

* Corresponding author. E-mail:ghasemi@sharif.edu

Journal of Industrial Engineering International������ Islamic Azad University, South Tehran Branch

March 2006, Vol. 2, No. 1, 31 - 37

��������	�
��
������
��

���	������������
�����������

���
��	��
��������

E. Jahangiri

Assistant Professor, Islamic Azad University, Science and Research Branch, Tehran, Iran

F. Ghassemi-Tari*

Associate Professor, Sharif University of Technology, Tehran, Iran

 Abstract

Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack

problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-

timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-

tion approach, it computationally performs very slowly when the solution space of the problems grows rap-

idly. In this paper the authors developed a procedure for improving the computational efficiency of the dy-

namic programming for solving KNP. They incorporate three routines; the imbedded state, surrogate con-

straints, and bounding scheme, in the dynamic programming solution approach and developed an algorithmic

routine for solving the KNP. An experimental study for comparing the computational efficiency of the pro-

posed approach with the general dynamic programming approach is also presented.

Keywords: Discrete optimization; Multiple-choice knapsack; Imbedded state; Surrogate constraint

1. Introduction

A Nonlinear Knapsack Problem (NKP) is an alter-

native formulation for a multiple-choice knapsack

problem. A powerful approach for solving the

nonlinear knapsack problems is Dynamic Program-

ming (DP) which may obtain the global optimal solu-

tion even in the case of discrete solution space for

these problems. Despite the power of this approach, it

computationally performs very slowly when the solu-

tion space of the problems grows rapidly.

Mathematically KNP are presented in a form of

mathematical programming models. Depending on

the specific properties of the objective function

and/or constraints, many versions of the nonlinear

knapsack problem have been addressed in the litera-

ture. Variations include continuous or integer vari-

ables, convex or non-convex functions, separable or

non-separable functions, and, in some cases, addi-

tional specially structured constraints such as bounds

on the variables or generalized upper bound con-

straints [4,5].

Of course, any nonlinear optimization method de-

veloped for problems with multiple constraints could

be used to solve the nonlinear knapsack problem.

However, due to the combinatorial nature of the

mathematical model, the computation time grows

very rapidly as the number of the decision variables

increases. This is from the fact that, the computa-

tional time in combinatorial optimization varies ex-

ponentially as the variation of the number of decision

variables. From this fact it is realized that the special-

ized algorithms are much faster and more reliable

than standard nonlinear programming software. Of

course in case of continuous nonlinear knapsack

problem we do not encounter with this computational

difficulty. For example, Bretthauer and Shetty [3]

developed a specialized algorithm for a class of con-

tinuous quadratic problems and found their method to

be up to 4000 times faster than the general purpose

reduced gradient software LSGRG [14].

The NKP have a variety of applications, including

financial models [13], production and inventory man-

����������������
��������������������������
�

�
�

�

agement [6,11], stratified sampling [7], the optimal

design of queuing network models in manufacturing

[1,2], computer systems [8] and health care.

Although there are large bodies of literature ad-

dressing a variety of applications of NKP, most of the

research efforts have been focused on knapsack prob-

lems with a linear objective and a linear constraint

[12] and knapsack problems with a separable convex

nonlinear objective function and a simple linear

equality constraint [9,10].

Bretthauer and Shetty [4] developed a pegging al-

gorithm for the nonlinear resource allocation prob-

lems. In another research attempt they conducted a

thorough survey of the nonlinear knapsack model [5].

In their survey they categorized the nonlinear knap-

sack models according to the structure of the models

and then they presented the most recent advance-

ments for each model.

In this paper the authors consider a specific form of

the NKP which fall in the category of non-convex

separable integer. More specifically we consider a

type of the NKP which is an alternative formulation

of a general type of the Linear Multiple-Choice

Knapsack Problems (LMCKP) with the multiple re-

course constraints.

2. Mathematical models for the problem

The multiple choice knapsack problems may be

formulated in a linear from as follows:

Let us first define the parameters used for develop-

ing the linear form of the mathematical model,

oX : The total value of items selected to be put in the

knapsack.

�
�
�

otherwise 0

selected is item of ealternativ theif 1
:

jk
x jk

�� n : The total number of items.

jK : The total number of alternative item j.

 M : The total number of resources.

jkr : The value of alternative k for item j.

ijkb : The amount of the consumption of resource i of

alternative k of item j.

iB : The level of available resource for resource i.

The mathematical model for LMCKP is as follows:

.,,2,1 and ,,,2,1for 1 0

,,2,1for 1

,,2,1for

:toSubject

Max

1

1 1

1 1

0

jjk

K

k

jk

i

n

j

jk

K

j

ijk

n

j

K

k

jkjk

Kknjorx

njx

miBxb

xrX

j

j

j

��

�

�

===

==

=≤

=

�

��

��

=

= =

= =

 (1)

An alternative form for formulating the multiple

choice knapsack problems is a nonlinear form as fol-

lows:

}.,,,{

},2,1{

,2,1)(

:toSubject

)(Max

21

1

1

0

mi

jj

n

j

ijij

n

j

jj

bbbB

KSx

miBxc

xRX

�

�

�

=

=∈

=∀≤

=

�

�

=

=

 (2)

In the latter mathematical formulation, xj is defined

as the decision variable representing the j
th

 project,

which its value represents the alternative number of

the j
th

 project; i.e., when it takes value of k, it means

that the k
th

 alternative of project j is selected.

)(kxR jj = is defined as a discrete non-linear func-

tion of variable xj, representing the return of selecting

the alternative of k of project j.)(kxc jij = is de-

fined as a discrete non-linear function of project xj,

representing the consumption of resource i when al-

ternative k of project j, is selected.

3. Development of the algorithm

Basically the developed algorithm is a dynamic

programming approach in which three routines are

incorporated for decreasing the solution space and

hence for increasing the computational efficiency of

the DP approaches.

The researchers employed the forward computation

of the DP approach for developing of the proposed

algorithm. First, the concept of the imbedded state

approach is employed in each stage of the DP in or-

��	�
��
������
��

���	������������
�����������������������������
�

�

der to limit the state space solution only to those fea-

sible solution points which cause a jump in the objec-

tive function value. Second, the authors employed the

concept of surrogate constraint to reduce the m di-

mensional state pace vector to a single dimension sate

pace vector. By incorporating the surrogate con-

straint, it should first be proved that any feasible solu-

tion of the original problem constitutes a feasible so-

lution the surrogate constraint problem. The authors

prove this fact through stating a theorem as follow:

Theorem. any feasible solution of the original prob-

lem is a feasible solution of the surrogate constant

problem.

Proof. Let us consider),,,(21

k

n

kkk
xxxX �= as a

feasible solution point of the original problem. There-

fore we have:

 .)(

)(

)(

1

1

22

1

11

�

�

�

=

=

=

≤

≤

≤

n

j

m

k

jmj

n

j

k

jj

n

j

k

jj

Bxc

Bxc

Bxc

�

 (3)

Now by multiplying a non-negative value such

as 0≥iα , the above inequalities remain unchanged

and we have:

 .)(

)(

)(

1

1

2222

1

1111

�

�

�

=

=

=

≤

≤

≤

n

j

mm

k

jmjm

n

j

k

jj

n

j

k

jj

Bxc

Bxc

Bxc

αα

αα

αα

�

 (4)�

By adding up each side of these inequalities we

will have:

� ��
= ==

≤

m

i

m

i

ii

k

j

n

j

iji Bxc
1 11

)(αα . (5)

The last inequality reveals that the point which was

feasible to the original problem satisfies the con-

straint of the surrogate problem. �

Therefore the authors can solve the surrogate prob-

lem instead of the original problem and they are as-

sured that by searching through the feasible space of

the surrogate problem to obtain the optimal solution

of the original problem they are considering all the

solution points without losing even a single point.

Finally a bounding routine is employed for discard-

ing those points of the state space solution which may

lead to a solution worse than the existing lower

bound. In order to incorporate the latter routine, it is

essential to have an algorithm to find a lower bound

for the optimal value of the objective function. De-

termination and use of a good lower bound can effi-

ciently reduce the state space solution of the problem.

The authors developed a heuristic algorithm which

may obtain a good solution of the problem. To de-

velop a powerful heuristic algorithm, the authors first

developed several routines based on the concept of

the constrained gradient. Since there are more than

one resource constraints in our model, it is essential

to develop a combined form of the constrained gradi-

ent. To choose the most efficient heuristic, the au-

thors conducted an experimental study through which

they solved several randomly generated test problems

by the developed routines and they selected the heu-

ristic routines which provided the best average objec-

tive function value.

Having a lower bound, at each stage (let us assume

stage j), a bounding test is performed. To perform this

test, it is assumed that in further stages the best alter-

native of the remaining projects are to be selected (for

stage j+1, j+2, …, J). The authors then add the return

value of these alternatives to the objective value of

each point in the state space solution, and consider

them as the best possible objective function values

for these points. Those solution points which have the

best possible objective value less than the lower

bound are also discarded from the state space solu-

tion. Since the solution space grows exponentially as

the computation progresses, discarding some solution

points in the early stage of the computation efforts

will result in a considerable elimination of the solu-

tion space of the problem at the end. The proposed

algorithm has been summarized in Section 4.

4. Algorithm

Step 1. Obtain the surrogated problem by substituting

all the resource constraints of the original

����������������
��������������������������
�

�
�

�

problem by a single constraint which is de-

termined by the summation of all the re-

source constraints.

Step 2. Select the best alternative from each project as

an initial solution.

Step 3. If this solution is a feasible solution to the

original problem go to Step 8, otherwise go

to Step 4.

Step 4. Determine the gradient of each alternative for

each project by dividing the objective func-

tion return corresponding to that alternative

by its associated resource consumption in

surrogated constraint.

Step 5. Flag the gradient values of the selected alter-

natives, and consider the selected alternative

as an initial solution.

Step 6. Select the largest un-flagged gradient value

and recognize its associated alternative of

that project as a new solution which substi-

tutes the previous alternative to form the new

solution.

Step 7. If the new solution is a feasible solution to the

original problem go to Step 8, otherwise flag

this gradient value and go to Step 6.

Step 8. Consider the solution obtained as a lower

bound of the optimal solution, and let j=1.

Step 9. For the stage j, determine all the combinations

of the state variables and calculate their asso-

ciated returns and sort them in non-

decreasing order.

Step 10. Add the value of �
+=

=

n

ji

jii KxR
1

)(to the re-

turn values of each state variable and con-

sider them as the highest possible values that

a state variable may be reached. Now dis-

card those state variables which have the

highest possible values less than the lower

bound of the objective function.

Step 11. If j=n go to Step 12, otherwise let j=j+1 and

use the state variable vector (after discarding

the non-promising state variables) for ob-

taining all possible combinations of the next

stage state variables vector and go to Step 9.

Step 12. Select the largest return among the state vari-

ables vector as the optimal solution of the

surrogated constraint. If this solution is fea-

sible to the original problem stop, otherwise

search through the state variables vector to

find the largest value which is feasible to the

original problem and recognize it as the op-

timal solution and then stop.

5. Experimental study

The authors conducted an extensive computational

experiment for verifying the efficiency of the pro-

posed algorithm. A set of test problems which are

classified according to different values of J’s, K’s,

and M’s is randomly generated. To solve these prob-

lems, the authors defined a factor by which they

could change the tightness of the generated problems

constraints. They used TF symbols for this factor. For

TF equal to one, they would have the original gener-

ated problems. Then they used the values of 0.90,

0.95, 1.00, 1.05, and 1.10 for the TF to generate addi-

tional different set of problems.

As the TF becomes larger the constraints become

less tight and as it becomes smaller the constraint

becomes tighter. Through this factor, the authors

could evaluate the efficiency of our algorithm more

thoroughly.

In each class, five problems with different input

values were generated. The authors solved these

problems by the regular DP algorithm and by their

proposed algorithm and they determined the amount

of state space reductions which are achieved through

the use of their proposed algorithm. The computa-

tional result reveals a considerable reduction in state

space solution.

Table 1. State space solution points which are enumerated by the proposed algorithm for different values of TF in problems with 4 projects.

Problem number
TF Values

1 2 3 4 5

0.90 172 263 182 120 69

0.95 172 246 182 34 69

1.00 172 200 182 17 69

1.05 51 200 182 17 69

1.10 51 115 182 17 41

��	�
��
������
��

���	������������
��������������������������� �
�

�

Table 3. State space solution points which are enumerated by the proposed algorithm for different values of TF in problems with 6 projects.

Problem number
TF Values

1 2 3 4 5

0.90 144 539 733 1540 751

0.95 56 246 335 1398 240

1.00 56 246 244 860 240

1.05 22 246 244 860 240

1.10 4 246 10 860 92

Table 4. State space solution points which are enumerated by the proposed algorithm for different values of TF in problems with 7 projects.

Problem number
TF Values

1 2 3 4 5

0.90 696 1246 1062 3143 739

0.95 98 1246 1062 3143 739

1.00 98 150 345 440 115

1.05 48 150 345 440 109

1.10 48 84 345 440 119

Table 5. The average number of state space solution points for different problem size and according to the values of TF.

Average number of points enumerated
TF Values

For 4 projects
For 5 pro-

jects
For 6 projects For 7 projects

0.90 140 151 741 1377

0.95 128 102 455 1257

1.00 103 73 329 229

1.05 81 72 322 218

1.10 140 72 242 207

number of points enumerated by classical

DP
1020 4092 16380 65532

Table 2. State space solution points which are enumerated by the proposed algorithm for different values of TF in problems

with 5 projects.

Problem number
TF Values

1 2 3 4 5

0.90 107 186 339 109 16

0.95 107 186 177 27 16

1.00 56 91 177 27 16

1.05 56 91 177 27 13

1.10 56 91 177 27 13

�!��������������
��������������������������
�

�
�

�

Figure 1. The computational efficiency of the proposed

algorithm

84.00

86.00

88.00

90.00

92.00

94.00

96.00

98.00

100.00

0.85 0.9 0.95 1 1.05 1.1 1.15

variations of TF value

T
h

e
 c

o
m

p
u

ta
ti

o
n

a
l

e
ff

ic
ie

n
c
y

n=4 n=5 n=6 n=7

Table 6. The computational efficiency of proposed algorithm (state space reduction) comparing to the classical DP.

The problems size
TF Values

For 4 projects For 5 projects For 6 projects For 7 projects

0.90 84.20 96.30 95.47 97.90

0.95 86.22 97.49 97.19 98.08

1.00 87.45 98.21 97.99 99.65

1.05 89.82 98.22 98.03 99.67

1.10 92.04 98.22 98.52 99.68

6. Conclusion

In this paper, the researchers developed an efficient

algorithm for solving the multiple choice knapsack

problems. The experimental study reveals that the

proposed algorithm powerfully reduces the state

space solution and hence provides an efficient solu-

tion approach. The interesting fact is that, the effi-

ciency of the proposed algorithm increases as the size

of problem becomes larger.

For further research, one may evaluates the effi-

ciency of surrogate problems when they are defined

by the use of different coefficients. To perform this,

the duality concept can be used and for those con-

straints which are less tighter, one can define smaller

coefficients, while he can define the larger coefficient

for those constraints which are tighter.

Another research that is proposed is the develop-

ment of a set of new heuristic methods for obtaining

the tighter binding for the optimal solution which

might lead to the more reduction of state space solu-

tion.

References

[1] Bitran, G. R. and Tirupati, D., 1989a, Tradeo.

Curves, targeting and balancing in manufacturing

queuing networks. Operations Research, 37,

547–564.

[2] Bitran, G. R. and Tirupati, D., 1989b, Capacity

planning in manufacturing networks with discrete

options. Annals of Operations Research, 17, 119–

135.

Figure 1. The computational efficiency of the proposed algorithm

��	�
��
������
��

���	������������
���������������������������"�
�

�

[3] Bretthauer, K. M. and Shetty, B., 1997, Quadratic

resource allocation with generalized upper

bounds. Operations Research Letters, 20, 51–57.

[4] Bretthauer, K. M. and Shetty, B., 2001, A pegging

algorithm for the nonlinear resource allocation

problem. Computers and Operations Research,

29(5), 505–527.

[5] Bretthauer, K. M. and Shetty B., 2002, The

nonlinear knapsack problem - algorithms and ap-

plications. European Journal of Operational Re-

search, 138, 459–472.

[6] Bretthauer, K. M., Shetty, B., Syam, S. and

White, S., 1994, A model for resource con-

strained production and inventory management.

Decision Sciences, 25, 561–580.

[7] Cochran, W. G., 1963, Sampling Techniques, sec-

ond edition, John Wiley & Sons, New York.

[8] Gerla, M. and Kleinrock, L., 1977, On the topo-

logical design of distributed computer networks.

IEEE Transactions on Communications, 25,

48–60.

[9] Hochbaum, D. S., 1994, Lower and upper bounds

for the allocation problem and other nonlinear op-

timization problems. Mathematics of Operations

Research, 19, 390–409.

[10] Ibaraki, T. and Katoh, N., 1988, Resource Allo-

cation Problems. MIT Press, Cambridge, MA.

[11] Maloney, B. M. and Klein, C. M., 1993, Con-

strained multi-item inventory systems: an im-

plicit approach. Computers and Operations Re-

search, 20, 639–649.

[12] Martello, S. and Toth, P., 1990, Knapsack Prob-

lems: Algorithms and Computer Implementa-

tions. John Wiley & Sons, New York.

[13] Mathur, K., Salkin, H. M. and Morito, S., 1983,

A branch and search algorithm for a class of

nonlinear knapsack problems. Operations Re-

search Letters, 2, 155–160.

[14] Smith, S. and Lasdon, L., 1992, Solving large

sparse nonlinear programs using GRG. ORSA

Journal on Computing, 4, 2–15.��

�

