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Abstract 

The one-dimensional cutting stock problem, has so many applications in lots of industrial processes and 
during the past few years has attracted so many researchers’ attention all over the world. In this paper a meta-
heuristic method based on ACO is presented to solve this problem. 

In this algorithm, based on designed probabilistic laws, artificial ants do select various cuts and then select 
the best patterns. Also because of the problem framework, effective improvements has been made to problem 
solving process. The results of that algorithm in sample problems, show high efficiency of the algorithm in 
different levels of problems. 
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1. Introduction 
 

The one-dimensional cutting stock problem, that in 
this paper is called "one-dimensional cutting prob-
lem" has so many applications in lots of industrial 
processes [5,8,9] and during the past few years has 
attracted an increasing attention of researchers all 
over the world [1,12]. This attention has been mostly 
focused on the solution to the problem in cases with 
the stock of the same length or with a few different 
standard lengths. 

Most standard problems related to one-dimensional 
cutting problem are known as NP-complete.  How-
ever, in many cases these kinds of problems can be 
modeled by means of mathematical programming 
and a solution can be found by using approximate 
methods and heuristics. The objective is to design a 
plan of one-dimensional cutting of a certain number 
of pieces of same lengths (stock lengths), into a large 
number of short pieces (order lengths), which will 
minimize the overall trim loss considering different 
conditions that may appear in practice. 

Using Dyckhoffsُ typology [4], the one-
dimensional cutting problem with enough required 
material available can be described as:  

 
1. Dimensionality   
    N) Number of dimensions:   

2. Kind of assignment:  
    B) All large objects and a selection of small 

items    
V) A selection of large objects and all small 

items    
3. Assortment of large objects:   
    O) One large object   
    I ) Many identical large objects      
    D) Different large objects      
4. Assortment of small items:   
    F ) Few items of different dimensions 

M) Many items of numerous different dimen-
sions 

    R ) Many items of relatively few dimensions  
    C ) Many identical items 
 
In this paper, the 1/V/O/R has been considered, 

where 1 refers to one-dimensional problem, V means 
that all items must be produced from a selection of 
large objects, O means that one large object and R 
indicates many items of relatively few dimensions. 
The algorithm presented in this paper, also could be 
used for 1/V/I/R, where I means that Many identical 
large objects. 

Dyckhoff classifies the solution of one-
dimensional cutting problems into two groups: item-
oriented and pattern-oriented approach. Item-
oriented approach is characterized by individual 
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treatment of every item to be cut. In the pattern-
oriented approach, at first, order lengths are com-
bined into cutting patterns, for which - in a succeed-
ing step - the cutting frequencies are determined that 
are necessary to satisfy the demands. The constraints 
in the pattern-oriented approach are based on the al-
gorithm that Gilmore and Gomory have developed 
[6,7]. However, a pattern-oriented approach is possi-
ble only when the stock is of the same length or of 
several standard lengths, and an item-oriented ap-
proach is used when all stock lengths are different 
and frequencies cannot be determined. The authors 
selected pattern-oriented approach for solving the 
cutting problem. 

 
 
2. Describing one-dimensional cutting problem 
model 
 

In so many industries, the cost of raw materials is 
the most percentage of the total cost (sometimes 
more than 80%). Then lots of attempts have been 
done to increase materials utilization. The cutting 
problem is one of the well-known operation research 
problems that is defined to make better use of materi-
als. In general, the cutting problem could be defined as: 

One or more large objects are available and we 
want to make some small required items by cutting 
them. In this problem the cutting method should be 
determined in a way that minimum trim loss is made 
or smaller objects are cut, and used. 

The cutting problem was firstly described in 1939 
by Kantorovich for one-dimensional cutting [10]. In 
1960s P.C. Gilmore and R.E. Gomory published four 
famous papers about one and two-dimensional cut-
ting problems. Their first paper was published about 
the application of linear programming in solving one-
dimensional cutting problems in 1961 and it was a 
real start for representing techniques used in actual 
problems. Publishing Gilmore and Gomory papers 
caused a new movement in analyzing and solving the 
cutting problem and most papers published about cut-
ting problems till now have referenced Gilmore and 
Gomory papers. While expanding the application of 
computer in operation research problems and    devel-
oping techniques and methods of modeling and prob-
lem solving, the cutting problem has been developed. 
 
 
2.1. One-dimensional cutting problem  

 
The one-dimensional cutting problem could be de-

scribed as: 

There are some large objects and we want to cut 
them (for ordered items that have two identical     
dimensions) in a way that minimum trim loss is 
made. Cutting problem dimension is the degree of 
freedom for decision making. If the two dimensions 
of ordered items and used large objects are the same, 
only decision for the way of cutting third dimension 
should be made and therefore, cutting process has 
one dimension. 

The main objective in cutting problems is decreas-
ing the cost of losses. Meaning that we want cutting 
patterns, and number of using them to make mini-
mum trim loss cost. Of course, in some cases, time 
and cost of set up change of a cutting machine is con-
siderable [14]. 

Represented models for cutting problems are       
affected firstly by kind of its hypotheses and sec-
ondly by the modeling method. 
 
 
2.2. Defining model 

 
The problem model is as follows: 
 

Min  X0 = ∑
=

m

j 1

Sj Xj +∑
=

n

i
iV

1
                                  (1)           

Subject to: 

     ∑
=

m

j 1

Oij Xj > Di                  i = 1,…,n       (2)    

 
     Xj > 0,  Integer      j = 1,…,m      (3) 

 
where:  
 
Xj : Number of large objects that have been cut by j 

th cutting pattern. 
Sj  : Amount of loss in pattern j th. 
Oij : Number of i th item cut by pattern j th. 
Di  : Number of demond for i th item. 
Vi  : Surplus production of i th item  (surplus vari-

able of model constraints)  that is calculated 
as follows: 

 

       ∑
=

m

j 1

Oij Xj – Vi = Di    

        ⇒  Vi = ∑
=

m

j 1

Oij Xj – Di  ,   i  = 1,…,n              (4) 

 
m : Number of effective cutting patterns. 
n  : Number of different required items. 
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 If L is the length of large objects and il  is the 
length of i th item, it is clear that we will have: 
 

∑
=

n

i 1

Oij il + Sj = L   ,   j = 1,…,m                             (5) 

 
 It is worth mentioning that it is possible to write 

objective function as Min X0 = j

m

j
X∑

=1

. 

 
 

3. Ways to solving one-dimensional cutting prob-
lems 

 
 The one-dimensional cutting problem is one the 

NP-complete problems and therefore many different 
ways are represented to solve it. These represented 
methods could be divided into two main groups:   
optimization methods and heuristics. Among optimi-
zation methods, some algorithms based on dynamic 
programming and methods based on linear program-
ming could be mentioned. Heuristics are divided into 
different types like metaheuristic algorithms.   
 
 
3.1. Metaheuristic algorithms 

 
Complexity in current problems made the optimi-

zation methods not be able to gain global optimum or 
use lots of time to reach this answer. These problems 
usually because of their own reasons have many local 
optimum and only using current optimization meth-
ods is so expensive and sometimes impossible. 
Therefore metaheuristics are represented that some of 
them are: Tabu Search (TS) algorithm, Genetic Algo-
rithm (GA), Simulated Annealing (SA) algorithm and 
Ant Colony Optimization (ACO). Nowadays these 
methods because of not being designed for a particu-
lar problem and reaching to the answer in the mini-
mum possible time, have attracted an increasing at-
tention of researchers. 

 
 

3.2. Aco metaheuristic algorithm 
 
Metaheuristic optimization algorithm based on 

ant’s behavior (ACO) was represented in the early 
1990s by M. Dorigo, V. Maniezzo and A. Colorni 
[2,3]. This algorithm is inspired of ant’s social behav-
ior. Ants have no sight and could find shortest way 

from food to their nest by chemical materials called 
Pheromone that they leave when moving [3]. 

When ants are walking they leave Pheromone and 
follow (catastrophically) other ants’ left Pheromones. 
Ants like the way that has the most amount of 
Pheromones. The process of finding the shortest way 
by using Pheromone is shown in figure 1. 

Look at figure 1-a. Ants have arrived at a junction 
and should decide to go upward or direct. In this time 
there is no memory about selecting the best way. So 
ants choose their way randomly. It is estimated to see 
that one half of ants will go upward and others will 
go in the direct way that is shown in figure 1-b. Be-
cause the direct way is shorter and by supposing that 
ants’ walking speed are identical, much more ants 
could pass this way per unit time and therefore it 
makes this way filled with Pheromone move quickly. 
By the time, Pheromone difference between two 
ways increases and after sometime Pheromone dif-
ference between two ways becomes enough great to 
affect the ants’ way selection. This is shown in figure 
1-c. When ants are coming back because of finding 
more Pheromones in the down way, will probabilisti-
cally prefer this way. This process will continue with 
a positive feedback, meaning that increasing the 
number of selecting this way causes increasing 
Pheromone and increasing Pheromone causes in-
creasing the number of selecting this way. After 
sometime all ants will choose shorter way to continue 
the movement. 

First ant colony optimization algorithm was based 
on this ants’ behavior. ACO algorithm was firstly 
used in solving traveling salesman problems (TSP) 
and then was used in solving combinational optimiza-
tion problems that among them we could indicate to 
quadratic assignment problems (QAP), routing prob-
lems, graph coloring problems, etc. In the most prob-
lems that have been solved by ACO algorithm, re-
sults indicate superiority of this method to other 
metaheuristics.  

 
 

4. Representing an ACO algorithm for solving 
one-dimensional cutting problem 

 
In this section, an algorithm based on ACO method 

is represented for solving one-dimensional cutting 
problem. In this kind of algorithm, we should use 
artificial ants which their maximum number is total 
required cuts. Firstly every artificial ant selects a sto-
chastic probability rule to choose cut (item) type and 
then selects desired pattern to perform that cut by  
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Figure 1. The process of finding shortest way between two points by ants. 
 
 

another probabilistic rule. Finally after updating the 
amount of required left cuts and because of produc-
ing that pattern, selecting new cuts and patterns by 
other ants using the remaining information of others 
is performed till there is no cutting needs. Also after 
some program iteration, Pheromone evaporation is 
done to prevent repeated similar answers, and to es-
cape local optimum. 
 
 
4.1. The method of efficient cutting patterns generation 

 
Because in every iteration of algorithm, there is a 

need of using cutting patterns by ants, in order to do 
this we do as follows:  

In order to generate efficient cutting patterns that 
no one has superiority to the others, we could use 
different methods like Pierce in 1964 and Suliman in 
2001 that were used to generate all effective cutting 
patterns for large objects [11,13,15]. 

In Pierce method, if L is the length of the large ob-
jects and 1l  , 2l  , … , nl are the lengths of the items 
needed, in a descending length order and M is the 
maximum trim loss allowable, then we have: 

 

Step 1.Set   

     ⎥
⎦
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⎢
⎣

⎡
=

1
1

l

Lα , 

     ⎥
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where [ ]g  is the largest integer less than or equal 
to g. 

Step 2. If ML ii

n

i
≤−∑

=
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1
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 is an effi-

cient cutting pattern. 
Step 3. If there is an i , 1 < i < n-1 , such that 0>iα  , 
then let j be the largest such i and go to step 4. If not, 
terminate the procedure. All efficient cutting patterns 
have been identified. 
Step 4. Set  

     1−= jj αα  , 
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Go to step 2. 

Step 5. If there are two pattern 
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,  that  

for all i we have Oik < Oij , then the cutting pattern 
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 because of the other pattern’s superiority 

should not be considered. 
After generating effective cutting patterns, it is 

possible to decrease required number of items by fol-
lowing this note that: 

If a kind of item is only produced by one pattern, 
then firstly it will be produced in required numbers. 
Since every pattern could make different cuts, then 
whole number of total cuts is calculated and left re-
quirement of every kind of cut and problem modeling 
information is updated.   
 
 
4.2. Probabilistic rules and selecting cut and pattern 

 
Now, ACO algorithm is described for solving one-

dimensional cutting problems. It is necessary to re-
member that in the ACO designed for solving one-
dimensional cutting problem, artificial ants are used 
less than the number of total required cuts. So in this 
algorithm, the number of artificial ants in every itera-
tion is a variable depending on total required cuts. In 
every iteration firstly every ant using a probabilistic 
rule, selects it is desired cut. For creating this prob-
abilistic rule assume that: 

 
Pi  : Number of production of the cut (item) of 

the type i till this time of solving the model 
(calculated on the number of selected patterns 
by other ants). 

Di : Whole required demand for the cut (item) of 
the type i . 

 
Then Di – Pi indicates left required demand for the 

cut of the type i based on the produced items till now, 

that we show by Mi. Then it is possible to write: 
 
                Di – Pi      if   Di – Pi > 0  
  =iM         
                     0          if   Di – Pi < 0 
 
If the sum of total left demands is shown with TM, 

then:  
 
   ∑

∀

=
i

iMTM                                                 (7) 

 
Note that if TM=0, there is no need to choose an-

other type of cut by any other ant and therefore no 
pattern is selected in this iteration and the iteration is 
over. So the probability of selecting every kind of 
cutting in a moment by every ant equals: 

 
Probability of selecting the cutting type i by any  

ant 
TM
M

M
M i

i
i

i ==
∑
∀

                                      (8-1) 

 
Obviously this probability for every kind of cutting 

that has no demands is equal to zero. Also cuts hav-
ing more required left, has more probability by itself. 

That probabilistic rule is improvable as follows: 
Cuts (and patterns) selection by ants in the last     

iteration, give important information including sur-
plus production of every type of cutting in the last 
iteration.  

 
Assume that: 

iP′  : Number of whole production of type i in the 
last iteration (calculated on the number of se-
lected patterns by ants in the last iteration).  

l i  : The length of demanded the cut of type  i .  
iV ′  : Amount of surplus cut production of type i in 

last iteration.  
 
Now this could be written: 
 
    iiii DPV l*)( −′=′                                            (9) 
 
If sum of the total different surplus cuts produc-

tions indicating with VTO ′ equals zero, used prob-
abilistic in the last iteration are suitable and again are 
assumed in this iteration, else we should do the fol-
lowing: 

So in particular cases we do not want cuts without 
surplus production in the last iteration have very 

(6)
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great probabilities and cuts with high surplus produc-
tion (and sometimes only cut with surplus produc-
tion) have little probabilities, then we equal amount 
of surplus production of cuts without surplus produc-
tion to the small percentage of minimum of other dif-
ferent cuts (except zero) surplus production that are 
selected to be equal to equation (9). When perform-
ing algorithm on the case studies, this amount is 
equal to 5%. 

Now recalculate the sum of cuts with more surplus 
production in the last iteration shown with VTO ′  
and find improvement probability coefficient resulted 
equation (8-1) in this way: 

Zi : Improvement probability coefficient for select-
ing the cut of type i by artificial ant. 

 

Zi = 1 – 
VTO

Vi

′
′

                                                (10-1) 

 
Since we want cuts with more surplus production 

in the last iteration to be less selecting probability by 
ants to make these cuts have less surplus production 
in this iteration.  

In this case, equation (8-1) is improved as follows: 
 

Probability of selecting the cutting type i by any 

ant 
TM
Mi= * Zi                                             (8-2) 

 
The important point is that in using the rule above, 

the normalized form of probabilities should be ap-
plied so that sum of the resulted probabilities equals 
to one. 

 Now by using point below, equation (10-1) will be 
improved: 

As seen VTOVi ′′/  indicates percentage of surplus 
cut of type i production in the previous iteration. But 
this proportion is so important and could improve the 
process of program performing iterations and its pro-
portional importance could be strengthened if after 
some sequential iterations (for example 10 iterations) 
there is no improvement in obtained answers. As-
sume that importance coefficient is shown with α , 
then firstly α=1, but if after some sequential iterations 
(for example 10 iterations) there is no improvement 
in the problem solving process, parameter α misses 
its value by a defined amount (for example 10%). So 
the ratio VTOVi ′′/ can be strengthened of the same 
amount. Or firstly the value of parameter α is selected 
less than one and proportional importance of the 
equation above should be strengthened from the be-

ginning. So in equation (10-1), improvement prob-
ability coefficient for selecting cut of type i will be 
changed as follows:  

 

Zi = 1 – 
α

⎟
⎠
⎞

⎜
⎝
⎛

′
′
VTO

Vi   ,   0 < α < 1                     (10-2) 

 
It is worth mentioning that in the first program it-

eration, all Zi are assumed equaled to one.  
Immediately after selecting the cut of type i by 

every ant, pattern of type j including the cut of type i 
should be selected by the same ant. Therefore pat-
terns with the cut of type i are considered. Assume 
that: 

 
Oij : Number of obtained units from the cut of type i 

in every selected pattern of type j. 
jN ′ : Number of selections by ants from pattern of 

type j in the previous algorithm iteration. 
Sj : Amount of loss in pattern j th. 

 
Then jj SN .′ indicates total loss resulted from select-

ing pattern of type j in the previous algorithm itera-
tion. Afterwards the probability of selecting pattern j 
for cut of type i by artificial ant )( )( jP′ is calculated as 
follows: 

 

j
jj

j Z
SN

P ′
′

=′ .
.
1

)(                                               (11-1)  

ijj OZ =′                                                           (12-1) 
 
Here jZ ′  is the improvement probability coeffi-

cient for selecting pattern of type j that indicates the 
number (weight) of the desired cut of type i in the 
pattern j. Of course it is necessary to normalize prob-
abilities above )( )( jP . It means: 

 

∑
Ω∈∀

′
′

=

ij
j

j
j P

P
P

)(

)(
)(

 , iΩ ={ j ∀Oij > 0 , for desired 

cut  of type i }                                                (13) 
 
The important point is that the denominator of the 

equation (11-1) should not become zero. So for pat-
terns that had no selection in the previous iteration or 
its amount of wastage was zero, then we assume 

jj SN .′  small percent of the minimum jj SN .′  of other 
patterns (except zero) having the cut of type i. 
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For improving equation (11-1) the following 
method could be used:  

Again consider equation (6). If in a moment of 
solving, Mi for every cut of type i becomes zero, then 
the length of that cut type will be considered as 
waste. So in the equation (11-1) the value of Sj in this 
moment starts to increase as following that could 
make less production of the cut of type i. 
 

∑
∈∀

+=
ii

iijjj OSS
δ

l.  , iδ = {i 0=∀ iM  , in the  

desired pattern j}                                             (14) 
 
On the other hand, probability improvement coef-

ficient jZ ′  is also improvable for selecting pattern of 
type j that is improved in (12-1). Because by select-
ing the desired cut i by every ant, we want to have 
selected pattern of type j, strengthen more production 
of this type of cut. So it can be written: 

 
β)( ijj OZ =′     ,    1>β                                      (12-2) 

 
Also equation (11-1) can be improved as follows: 
 

j
jj

j Z
SN

P ′⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
′

=′ .
.
1

)(

γ

    ,    γ > 1                       (11-2)  

 
In those above equations, parameters β and γ are 

best pattern selecting probability improvement pa-
rameters. 

When performing above equations in the sample 
problems, values of the parameters β and γ are con-
sidered as β=1 and 1 < γ < 2.5 . 

It is necessary to indicate that if for a cut type i , all 
Sj were equal to zero, then equation (11-2) for that 
cut becomes as below: 

 

=′ )( jP
∑
∀i

ij

ij

O
O                                                       (15) 

 
Also in the first algorithm iteration, all jN ′  and 

even all jZ ′  could be considered equal to one. And 
also it is possible to use the following equation by the 
normalized probabilities form instead of (11-2): 

 

=′ )( jP
∑

Ω∈∀

−

ij
j

j

S
S

1                                                 (16) 

Making various answers process in this algorithm 
is in this form that in every time using equation (11-
2), it inverts the movement direction from answers. 
Or if in one time using it a worse solution compared 
to the last iteration is made, then the next use, catches 
better solution of the problem. This means that if the 
direction movement toward optimum solution re-
quires improvement, the search continues by sequen-
tial directions inverting. So the solution algorithm 
does not stop in a local optimum. Doing this work is 
equivalent to the meaning of Pheromone evaporation 
in the ACO algorithm.  

 
After obtaining a basic feasible solution, equation 

(11-2) will affect and shows movement direction to-
ward optimum solution. Now every time that the al-
gorithm solution in one iteration is better than the 
previous iteration, or in other words movement direc-
tion is recognized toward improvement, then instead 
of equation (11-2) we use the following equation: 

 

j
j

j
j Z

S
N

P ′
′

=′ .)(     ,    ijj OZ =′                             (17-1) 

 
It is worth mentioning that equations (12-2), (13) 

and (14) could be completely applied like last times 
and equation (17-1) can be improved in this way: 
 

j
j

j
j Z

S
N

P ′
′

=′ .
)()( γ

    ,    β)( ijj OZ =′                  (17-2) 

 
After selecting the pattern by every ant, because 

every pattern could produce various cuts, number of 
products from the cut type i till this time will be up-
dated according to equation (18):  

 
 
 

Pi = Pi + Oij    ,    i∀                                           (18) 
 
Of course, the above operations will be repeated by 

so many artificial ants until all needs are met (means 
that TM = 0). Thus at the end of algorithm, we will 
have a desired feasible solution. 

Now by using this program iteration information, 
repeat the algorithm for some times until the best so-
lution is obtained. Parameters α, β and γ make neces-
sary improvement in program iteration. 

 In order to improve obtained answers from every 
program iteration finally we could behave as follows: 

After finding the best answer between obtained an-
swers, the number of selected patterns can be de-
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creased well that amount of surplus production from 
patterns will be minimum. 

It is worth mentioning that, this operation can be 
done in every program iteration after recording 
needed information of every iteration only for finding 
the best answer in different program iterations and 
then finding the best obtained answer till the time that 
is recognized and saved. The stoppage condition of 
the algorithm is that if after some iterations (for    
example 20 iterations) there is no change in the best 
obtained answer, then the algorithm is stopped. 
 
 
4.3. Summary of ACO algorithm for problem solving 

 
The ACO algorithm could be summarily changed 

to psedu-code for solving a one-dimensional cutting 
problem as follows: 

 
Procedure ACO_Cutting_Stock 

Data Entry: L , il  , Di  ; i = 1,…,n  
Patterns Generated by Pierce or Suliman Method: 
Oij , Sj  ; j = 1,…,m   
Find Initial Feasible Solution by Equs. (8-2)&(16)  
Calculate P’i  , V’i  , N’j  , X0(k=1 ) for Initial Feasi-
ble Solution 
Best-Solution = X0(k=1) 
Repeat: (For k + 1)        
     Foreach Ant: Until  TM = 0  

  Calculate Pi  , Mi  , TM by Equs. (6),(7),(18)   
  Select  Cut ( i ) by Equ. (8-2) 
  If  ( X0(k) < X0(k-1) ) Then 

               Select  Pattern ( j ) by Equ. (17-2) 
         Else 
               Select  Pattern ( j ) by Equ. (11-2) 
         End-If 

 End-Foreach 
 Calculate P’i  , V’i  , N’j  , X0(k+1 ) 
 Improve V’i  , P’i  , N’j  , Calc. Again X0(k+1 ) &       
Best-Solution 

      Check Stopping Criteria 
  End-Repeat 

End-procedure   
 
 
5. Computational results of the model solving 

method 
 

In order to examine the provided algorithm in this 
paper, a software using Visual Basic 6.0 is supplied 
that according to the mentioned algorithm, solves 

sample problems. Then the algorithm software for 
sample problems has been performed using a PC with 
characteristics of pentium 4 with 2.8 GHz processor 
and 512 MB RAM. 

In table (1) computational results obtained from 
average solution of 18 group of sample problems that 
have different dimensions, are provided. In every 
group of problem levels TP1 to TP10 ten different 
sample problems and for problem levels TP11 to 
TP18 five different samples were produced, and ob-
tained results are gained considering to the average 
results in these samples. So totally 140 problems are 
produced and solved. Sample problems dimensions 
are so considered that we are able to compare final 
algorithm answer with an answer using column gen-
eration method for solving a one-dimensional cutting 
problem. 

The method of producing sample problems in 
every group is that for entering software, firstly the 
length of large object is produced randomly an inte-
ger number between [20,100] and then by consider-
ing the number of different needed items (n), the 
length of the demanded items are integer random 
numbers that are produced using large object length 
and their demands are random integer numbers be-
tween [50,400]. Then program according to above 
entrances generates efficient cutting patterns in 
needed numbers (m) using Pierce method. Now by 
considering the number of produced patterns, pa-
rameters α , β and γ are determined by the user and 
program will continue until getting the final answer. 

In the columns of table (1) from left, name of sam-
ple problems (TP), number of required various items 
(n), number of generated patterns by software (m) 
that are classified, the best values of parameters α , β 
and γ in different program performings, difference 
between obtained result by algorithm and optimum 
solution of the problem (Gap-Opt) and average 
needed CPU working time (when performing pro-
gram) to get the final problem answer measured by 
the dimension of second (Time) are shown. 

According to computational experiences, the soft-
ware of the provided algorithm in this paper can find 
optimum solution of all problems of different levels 
with little solving time that this indicates the algo-
rithm strength. In other words, the optimum solution 
in all 140 sample problems is obtained.  

Also studying the obtained results from sample 
problems shows that by enlarging parameter γ, prob-
lem desired answers tend to select less different 
number of patterns. With due attention to solved 
sample problems, γ=2 is a good value for the above 
solving method. By reducing parameter α, there is 
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Table 1. Computational results obtained of 18 groups of sample problems. 

 Time Gap-Optγ β α m n TP 
1.5 0 1 1 1 6 < m < 4 3 TP01 
2 0 1 1 1 15 < m < 7 3 TP02 
4 0 1 1 1 15 < m < 8 4 TP03 

4.5 0 1 1 1 30 < m < 16 4 TP04 
6 0 1 1 1 20 < m < 8 5 TP05 

15 0 1 1 1 40 < m < 21 5 TP06 
18 0 1 1 1 70 < m < 41 5 TP07 
11 0 1 1 1 30 < m < 10 6 TP08 
40 0 1 1 0.5 60 < m < 31 6 TP09 
43 0 1 1 1 110 < m < 61 6 TP10 
56 0 1.5 1 1 70 < m < 25 7 TP11 
65 0 1.5 1 1 150 < m < 71 7 TP12 
61 0 1.5 1 1 80 < m < 30 8 TP13 
81 0 2 1 1 165 < m < 81 8 TP14 
84 0 1.5 1 0.5 90 < m < 30 9 TP15 
92 0 2 1 0.5 170 < m < 91 9 TP16 

119 0 1.5 1 1 90 < m < 30 10 TP17 
146 0 2 1 1 180 < m < 91 10 TP18 

 
more equilibrium between surplus productions of 
items. α = 0.5 makes a suitable equilibrium to the 
optimum solution in the sample problems. 

 Parameter β is a complement for parameter γ . In 
the sample problems because by putting 1 < γ < 2.5 
we have reached the optimum solution then putting   
β = 1 is desirable.  

What appears in solving sample problems is that 
items with shorter length that are produced in more 
number of patterns and also items with small de-
mands usually have more surplus production. 

Despite in large problems like TP18 having 10 
kinds of different items with more than 90 patterns, 
algorithm performance time that resulted in optimum 
solution, was lower than 150 seconds. Also average 
algorithm performance time in 140 sample problems 
in 35.5 second indicating algorithm high speed to 
reach the optimum solution for the studied sample 
problems.  

 
 

6. Conclusions 
 
In this paper, an ACO algorithm is designed for 

solving one-dimensional cutting problem. In this al-
gorithm based on designed probabilistic laws and 
improvements, the way of cutting large objects to 
satisfy demand by artificial ants is provided. By look-
ing at the desired obtained results from performing 

algorithm, it clears that metaheuristics for solving 
one-dimensional cutting problem will result in very 
desired answers with little solving time that could be 
a good basis for researchers’ future researches.  
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