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          Abstract 

Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack 

problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-

timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-

tion approach, it computationally performs very slowly when the solution space of the problems grows rap-

idly. In this paper the authors developed a procedure for improving the computational efficiency of the dy-

namic programming for solving KNP. They incorporate three routines; the imbedded state, surrogate con-

straints, and bounding scheme, in the dynamic programming solution approach and developed an algorithmic 

routine for solving the KNP. An experimental study for comparing the computational efficiency of the pro-

posed approach with the general dynamic programming approach is also presented.  
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1. Introduction 

A Nonlinear Knapsack Problem (NKP) is an alter-

native formulation for a multiple-choice knapsack 

problem. A powerful approach for solving the 

nonlinear knapsack problems is Dynamic Program-

ming (DP) which may obtain the global optimal solu-

tion even in the case of discrete solution space for 

these problems. Despite the power of this approach, it 

computationally performs very slowly when the solu-

tion space of the problems grows rapidly. 

Mathematically KNP are presented in a form of 

mathematical programming models. Depending on 

the specific properties of the objective function 

and/or constraints, many versions of the nonlinear 

knapsack problem have been addressed in the litera-

ture. Variations include continuous or integer vari-

ables, convex or non-convex functions, separable or 

non-separable functions, and, in some cases, addi-

tional specially structured constraints such as bounds 

on the variables or generalized upper bound con-

straints [4,5]. 

Of course, any nonlinear optimization method de-

veloped for problems with multiple constraints could 

be used to solve the nonlinear knapsack problem. 

However, due to the combinatorial nature of the 

mathematical model, the computation time grows 

very rapidly as the number of the decision variables 

increases. This is from the fact that, the computa-

tional time in combinatorial optimization varies ex-

ponentially as the variation of the number of decision 

variables. From this fact it is realized that the special-

ized algorithms are much faster and more reliable 

than standard nonlinear programming software. Of 

course in case of continuous nonlinear knapsack 

problem we do not encounter with this computational 

difficulty. For example, Bretthauer and Shetty [3] 

developed a specialized algorithm for a class of con-

tinuous quadratic problems and found their method to 

be up to 4000 times faster than the general purpose 

reduced gradient software LSGRG [14]. 

The NKP have a variety of applications, including 

financial models [13], production and inventory man-
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agement [6,11], stratified sampling [7], the optimal 

design of queuing network models in manufacturing 

[1,2], computer systems [8] and health care.  

Although there are large bodies of literature ad-

dressing a variety of applications of NKP, most of the 

research efforts have been focused on knapsack prob-

lems with a linear objective and a linear constraint 

[12] and knapsack problems with a separable convex 

nonlinear objective function and a simple linear 

equality constraint [9,10].  

Bretthauer and Shetty [4] developed a pegging al-

gorithm for the nonlinear resource allocation prob-

lems. In another research attempt they conducted a 

thorough survey of the nonlinear knapsack model [5]. 

In their survey they categorized the nonlinear knap-

sack models according to the structure of the models 

and then they presented the most recent advance-

ments for each model. 

In this paper the authors consider a specific form of 

the NKP which fall in the category of non-convex 

separable integer. More specifically we consider a 

type of the NKP which is an alternative formulation 

of a general type of the Linear Multiple-Choice 

Knapsack Problems (LMCKP) with the multiple re-

course constraints.  

2. Mathematical models for the problem 

The multiple choice knapsack problems may be 

formulated in a linear from as follows: 

Let us first define the parameters used for develop-

ing the linear form of the mathematical model, 

 

oX  : The total value of items selected to be put in the 

knapsack.  

�
�
�

otherwise   0

selected is  item of  ealternativ  theif   1
:

jk
x jk  

�� n :    The total number of items. 

jK  : The total number of alternative item j.     
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alternative k of item j.  

iB  : The level of available resource for resource i. 

The mathematical model for LMCKP is as follows: 
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An alternative form for formulating the multiple 

choice knapsack problems is a nonlinear form as fol-

lows: 
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In the latter mathematical formulation, xj is defined 

as the decision variable representing the j
th

 project, 

which its value represents the alternative number of 

the j
th

 project; i.e., when it takes value of k, it means 

that the k
th

 alternative of project j is selected. 

)( kxR jj = is defined as a discrete non-linear func-

tion of variable xj, representing the return of selecting 

the alternative of k of project j. )( kxc jij =  is de-

fined as a discrete non-linear function of project xj, 

representing the consumption of resource i when al-

ternative k of project j, is selected.   

3. Development of the algorithm 

Basically the developed algorithm is a dynamic 

programming approach in which three routines are 

incorporated for decreasing the solution space and 

hence for increasing the computational efficiency of 

the DP approaches.   

The researchers employed the forward computation 

of the DP approach for developing of the proposed 

algorithm. First, the concept of the imbedded state 

approach is employed in each stage of the DP in or-
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der to limit the state space solution only to those fea-

sible solution points which cause a jump in the objec-

tive function value. Second, the authors employed the 

concept of surrogate constraint to reduce the m di-

mensional state pace vector to a single dimension sate 

pace vector. By incorporating the surrogate con-

straint, it should first be proved that any feasible solu-

tion of the original problem constitutes a feasible so-

lution the surrogate constraint problem. The authors 

prove this fact through stating a theorem as follow: 

 

Theorem. any feasible solution of the original prob-

lem is a feasible solution of the surrogate constant 

problem. 

 

Proof. Let us consider ),,,( 21

k

n

kkk
xxxX �= as a 

feasible solution point of the original problem. There-

fore we have:  
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Now by multiplying a non-negative value such 

as 0≥iα , the above inequalities remain unchanged 

and we have:  
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By adding up each side of these inequalities we 

will have: 
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The last inequality reveals that the point which was 

feasible to the original problem satisfies the con-

straint of the surrogate problem.  �

Therefore the authors can solve the surrogate prob-

lem instead of the original problem and they are as-

sured that by searching through the feasible space of 

the surrogate problem to obtain the optimal solution 

of the original problem they are considering all the 

solution points without losing even a single point. 

Finally a bounding routine is employed for discard-

ing those points of the state space solution which may 

lead to a solution worse than the existing lower 

bound. In order to incorporate the latter routine, it is 

essential to have an algorithm to find a lower bound 

for the optimal value of the objective function. De-

termination and use of a good lower bound can effi-

ciently reduce the state space solution of the problem. 

The authors developed a heuristic algorithm which 

may obtain a good solution of the problem. To de-

velop a powerful heuristic algorithm, the authors first 

developed several routines based on the concept of 

the constrained gradient. Since there are more than 

one resource constraints in our model, it is essential 

to develop a combined form of the constrained gradi-

ent. To choose the most efficient heuristic, the au-

thors conducted an experimental study through which 

they solved several randomly generated test problems 

by the developed routines and they selected the heu-

ristic routines which provided the best average objec-

tive function value.   

Having a lower bound, at each stage (let us assume 

stage j), a bounding test is performed. To perform this 

test, it is assumed that in further stages the best alter-

native of the remaining projects are to be selected (for 

stage j+1, j+2, …, J). The authors then add the return 

value of these alternatives to the objective value of 

each point in the state space solution, and consider 

them as the best possible objective function values 

for these points. Those solution points which have the 

best possible objective value less than the lower 

bound are also discarded from the state space solu-

tion. Since the solution space grows exponentially as 

the computation progresses, discarding some solution 

points in the early stage of the computation efforts 

will result in a considerable elimination of the solu-

tion space of the problem at the end. The proposed 

algorithm has been summarized in Section 4.  

4. Algorithm 

Step 1. Obtain the surrogated problem by substituting 

all the resource constraints of the original 
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problem by a single constraint which is de-

termined by the summation of all the re-

source constraints. 

Step 2. Select the best alternative from each project as 

an initial solution.  

Step 3. If this solution is a feasible solution to the 

original problem go to Step 8, otherwise go 

to Step 4. 

Step 4. Determine the gradient of each alternative for 

each project by dividing the objective func-

tion return corresponding to that alternative 

by its associated resource consumption in 

surrogated constraint. 

Step 5. Flag the gradient values of the selected alter-

natives, and consider the selected alternative 

as an initial solution. 

Step 6. Select the largest un-flagged gradient value 

and recognize its associated alternative of 

that project as a new solution which substi-

tutes the previous alternative to form the new 

solution.  

Step 7. If the new solution is a feasible solution to the 

original problem go to Step 8, otherwise flag 

this gradient value and go to Step 6. 

Step 8. Consider the solution obtained as a lower 

bound of the optimal solution, and let j=1. 

Step 9. For the stage j, determine all the combinations 

of the state variables and calculate their asso-

ciated returns and sort them in non-

decreasing order. 

Step 10. Add the value of �
+=

=

n

ji

jii KxR
1

)( to the re-

turn values of each state variable and con-

sider them as the highest possible values that 

a state variable may be reached. Now dis-

card those state variables which have the 

highest possible values less than the lower 

bound of the objective function. 

 

Step 11. If j=n go to Step 12, otherwise let  j=j+1 and 

use the state variable vector (after discarding 

the non-promising state variables) for ob-

taining all possible combinations of the next 

stage state variables vector and go to Step 9. 

Step 12. Select the largest return among the state vari-

ables vector as the optimal solution of the 

surrogated constraint. If this solution is fea-

sible to the original problem stop, otherwise 

search through the state variables vector to 

find the largest value which is feasible to the 

original problem and recognize it as the op-

timal solution and then stop. 

5. Experimental study 

The authors conducted an extensive computational 

experiment for verifying the efficiency of the pro-

posed algorithm. A set of test problems which are 

classified according to different values of J’s, K’s, 

and M’s is randomly generated. To solve these prob-

lems, the authors defined a factor by which they 

could change the tightness of the generated problems 

constraints. They used TF symbols for this factor. For 

TF equal to one, they would have the original gener-

ated problems. Then they used the values of 0.90, 

0.95, 1.00, 1.05, and 1.10 for the TF to generate addi-

tional different set of problems.  

As the TF becomes larger the constraints become 

less tight and as it becomes smaller the constraint 

becomes tighter. Through this factor, the authors 

could evaluate the efficiency of our algorithm more 

thoroughly.  

In each class, five problems with different input 

values were generated. The authors solved these 

problems by the regular DP algorithm and by their 

proposed algorithm and they determined the amount 

of state space reductions which are achieved through 

the use of their proposed algorithm. The computa-

tional result reveals a considerable reduction in state 

space solution.  

 

Table 1. State space solution points which are enumerated by the proposed algorithm for different values of TF in problems with 4 projects. 

Problem number 
TF Values 

1 2 3 4 5 

0.90 172 263 182 120 69 

0.95 172 246 182 34 69 

1.00 172 200 182 17 69 

1.05 51 200 182 17 69 

1.10 51 115 182 17 41 
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Table 3. State space solution points which are enumerated by the proposed algorithm for different values of TF in problems with 6 projects. 

Problem number 
TF Values 

1 2 3 4 5 

0.90 144 539 733 1540 751 

0.95 56 246 335 1398 240 

1.00 56 246 244 860 240 

1.05 22 246 244 860 240 

1.10 4 246 10 860 92 

 

 

 

Table 4. State space solution points which are enumerated by the proposed algorithm for different values of TF in problems with 7 projects. 

Problem number 
TF Values 

1 2 3 4 5 

0.90 696 1246 1062 3143 739 

0.95 98 1246 1062 3143 739 

1.00 98 150 345 440 115 

1.05 48 150 345 440 109 

1.10 48 84 345 440 119 

 

 

 

Table 5. The average number of state space solution points for different problem size and according to the values of TF. 

Average number of points enumerated 
TF Values 

For 4 projects 
For 5 pro-

jects 
For 6 projects For 7 projects 

0.90 140 151 741 1377 

0.95 128 102 455 1257 

1.00 103 73 329 229 

1.05 81 72 322 218 

1.10 140 72 242 207 

number of points enumerated by classical 

DP 
1020 4092 16380 65532 

Table 2. State space solution points which are enumerated by the proposed algorithm for different values of TF in problems  

with 5 projects. 

Problem number 
TF Values 

1 2 3 4 5 

0.90 107 186 339 109 16 

0.95 107 186 177 27 16 

1.00 56 91 177 27 16 

1.05 56 91 177 27 13 

1.10 56 91 177 27 13 
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Figure 1. The computational efficiency of the proposed 

algorithm
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Table 6. The computational efficiency of proposed algorithm (state space reduction) comparing to the classical DP. 

The problems size 
TF Values 

For 4 projects For 5 projects For 6 projects For 7 projects 

0.90 84.20 96.30 95.47 97.90 

0.95 86.22 97.49 97.19 98.08 

1.00 87.45 98.21 97.99 99.65 

1.05 89.82 98.22 98.03 99.67 

1.10 92.04 98.22 98.52 99.68 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
6. Conclusion 

In this paper, the researchers developed an efficient 

algorithm for solving the multiple choice knapsack 

problems. The experimental study reveals that the 

proposed algorithm powerfully reduces the state 

space solution and hence provides an efficient solu-

tion approach. The interesting fact is that, the effi-

ciency of the proposed algorithm increases as the size 

of problem becomes larger. 

For further research, one may evaluates the effi-

ciency of surrogate problems when they are defined 

by the use of different coefficients. To perform this, 

the duality concept can be used and for those con-

straints which are less tighter, one can define smaller 

coefficients, while he can define the larger coefficient 

for those constraints which are tighter.  

Another research that is proposed is the develop-

ment of a set of new heuristic methods for obtaining 

the tighter binding for the optimal solution which 

might lead to the more reduction of state space solu-

tion. 
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