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          Abstract 

Multivariate Process Capability Indices (MPCI) show how well a manufacturing process can meet specifica-

tion limits when quality characteristics enclose a relative correlation. Process capability is an important and 

commonly used metric for assessing and improving the quality of a production process. When quality charac-

teristics of a product are correlated then an attractive comes close to MPCI methods, which are not usually an 

easy task to carry out. In this investigation after a full reviewing of the MPCI, a simple method to estimate 

product capability indices based on ridge regression models in the presence of priority for quality characteris-

tics is presented. The technique is demonstrated for evaluation of product capability through the use of an ex-

ample which shows performance of the proposed method. 
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1. Introduction 

Process produces products according to a certain 

quality characteristic, for example weight, length, 

hardness, viscosity, etc. The degree a process is 

producing data within tolerance limits, can be 

measured using Process Capability Indices (PCIs). 

PCIs are generally used in industry to measure cha-

racteristics that are independence of each others. A 

standard practice in Statistical Process Control 

(SPC) programs is to ensure that the process is un-

der statistical control prior to conducting a process 

capability analysis. Unfortunately, it is a fairly 

common practice to perform capability analysis 

using a sample of historical process data without 

any consideration of whether or not the process is in 

statistical control. As Montgomery [25] stated, if 

the process is not in control then its parameters are 

unstable and the value of these parameters in the 

future is uncertain. Hence, the predictive aspects of 

the process capability indices regarding the number 

of nonconforming items produced are lost. 

The most frequently used univariate PCIs includ-

ing CP, CPK, CPM, and CPMK have been proposed in 

the manufacturing industry to provide numerical 

measures on process capability and performance, 

which are effective tools for quality assurance. 

These indices are defined as: 
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where USL and LSL are the upper and the lower 

specification limits, respectively, µ  is the process 

mean, σ  is the process standard deviation and T is 

target amount anywhere within the specification 

interval. 

PCIs have recently received a considerable 

amount of attention in the literature of SPC. Nu-

merous authors including Kane [20], Marcucci and  
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Beazley [24], Chan and Cheng [3], Choi and Owen 

[8], Spiring [37], Koons [21], Wheeler and Cham-

ber [43], Pearn [32], Bissel [2], Wright [45], Pearn 

and Chen [29], Stoumbos [38], Pearn and Shu [33], 

Chen and Chen [6], Perakis and Xekalaki [34] and 

Chou et al. [10] have discussed theories and appli-

cations of univariate PCIs, when process normally 

distributed.  

Extensive studies have also been conducted to de-

termine the effects of non-normality on the various 

PCIs. Gunter [13,14,15,16] in a series of articles 

pointed out many flaws of the indices particularly 

CPK when applied to non-normal data. Interested 

readers are referred to Munechika [26], Clemets 

[11], Wright [44], Somerville and Montgomery 

[36], Bai and Choi [1], Chen and Ding [7] and 

Chou et al. [9] for more discussions on the univa-

riate process capability indices when normality as-

sumption is violated.  

During the past decade, there has been a growing 

concern about the normality and independence as-

sumptions required to compute univariate capability 

indices. In practice, it is common to use two or 

more related quality characteristics of a product to 

evaluate the performance of a manufacturing 

process. Since the early work of Hotelling [17], it 

has become evident that such problems, due to the 

correlation that exists among quality characteristics, 

need to be addressed in multivariate context to en-

sure proper evaluation. Similar to the univariate 

case, the Multivariate Process Capability Indices 

(MPCIs) have also captured attentions of many re-

searchers including Hubele et al. [19], Chan et al. 

[4], Taam et al. [39], Nickerson [27], Chen [14], 

Karl et al. [23], Niverthi and Dey [28], Shahriari  

et al. [35], Wang et al. [42], Wang and Du [40], 

Frey et al. [12], Wang and Hubele [41], Pearn et al. 

[31] and Pearn and Chien-Wei [30]. For a quick 

survey and interpretations on univariate and multi-

variate process capability indices see Kotz and 

Johnson [22].  

An existing serious problem in multivariate quali-

ty control is in complexity of methodology for as-

sessing MPCIs. The purpose of this paper is to pro-

vide a relatively simple method for estimating the 

most well-known relevant PCIs (priory showed 

through set of Eq. (1) in multivariate environment 

which define by MCP, MCPK, MCPM, and MCPMK 

respectively. A brief discussion to some MPCIs is 

presented in Section 2 and the proposed methodol-

ogy to estimate MPCIs are offered in Section 3. The 

fourth part discusses a numerical example.  Conclu-

sions are provided in the final section. 

2. Some techniques in MPCIs evaluations  

Various authors have proposed alternative ap-

proaches to assess process capability in multivariate 

environment. Taam et al. [39] recommend using a 

multivariate capability index that is defined as a 

ratio of two volumes: 
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where R1 is a modified tolerance region and R2 is a 

scaled 99.73 percent process region. In particular, if 

the process data are multivariate normal, then R2 is 

an elliptical region. A process region and modified 

tolerance region is shown in Figure 1 at appendix. 

The modified tolerance region is defined as the 

largest ellipsoid that is centered at the target com-

pletely located inside the original tolerance region. 

The estimate for MCPM is given by: 
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where K is the 99.73 percent quantile of a 
2χ dis-

tribution and S  denotes the determinant of sample 

variance-covariance matrix. 

Shahriari et al. [35] proposed a vector consisting 

of three components. The first two components use 

the assumption that the process data is from a mul-

tivariate normal distribution with elliptical contours 

defining probability regions and the third compo-

nent is based on a geometric understanding of 

process relative to the engineering specifications. 

The first component is defined as: 
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Figure 2 at appendix illustrates their method for a 

product in which the engineering specifications de-

fine a rectangular tolerance region but bi-variate 

normal process variables define an elliptical proba-

bility contour referred to as process region. Their 

proposed method forms a modified process region 

by drawing the smallest rectangle around the ellip-

tical process region. The edges of the modified 

process region are defined as the lower and upper 

process limits (LPLi and UPLi, respectively, where 

i=1,2,…ν) and are given by: 
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where 
2

,ανχ denotes the upper 100(α ) % of 

a
2χ distribution with ν degrees of freedom and 

1−
iΣ  is the determinant of the variance-covariance 

matrix with its i
th

 row and column deleted. 

The second component of the proposed vector is 

based on the assumption that the center of the speci-

fication limits denotes the process mean. This com-

ponent is defined as the significance level of a Ho-

telling’s T 
2
 statistic, which is computed as follows: 
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),( νν −nF  denotes the value of F distribution with 

ν and n-ν degrees of freedom. It should be pointed 

out that large values of PV indicate the closeness of 

the center of the process to the pre-specified target 

value.  

The third component of the vector that is referred 

to as location index (LI) compares the location of 

the modified process region to the tolerance region. 

This index has a value of one if the entire modified 

process region is contained within the tolerance re-

gion indicating that all the manufactured products 

conform to the specification limits, otherwise it will 

take a value of zero.   

Chen [5] proposed a multivariate process capabil-

ity index based on a multiple bilateral tolerance 

zone defined by: 
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where 
i0µ is the specification limit and ir  is a con-

stant. The multivariate process capability index is 

given by 
r

MCP
1= , where r is defined such that: 
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Let F be the cumulative distribution function of, 
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Then )1(1 α−= −
Fr . If the value of PMC  is 

greater than or equal to 1, the process is capable 

with a certain confidence level. 

Frey [12] proposed a matrix of dimensionless pa-

rameters (C), which represents a linear mapping of 

noise variables (nj ; j=1,2,…,n) to quality characte-

ristics (qi ; i=1,2,…,m), for evaluating process ca-

pability in multivariate environment. The elements 

of this matrix, Cij, are defined as: 
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Figure 1. Typical modified tolerance region (R1) versus estimated 99.73 % process region (R2) in a bivariate case. 

 

 

 

 
Figure 2. Rectangular Tolerance Region versus Modified Process Region. 
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where Sj is the j
th

 noise variable standard deviation 

and t denotes the vector of target values. The quan-

tity dq=C.dn+ K describes the sensitivity of each 

quality characteristic with respect to the indepen-

dent noise variables.  

They describe the elements of the bias vector K 

by: 
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If the rows of the matrix C are orthogonal then 

the quality characteristics will be statistically inde-

pendent of each other and the process yield can be 

expressed as: 
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If quality characteristics of interests are corre-

lated, then the correlation coefficient Kij between 

the i
th

 and j
th

 quality characteristics is defined by: 
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where Ci and Cj denote the i
th

 and j
th

 rows of C. If 

the diagonal elements of K are non-zero then quali-

ty characteristics will be correlated and process 

yield may be estimated through Monte Carlo simu-

lation using the following expression: 
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where rand (1/3) is a function that generates a vec-

tor of random numbers from a population having 

the functional form of the n
th
 noise variable with a 

mean of zero and standard deviation 1/3. 

3. Suggested approach 

As it was shown in the previous section, MPCIs 

is not always an easy task to perform. As a matter 

of fact, in certain cases this task could become work 

intensive. In this section, a relatively simple method 

is proposed. It can help quality engineers to respec-

tively determine an interval estimate for some most 

important process capability indices (CP, CPK, CPM 

and CPMK) in multivariate situation which will be 

showed by MCP, MCPK, MCPM and MCPMK later by 

using standard statistical packages without expe-

riencing too much computational difficulties. 

Suppose in multivariate circumstances, X defines 

a vector of p correlated quality characteristics of a 

product. The proposed procedure helps to evaluate 

the potential and performance process capability 

indices in multivariate environments. This course of 

action consists of the following three steps: 

3.1. Step 1: Main parameters estimation when 

process is under control 

Houshmand and Javaheri [18] proposed the Mul-

tivariate Ridge Residual Chart (MRRC) to ensure 

whether the multivariate process has been under 

statistical control. In SPC, this is referred to as 

phase I and construction of control charts during 

this phase is usually iterative. This control chart is 

applied to the standardized data which attain by 

subtracting data from their means and dividing 

them by their standard deviations. Houshmand and 

Javaheri [18] due to the presence of multicollineari-

ty, use ridge regression to model each quality cha-

racteristic as a function of the remaining ones and 

construct Shewhart / EWMA (Exponentially 

Weighted Moving Average) charts of the residuals 

to monitor the stability of a process. The MRRC is 

a very effective tool to detect trends and shifts of 

any magnitude in the components of the mean vec-

tor of multivariate processes and also determines 

which variable caused out of control signal. 

Following their method, a set of ridge regression 

equations is constructed for each quality characte-

ristics as a function of the rest as follows: 

 

1 12 2 13 3 1 1... p pX a X a X a X ε= + + + +      

2 21 1 23 3 2 2... p pX a X a X a X ε= + + + +      (19) 

.......................................  

1 1 2 2 , 1 1...p p p p p p pX a X a X a X ε− −= + + + +  
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where εi (i=1,…,p) denotes random error term that 

follows a normal distribution with mean zero and a 

constant variance σ
2
. An out-of-control signal in 

either the Shewhart or EWMA charts of the resi-

duals are interpreted as an out-of-control signal in 

the corresponding dependent quality characteristic. 

Once the process is announced under statistical 

control, the set of Equations in (19) along with the 

expected value are used to determine the mean es-

timates for the correlated quality characteristics as 

follows: 

  

1 212 1
ˆ ˆ ˆ....

PX X p Xa aµ µ µ= + +                     (20) 

12 121 2
ˆ ˆ ˆ....

PX X p Xa aµ µ µ= + +                   

. . . . . . . . . . . . . . . . . . . . . . . .  

1 1 11 , 1
ˆ ˆ ˆ....

p PX p X p p Xa aµ µ µ
−−= + +  

 

Also an estimate for the standard deviation of 

each quality characteristic may be computed by get-

ting this operator on the previous set of equations as 

follows: 

 

1 2 3

2 2 2 2 2 2 2
12 13 1

ˆ ˆ ˆ ˆ...
pX X X p Xa a aσ σ σ σ= + + +     (21)   

        
2 3 112 13 1, 1 1

ˆ ˆ2 ...+2
p pX X p p X Xa a a aσ σ

−−+ +                                                                           

 

2 1 3
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21 23 2
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12 3 121 23 2, 1 2
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1 2 1
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1 2 , 1

ˆ ˆ ˆ ˆ...
p pX p X p X p p Xa a aσ σ σ σ
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1 2 11 2 , 2 1
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p pp p X X p p p X Xa a a aσ σ
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3.2. Step 2: PCIs evaluation for all quality characte-

ristics 

Consider 
iXTT denotes technical tolerance for the 

i
th

 quality characteristics. In general form every 

quality characteristic may have LSL, USL and a 

target amount (if it exists) as follows:  

 

, ,  1 2
i i i iX X X XTT LSL T USL i , , ..., p = =  (22)                      

For each quality characteristic a univariate PCIs 

is computed. The most common indices such as 

CP )( iX , CPK )( iX , CPM )( iX  and CPMK )( iX  can 

independently be estimated for all the quality cha-

racteristics as follows: 
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3.3. Step 3: MPCIs estimate via applying weight-

ing average method 

In order to estimate the most known MPCIs 

based on the p estimates of PCIs, one may use 

weighting average method. Based on this routine, 

the product capability indices are defined by the 

following set of equations as: 
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where MCP, MCPK, MCPM and MCPMK respectively 

act as equivalents for CP,, CPKi, CPMi and CPMK, in 

multivariate circumstances and Wi shows the nor-

malized importance weight of the i
th
 quality charac-

teristic derived from the customer’s points of view.  

 

Note that: ∑ =
P

i

iW 1                                     (25) 

 

As will be shown in the next section, applying 

this approach to a set of multivariate data is much 

easier than going through the complicated equa-

tions.  

4. Numerical example 

In the following, we will consider a numerical 

example to demonstrate how the MPCIs can be ap-

plied in processes with multiple characteristics. The 

example involves a process of turret lathe for manu-

facturing certain steel sleeves. The performance of 

this production process is evaluated by measuring 

three identifiable diameters of cylindrical sleeves, 

henceforth referred to as “A”, “B” and “C” , respec-

tively, reported in 0.0001 inches above nominal. 

Table 1 contains 28 sleeve measurements from an 

under control process for the three quality characte-

ristics with the same weights of importance both for 

A and C and twice for B.  

The lower and upper specification limits (LSL, 

USL) for the three quality characteristics are shown 

in Table 2.  

 

Table 1: Diameters of the three steel sleeves in 0.0001 inch above 

nominal. 

Sam

ple A B C 

Sam-

ple A B C 

1 125 75 100 15 112.5 67.5 115 

2 135 87.5 110 16 125 67.5 120 

3 142.5 95 120 17 127.5 57.5 125 

4 130 102.5 110 18 112.5 67.5 110 

5 125 72.5 100 19 95 55 100 

6 137.5 55 115 20 122.5 50 110 

7 120 72.5 110 21 102.5 45 100 

8 115 87.5 105 22 120 82.5 100 

9 125 65 110 23 115 57.5 95 

10 157.5 82.5 130 24 100 65 90 

11 100 17.5 95 25 100 47.5 100 

12 105 40 100 26 100 57.5 105 

13 107.5 45 105 27 107.5 72.5 110 

14 110 65 110 28 120 82.5 115 

The sample mean vector X  and variance-

covariance matrix S
2
 for the data in Table 2 are giv-

en by:  

 






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

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65.63

68.117

X
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9.876.690.99

6.699.3364.162

0.994.1620.218
2S

          

 

The correlation coefficients presented in Table 3 

is indicative of some meaningful correlation among 

the three quality characteristics.   

Pass 2000
®
 statistical software was applied to the 

data presented in Table 1 and the following ridge 

regression equations with a biasing factor of 

K=0.005 which helped the regression coefficients 

to remain constant was obtained: 

 
ˆ 2.689 0.297 0.887A B C= + +  

ˆ 16.789 0.781 0.088B A C= − + −     

ˆ 54.107 0.465 0.018C A B= + −  

 

Figure 3 presents the normal probability plots 

with constant small variance for the residuals of the 

derived models. This figure confirms the normality 

and uncorrelated assumption and suffices validity 

of the models. 

Ridge regression equations can be used to obtain 

estimates for the mean and variance of each quality 

characteristic as follows:  

 

ˆ 2.689 0.297(65.63) 0.887(107.68) 117.69Aµ = + + =

 

ˆ 16.789 0.781(117.68) 0.088(107.68) 65.64Bµ = − + − =

 

ˆ 54.107 0.465(117.68) 0.018(65.63) 107.65Cµ = + − =

 

and, 

 
2 2 2ˆ (0.297) (336.9) (0.887) (87.9)

ˆ         2(0.297)(0.887)(69.6) 135.6 11.64

A

A

σ

σ

= + +

= ⇒ =
 

2 2 2ˆ (0.781) (218) ( 0.088) (87.9)

ˆ        2(0.781)( 0.088)(99) 120.06 10.96

B

B

σ

σ

= + − +

− = ⇒ =
 

2 2 2ˆ (0.465) (218) ( 0.018) (336.9)

ˆ         2(0.465)( 0.018)(162.4) 44.5 6.67

C

C

σ

σ

= + − +

− = ⇒ =
 

 

Now, an estimate for PCIs corresponding to each 

quality characteristic can be determined. The results 

of the computations are provided in Table 4. 
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Figure 3.  Normal probability plot of residuals with 95% confidence 

interval. 

 

Table 2. The main aspects of customer requirements for the three steel 

sleeves. 

Variables A B C 

USL 171 132 147 

LSL 64 0 70 

T 117 65.6 107 

W 0.25 0.5 0.25 

Table 3. Correlation coefficient matrix for the three quality  

characteristics. 

 A B C 

A 1.00 0. 60 0.72 

B 0. 60 1.0 0.41 

C 0.72 0.41 1.00 

Table 4. Process capability indices estimation. 

Xk A B C 

Mean 117.69 65.64 107.65 

Standard 

Deviation 
11.64 10.96 6.67 

CP 1.43 1.83 1.50 

CPk 1.37 1.69 1.12 

CPM 1.40 1.70 0.99 

CPMk 1.34 1.57 0.73 

 

 

Via weighting average method based on the 

normalized weights of 0.25, 0.5 and 0.25 for A, B 

and C respectively, the MPCIs could be carried out 

as: 

3

1

( ) 0.25(1.43) 0.5(1.83)P i P i

i

MC w C X
=

= = +∑  

                0.25(1.50) 1.65+ =  

 

3

1

( ) 0.25(1.37)PK i PK i

i

MC w C X
=

= =∑  

                     0.5(1.69) 0.25(1.12) 1.47+ + =  

 

3

1

( ) 0.25(1.40)PM i PM i

i

MC w C X
=

= =∑  

                       0.5(1.70) 0.25(0.99) 1.45+ + =           

 

1

( ) 0.25(1.34)
p

PMK i PMK i

i

MC w C X
=

= =∑  

                 0.5(1.57) 0.25(0.73) 1.30+ + =  

5. Conclusions 

PCIs determine the relation between the actual 

process performance and the technical tolorances, 

which enumerate process potential and process per-

formance, are vital to any successful quality im-

provement activities. Capability indices measure for 

processes with single characteristic has broadly 

been looked, but is relatively deserted for product 

characteristics with different preferences on quality 

specifications. However, the lack of efficient indic-

es in multivariate domain is levelheaded. The pro-

posed MPCIs can be applied after validating under 
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control condition through use of multivariate ridge 

regression chart. This proposed approach has the 

following advantages: 

 

1) It constructed based on recognized multiple 

regression method which can be easily 

planned using statistical packages.   

 2)  It can be applied to estimate many familiar 

process capability indices.    

 3)  The important workstations can be identified 

using the regression coefficients when ridge 

regression method is applied to the standar-

dized data set. 

 4)  The projected method could be applied when 

each quality specification has different 

weight of importance. 

The numerical example was used to model the re-

lationship among quality specifications to obtain 

overall product capability indices. This example 

was used to show the effectiveness of the proposed 

method in terms of the amount of computation in-

volved. 
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