted by 
the radius and the degree of norms. The robust coun-
terpart of the uncertain LP corresponding to the gen-
eral uncertainty region leads us to a family of robust 
counterparts (FRC). For a given radius of the uncer-

tainty region and the same ql -norm for all partial un-

certainty sets, we obtained the following properties: 

1. The complete uncertainty set with the ∞l -norm 

body leads to the largest uncertainty set among 

solutions using different ql -norm bodies and 

using the 1l -norm results in the smallest one. 

2. The largest complete uncertainty set leads to the 
smallest robust counterpart feasibility set and 
vice versa. 

3. If the smallest robust counterpart feasibility set 
is not empty, the other robust counterpart feasi-

bility sets using different pl -norms are feasible. 

4. The largest uncertainty set leads to the smallest 
value of robust counterpart objective function 
and vice versa. 

5. Any family of robust counterpart has a dual one 
in which it has a smaller uncertainty region, a 
larger counterpart feasibility set and also a lar-
ger robust counterpart objective function pro-
vided the degree of norm in the primal robust 
counterpart is less than the dual one. 

   The above properties are tested by the application 
of portfolio selection with single and multi-periods.
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Figure 5. The cash and stock flows during the planning horizon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The comparison of efficient frontiers of 8 dependent stocks using standard deviation as a risk measurement in multi-period portfolio selection. 
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Figure 7. The comparison of efficient frontier of 8 dependent stocks using different pl -norms as risk measurements in multi-period portfolio selection. 

problems. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The value of optimal robust counterpart objective functions with different pl -norms in multi-period portfolio selection. 
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