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Abstract: Scheduling of production in Flexible Manufacturing Systems (FMSs) has been extensively in-

vestigated over the past years and it continues to attract the interest of both academic researchers and 

practitioners. The generation of new and modified production schedules is becoming a necessity in to-

day’s complex manufacturing environment. Genetic algorithms are used in this paper to obtain an initial 

schedule. Uncertainties in the production environment and modeling limitations inevitably result in devia-

tions from the generated schedules. This makes rescheduling or reactive scheduling essential. One of the 

four different types of uncertainties that normally cause discrepancies between the actual output and the 

planned output is considered in this paper. These include unforeseen machine break-downs, increased or-

der priority, rush orders arrival and order cancellations. In this paper, the current status of the shop is con-

sidered while rescheduling. The proposed algorithms revise only those operations that must be resched-

uled and can, therefore, be used in conjunction with the existing scheduling methods to improve the effi-

ciency of flexible manufacturing systems. 
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1. Introduction 

At present, most industries are confronted with 

perpetual customer demands for a wider variety of 

products, faster production rates, shorter delivery 

time and more reliable delivery. The flexibility to 

manufacture a wide range of products in short 

time has been achieved at the expense of manu-

facturing efficiency. This deficiency is reduced 

with the introduction of flexible manufacturing 

systems (FMSs) which have the flexibility of job 

shops while approaching the efficiency of transfer 

lines. One aspect of such manufacturing systems 

which is particularly difficult in practice is sched-

uling. Scheduling in FMSs differs from that in a 

conventional job shop because of the availability 

of alternating manufacturing resources resulting in 

routing flexibility. This may potentially increase 

the output by eliminating the bottle-necks often 

present when alternate routes are not feasible. The 

performance of a production system depends 

greatly on good and proper rescheduling with the 

uncertainties present in the production environ-

ment. These uncertainties often result in orders 

following a route through the shop floor different 

from the one originally developed. In such cases, 

previously generated schedules become invalid 

and have to be regenerated. 

Several factories related to system design, pro-

duction control and inventory control can cause 

interruptions in an FMS. In this paper, the re-

searchers limit the discussions to disruption cau-

sed by unforeseen machine break-downs, increa-

sed order priorities, rush order arrivals and order 

cancellations. The proposed rescheduling algori-

thms can be used along with existing scheduling 

systems to improve effectiveness. Efforts are foc-

used on necessary local rescheduling only to 

maintain the stability of existing schedules and 

provide quick solutions. The main emphasis of 

rescheduling is to find immediate solutions to the 

problems resulting from disturbances in the prod-

uction system. This may result in a less effective 

overall schedule compared with total resched-

uling; however, it meets the new constraints with 

the least disruption of ongoing production. Re-

scheduling commences from the time a distur-

bance occurs and takes into account the current 

state of production on the shop floor. It is an itera-

tive process of two steps: (1) reschedule and 

evaluate the existing schedule depending on the 

change of the conditions, demands or constraints.  

If the result of the revised schedules is acceptable, 

then stop; otherwise: (2) determine an improved 

solution by performing iterations. An acceptable 

revised schedule is the one that overcomes few 



8                                                                                                        V. Kumar et al./ Journal of Industrial Engineering International 7(14) (2011) 7-18 

constraints, for example, a schedule that allows 

re-routing of parts from a machine that has just 

broken down. In reality, defining an acceptable 

revision depends on the prevailing requirements. 

In this paper, a new scheduling approach is 

presented based on genetic and rescheduling algo-

rithms which can be used to complement the cur-

rently used computer-based scheduling systems. 

The proposed algorithms assume that some of the 

jobs in the system have alternative process plans, 

a common situation in FMS. In this paper genetic 

algorithms are used for generating an initial 

schedule. 

2. Literature review 

Genetic algorithms (GAs) have been applied to 

a variety of function optimization problems, and 

were shown to be highly effective in searching 

large, complex response surface even in the pres-

ence of difficulties such as high dimensionality, 

multimodality and discontinuity (Goldberg, 1989). 

Stochastic process generates an initial population 

of schedules and then principles of natural selec-

tion/survival of the fittest are applied to improve 

the schedules. The major obstacle in applying ge-

netic algorithms in manufacturing scheduling is 

finding an appropriate representation of a sched-

ule. These algorithms are called genetic because 

the manipulation of the possible solutions resem-

bles the machines of natural selection. Their chief 

advantage lies in their ability to jump randomly 

from schedule to schedule, allowing them to es-

cape from local optima in which other algorithms 

often get trapped.  

Cheng et al. (1999) was instructive rather than 

realistic in that they showed how genetic algo-

rithms can be used to solve a simple job shop 

scheduling problem. Cheng and Sin (1990) invest-

ingated the simplest scheduling problem, i.e. a 

static queue of jobs with specified due dates and 

run time without precedence constraints, with a 

single server, and which used minimal lateness as 

a criterion. The problem representation does not 

allow using a conventional crossover operator as 

it would create illegal schedules. The authors in-

vestigated three different crossover operators for 

the job shop scheduling: PMX, a weak greedy 

crossover, and a powerful greedy crossover. They 

concluded that a choice of crossover operators 

would make a difference in scheduling the results. 

Gordon et al. (2002) applied genetic algorithms to 

small, medium and large job shop problems. The 

two crossover operators they used were PMS (par-

tially matched crossover and LOX (linear order 

crossover). They considered that each operation 

could be done only on one machine. They com-

pared the performance of their genetic algorithms 

with the two most widely used scheduling heuris-

tics, namely LST (least slack time) and SPT 

(shortest processing time).Their experiments prev-

ailed the superiority of the genetic algorithms app-

roach over the common heuristics and a slight 

superiority of the LOX operator over the PMX op-

erator. Graves (1981) addressed an n-job, a single 

machine problem with an objective to minimize 

the flow time variance. They proposed heuristic 

procedure based on genetic algorithm. With the 

potential to address a more generalized objective 

function such as weighted flow time variants. 

They also used a PMX (partially Matched cross-

over) operator for their experiments and mention 

investigating the performance of other crossover 

operator.  

The above applications of genetic algorithms 

suffer from major drawback since the experiments 

did not consider some important scheduling const-

raints such as precedence among manufacturing 

tasks, alternative process plans, and dispatching 

rules which are major factors contributing to the 

difficulty of the scheduling problem. Recently, 

Lauff and Werner (2004) addressed the problem 

of alternative process plans and developed a new 

two chromosomes representation where each chr-

omosome represents a complete schedule. They 

did not consider the due dates and the system was 

tested using only one performance measure, viz, 

machine utilization. Yen and Wan (2003) applied 

genetic algorithms in FMS scheduling where other 

important scheduling aspects were considered 

such as precedence constraints, due dates, alter-

nate routings, variable batch size and variable task 

processing time. 

The results obtained by all of the above authors 

indicate that genetic algorithms present a good 

scheduling alternative: they are reasonably fast, 

gradual (i.e. some solution is available immedi-

ately) and provide better results than the heuristics 

(based on the objective function of the problem). 

This paper used steady state genetic algorithms 

for solving the multiple routing scheduling prob-

lem. 

3. Problem description 

The FMS scheduling problem may be stated as: 

“Given alternative process a plan (routing flexi-

bilities) for each part, the objective is to find a 

feasible schedule for a given set of part types such 

that some given performance criterion is optimi-
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zed”. The prerequisite of this stage is the process 

plan for each part, and other data including the no 

of type of jobs, the number of task in each job, 

number and types of machines available, proce-

ssing and set up time of task on machines, order 

due dates, release time of jobs into the shop floor 

and performance criterion to be chosen. Typical 

measures chosen to evaluate the schedules in this 

research are as follows: 

3.1. Notations 

The following notations are used in this re-

search: 

I job number i (i=1,2,3….n) 

K machine k (k=1,2,3…..m) 

ji number of operations of job i 

Oij operation number j of job i(Oi1,Oi2….Oij) 

Cij completion time of operation Oij 

Ti tardiness of job i 

Uk utilization of machine k 

• Minimize mean flow time 

Mean flow time � �
= =

−=

n

i

n

jj i

Cin
1

/                    (1) 

• Minimize mean tardiness-tardiness is the posi-

tive difference between the job’s completion 

time and its due date. 

Tardiness IdiCiTi
JiJ

,�
=

−==                 (2) 

Mean tardiness �
=

=

n

i

Tin
1

][/1                            (3) 

• Maximize average resource utilization-the 

%utilization of an individual machine is calcu-

lated based on the maximum flow time, i.e. for 

a schedule, the individual and average resource 

utilization is calculated as follows: 

• Utilization 
)max(Ci

timebusytotal
Uk ==             (4) 

Average utilization �
=

=

m

k

Ukm
1

/1  

All the criteria are evaluated in the evaluation 

function of the Gas. The evaluation function gives a 

complete schedule and an associated performance 

criterion value. The earliness of the job can be han-

dled in the same way as tardiness, where a penalty 

is assigned for completing the jobs before its due 

date. 

3.2. Genetic algorithms formulation 

The achievement of the optimum schedule that 

confirms to the stated objective is a naturally at-

tractive aim of the scheduler. It was seen from the 

literature review that substantial effort has been 

devoted to the associated mathematic com-

putational background and the methods explored 

have been wide ranging and often mathematically 

complex. Various issues in the design of genetic 

algorithms for combinatorial-type scheduling prob-

lems such as schedule representation, population ini-

tialization, evaluation function, recombination opera-

tors, and parameter values are discussed by Qi et 

al. (2000) and are described here briefly. 

Evaluation functions determine the quality of 

solutions in the genetic population. In each gen-

eration, the value of the fitness function or the 

objective function for a particular schedule is cal-

culated by assigning values onto the machines. 

The evaluation function treats operations in an 

order consistent with the precedence relations of 

the problem. Once, all the predecessors of the 

problem have been scheduled, the operation is 

said to be schedulable, regardless of the actual 

time at which the next scheduling decision is re-

quired. This procedure is repeated until all the 

operations have been scheduled. The genetic algo-

rithms proceed from generation to generation, 

saving the best schedule in each generation and 

getting rid of those schedules with objective func-

tion values lower than those of the saved ones 

Two genetic operators used in this paper are 

reduced surrogate crossover, for crossing two par-

ent schedules; and adaptive mutation, for random in-

troduction of new genes in the chromosomes (sched-

ule). The other recombination operators may result 

in an invalid machine assignment and therefore an 

infeasible schedule. Crossover is usually imple-

mented by choosing one crossover point at ran-

dom, then exchanging segments between the two 

parent strings, thus forming new children which 

contain information from each of the two parent 

chromosomes. The problem of using such a cross-

over is that it can easily create duplicate chromo-

somes (schedules).  

Reisman et al. (1997) used adaptive mutation 

in this research as opposed to normal mutation. 

Adaptive mutations base the amount of disruption 

to a given string on two factors: the relative simi-

larity of its two parent strings, and a mutation rate. 
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The more similar the two parent strings are, the 

more likely mutation is to occur. The actual muta-

tion which occurs is the product of this similarity 

and a fractional mutational rate. Thus, if the muta-

tion rate is 0.20 and the parents of a particular 

string were identical, approximately 20% of the 

strings will be mutated. Or, if , if the parents con-

tained 50% unique information, only about 10% 

of the string will be mutated. A variety of parame-

ters such as selection bias (SBIAS), adaptive mutation 

(AMUT), population size (PSIZE), and a number of 

generations (NGEN) plays a crucial role in the suc-

cessful implementation of genetic algorithms. The 

settings of these parameter values significantly affect 

the performance of genetic algorithms. The problem 

of setting the parameter values has been exten-

sively studied for bit string representation, Hejaji 

and Saghafian (2005). Guo et al. (2006) con-

ducted extensive experiments to select parameters 

for list representations, and their findings are 

given in 3.5. 

3.3. Problem review using steady state genetic algo-

rithms 

The problem considers a flexible manufac-

turing system with five machines which are capa-

ble of processing four different jobs is considered 

is shown in Table 1. The problem size is enhanced 

limiting number of machines to nine and number 

of jobs to ten, Table 7. Each job has three tasks 

that should be capable of processing four different 

jobs, is considered. The processing times for each 

job is depicted in Table 5. Each job has three tasks 

that should be performed in a strict sequential 

manner. Priorities among the jobs are assigned 

random. The search process begins with the 

proper representation of a schedule, generation of 

schedule population and evaluation of each 

schedule in the population, and application of ge-

netic operators to this population for improving 

the schedules. The search process continue for a 

specified number of generations yielding an opti-

mal, or a new optimal solution. All data sets for 

this problem are given in Appendix. The task se-

quences and their quantity are listed in Table 6. 

There are five machines in a machining work cell, 

two in the review and one in the inspection and the 

wash work cells. All the machines in the machining 

work cell are capable of performing operations such 

as turning, drilling, facing, milling, boring and screw-

ing. Task processing and setup time information are 

given in Table 7. This example considers a planning 

horizon of 10000 units. 

The genetic algorithms for the scheduling 

problem is developed incorporating the design 

issues discussed above. These steps are now dis-

cussed in detail. 

(1) (Chromosome representation) Represent sche-

dule as a list of machines. 

(2) (Initialization) Select the initial parameters and 

create an initial diversified population of 

schedules. 

(a) Set the values for PSIZE, SBIAS, AMUT and 

NGEN. The length of the chromosome is set to 

equal the total number of operations to be 

scheduled. 

(b) Read stage process times, setup times, due 

dates and ready times for all the jobs. 

(c) Create an initial population of schedules of 

size PSIZE and call it ‘oldpop’. 

(d) Calculate the objective function values for 

all the schedules on the population using 

evaluation function described earlier. 

(e) Sort the population in an increasing order 

of objective function value. 

(f) Set NGEN=1(i.e current generation=1) 

(3) (Recombination) Apply recombination operator 

to the óld pop’ to form a new population. 

(a) Select two parents from the old pop based 

on the specified schedule selection bias. In-

dex=PSIZE x (SBIAS-sqrt (BIAS2-4.0 x (SBIAS-

1) x random()))/2.0/ (SBIAS-1) Where index is 

the schedule number to be selected from the 

sorted population. 

(b) Apply the reduced surrogate crossover op-

erator to the two selected parents to form a 

new child. 

(c) Apply the adaptive mutation operator to 

this child. 

(d) Calculate the objective functional value for 

this child using the evaluation function. 

(e) If the objective function value of the child is 

better than any of the schedules in the population, 

then insert the child in the population at the appro-

priate place according to the value of its objective 

function and remove worst schedule from the 

population. 

(4) (New Generation) Evaluate the current genera-

tion number (GEN) to determine the next step. 

(a)If GEN<NGEN, then GEN is incremented by 

one and the current population becomes old-

pop. Go to Step (3). 

(b) If GEN=NGEN, then Stop. 



V. Kumar et al. / Journal of Industrial Engineering International 7(14) (2011) 7-18                                                                                                       11 

The best schedule would be the schedule in the 

current population with the highest objective func-

tion value. 

3.4. Selection of genetic algorithms parameters 

The most difficult and time-consuming issue in 

the successful implementation of the genetic algo-

rithms is finding good parameter sittings. A num-

ber of approaches have been suggested to derive 

robust parameter setting for traditional GAs, in-

cluding carrying out brute force searches using an 

adaptive operator fitness technique. In one of the 

most extensive studies for determining the optimal 

parameter values, Subramanian et al. (2000) con-

cluded that the optimal parameter settings vary ac-

cording to the problem. However, very little work has 

been reported regarding setting the parameters for 

steady state genetic algorithms used for the combina-

torial-type scheduling problems. The main parame-

ters required for the steady state genetic algo-

rithms are population size (PSIZE), selection bias 

(SBIAS) and adaptive mutation rate (AMUT). 

In this paper, a different approach, based on se-

lection probability, is used for crossover. The re-

duced surrogate crossover employed in this paper 

returns the difference between the two schedules. 

Instead of crossover probability, selection prob-

ability is used and is defined as a selection bias 

which can take a value between 1.0 and 2.0. Se-

lection bias is a floating-point number used in the 

selection of two schedules for genetic reproduc-

tion (crossover).This number specifies the amount 

of preference to be given to the superior individu-

als in a genetic population. For example, a bias of 

2.0 indicates that the best schedule has twice the 

chance of being chosen compared to the average 

schedule. Chan and Chan (2004) conducted that a 

medium population size, high selection bias, and 

low mutation rate gives the best performance. They 

recommend the following sets of parameters for 

steady state genetic algorithms: 

(1) Population size: 80 

(2) Selection bias: 1.9 

(3) Adaptive mutation rate: 0.1 

3.5. Result validation 

In this section, the performance of steady state 

genetic algorithms is evaluated against two other 

existing approaches. These problems are chosen 

from published literature and are given in Tables 

5, 6, 7 and 8. The first problem was taken from 

Nasr and Elsayed (1990) in which they solved the 

problem of multiple routeing scheduling using a 

bound algorithm where the best mean flow time 

was reported to be 12.25 units. The best found 

solution using genetic algorithms was 11.50 units. 

The second example was extracted from Dutta 

(1990) who used an artificial intelligence ap-

proach to solve the problem. Dutta reported a 

value of 84.0 for the make span whereas by using 

a GAs approach, a make span of 76.0 was 

achieved. For both examples, the time taken to 

achieve the solution was not reported. Table 2 

gives the comparison of results in terms of per-

formance gain in the quality of solutions.  

4. Rescheduling in manufacturing 

Rescheduling is needed as a result of signi-

ficant changes in the operating conditions. Re-

scheduling is never planned in advance but is 

brought on as a result of certain unavoidable cir-

cumstances. The proposed rescheduling algori-

thms are simple, and hence can be used for locally 

revising schedules in real time, as opposed to re-

scheduling the overall production which is nor-

mally considered over a period of weeks or days. 

Rescheduling can be carried out either man-

ually or through application software. The manual 

method involves editing the existing schedules 

which are normally in the form of Gantt chart. 

This method is tedious, time consuming and can 

potentially compromise the efficiencies of the 

small schedule. Researchers have often used 

simulation for rescheduling purposes. A good sur-

vey of articles involving dynamic job shops 

scheduling is presented in Hasija and Rajendran  

(2004). Zhang et al. (2000) used a ‘regeneration’ 

method in developing their scheduling systems. 

This method involves rescheduling the entire set 

of operations of jobs including those unaffected 

by the change in conditions, demands, and/or con-

straints. This is time consuming, and often results 

in response times unacceptable to the user. They 

compared three scheduling procedures to deal 

with machine breakdowns. However they did not 

address the problems of other uncertainties such 

as rush orders, increased priority and order cancel-

lations. Lauff and Werner (2004) used simulation 

to investigate rescheduling, and approached the 

problem by selecting between sequencing and 

dispatching in case of uncertainties. A schedule is 

first determined by using a branch and bound 

technique. This approach is switched to dispatch-

ing, which uses either the FCFS or SPT rule, 

when there is a change in production conditions. 

Stoop and Wiers, (1996) proposed a rescheduling 
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algorithm based on the construction of a schedul-

ing binary tree and a net change concept adopted 

from MRP systems. One limitation of the algo-

rithm is that it can deal only with rescheduling 

situations that assume no change in the existing 

operation sequence for each machine. They did 

not consider the alternate routings for reschedul-

ing. Wang and Wu (2000) proposed a knowledge-

based system to help automate the control activity 

at the scheduling level in FMS environments. The 

author assumed a batch size of one which is rarely 

the case in actual production systems. 

4.1. Rescheduling algorithms  

Several types of random variables (uncer-

tainties) that affect the actual shop output should 

be taken into account if scheduling is to be realis-

tic. This paper considers one of the different types 

of uncertainties: 

• machine breakdown algorithm 

• the arrival of rush orders, 

• increased order priority (i.e. the changes in 

due dates), and 

• order cancellation 

In each of the above cases, tasks are performed 

in accordance with the predetermined task se-

quence, even after the disturbance occurs. If a task 

is unable to continue as scheduled, then based on 

its priority an attempt is made first to find an Al-

ternative free machine, failing which pre-emption 

is attempted. The system state such as machines 

and tasks status and ready and completion time for 

each tack are updated whenever a task either is 

ready to start or is completed, or when an 

interruption.  

When a machine breakdown occurs, the rem-

aining operations of the job may have to be per-

formed using other machines. This affects the 

scheduling decisions previously made. The resch-

eduling becomes even more difficult if certain 

tasks can be completed on only one machine. At 

the time of interruption, if a task is being per-

formed on the broken machine, the system is 

checked for availability of alternate machines. If 

an alternative machine is free, the pre-empted task 

is assigned to it. If an alternative machine is per-

forming another task, the priority of the two tasks 

is compared, and the task with higher priority is 

assigned to that machine. Also, task setup time on 

a machine is an important factor in rescheduling. 

In the case of a breakdown, a comparison is made 

between the task setup time of the pre-empted task 

on an alternate machine and the expected down 

time of the failed machine. If the task setup time 

is lower, only then is the task switched to the al-

ternate machine; otherwise, it waits until the bro-

ken machine becomes available for production. 

In this research, an initial schedule is obtained 

using GAs. An example problem with the ma-

chine and task parameters shown in Figure 1 was 

generated for illustrating the proposed resche-

duling algorithms. A manufacturing system with 

five machines, which are capable of processing 

four different jobs, is considered. 

Table 1: Setup/processing time requirements of task. 

Job (i) Task (Oij) 
Machines 

Priority 
M1 M2 M3 M4 M5 

1 

11 

12 

13 

10/20 

- 

5/15 

- 

- 

- 

12/21 

- 

6/12 

- 

8/22 

- 

- 

12/20 

- 

 

1 

2 

21 

22 

23 

8/14 

- 

7/29 

- 

8/22 

- 

- 

10/18 

10/30 

- 

- 

- 

- 

- 

- 

 

2 

3 

31 

32 

33 

12/38 

- 

23/41 

12/40 

- 

- 

- 

- 

- 

- 

9/21 

- 

14/36 

7/23 

21/39 

 

3 

4 

41 

42 

43 

20/53 

- 

6/22 

- 

9/33 

8/23 

18/52 

- 

- 

22/50 

12/28 

- 

- 

- 

- 

 

4 

Table 2: Comparison of GA’s performance with respect to two other approaches. 

P N M Method Measure 
Value CPU Seconds 

Reported GA D Reported GA 

1 4 6 Mixed integer programming Mean flow time 12.25 11.50 6.1% N/A 0.20 

2 6 7 Artificial Intelligence Makespan 84.0 76.0 9.5% N/A 0.32 

P = Problem size, N = Number of jobs, M = Number of Workcentres/machinesD=Gain in performance 
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Each job has three tasks that should be per-

formed in a strict sequential manner. Priorities 

among the jobs are assigned at random. The 

search process begins with the proper represe-

ntation of a schedule, generation of schedule 

population and evaluation of each schedule in the 

population, and application of genetic operators to 

this population for improving the schedules. The 

search process continues for a specified number of 

generations yielding an optimal, or a near optimal, 

solution. Utilization of machines is an important 

issue to be considered while rescheduling manufa-

cturing resources. For example, in the case of a 

breakdown if the affected task has a choice of more 

than one machine, it is re- routed to the least utilized 

machine and the task status are updated continuously 

while running the schedule. Sabuncuoglu and Gurgun 

(1996) identified two phases before rescheduling 

is invoked. These are: the planning phase, where 

an initial schedule is to be generated, and the con-

trol phase, where schedule progress is monitored 

and abnormal states are identified. Once an ab-

normality is identified by the control phase, a re-

schedule procedure is invoked. Based on the type 

of abnormality, certain decisions are made before 

the rescheduling algorithm is applied to the 

schedule. For example, in the case of machine 

breakdowns, the expected duration of breakdown 

has to be considered. In the case of new orders, it 

must be determined whether it is a normal order 

or a rush order. If it is a normal order, it is merged 

into an existing schedule, and all tasks of the new 

order are given the same treatment as other tasks. 

If it is a rush order, the highest priority is assigned 

to it and machine assignment us made accor-

dingly. The framework of the control phase em-

ployed in this research is depicted in Figure 1. 

As discussed earlier, the control phase of a 

manufacturing system includes monitoring and 

adjusting the system’s schedule to ensure smooth 

order progress on the shop floor. The basic re-

search issue addresses in this paper is that of de-

termining how real-time control in the FMS can 

be achieved in the presence of uncertainties. After 

an initial schedule is loaded, the basic execution 

loop is as follows: 

While all tasks are not complete Do; 

Step 1: Monitor schedule progress 

Step 2: Examine system disturbances 

Step 3: Classify the control problems (such as 

breakdown, rush order etc.) 

Step 4: Select alternative actions if available 

Step 5: Update status of machines and uncom-

pleted tasks 

Step 6: Reschedule remaining tasks 

End; 

The algorithms used for different types of dis-

turbances are illustrated with examples in the fol-

lowing section. 

4.1.1. Machine breakdowns 

The following loop is executed after the initial 

schedule is loaded, for time T= 0, 1, 2, 3, until the 

schedule is complete. 

At any time t, IF there is a machine break-

down, then find the broken machine and inter-

rupted task. 

Assign expected downtime randomly for this 

machine 

IF there is any operation currently on this ma-

chine, then  

Split the task and revise the task status (time 

remaining) 

IF there are alternative machines available, 

find setup and processing time required for all 

alternative machines. If more than one choice 

is available choose the least utilized machine 

ELSE broken task will start on the machine when-

ever it becomes operational 

ENDIF 

IF there is a choice of alternate machines 

IF alternate machine is free, assign broken task 

to alternate machine and update the system 

status 

ELSE (if alternate machine is not free) 

IF broken task priority is higher than the task 

currently performed on alternate machine, then 

pre-empt the alternate machine and update the 

system status  

ELSE (if priority is lower) 

IF the difference between the ready time of the 

broken machine and release time of an alter-

nate machine is more than the setup time on al-

ternate machine, then assign broken task to al-

ternate machine when it becomes free 

ELSE broken task will start on the same machine 

whenever it becomes  

Ready  

ENDIF 

ENDIF 

ENDIF 

ELSE broken task will start on the same machine 

whenever it becomes operational  

ENDIF  

ELSE update the machine status list 

ENDIF 
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Figure 1: Control framework. 
 
 
 
 
 

 

5. Results and discussions 

Dynamic reaction to developments on the shop 

floor is essential for realizing a truly flexible con-

trol of the manufacturing system. In order for a 

controlling mechanism to perform in a dynamic 

production environment, it must consider sche-

duling or dispatching rules, as well as the system 

performance. We examined three performance 

measures: mean flow time, mean tardiness and 

average machine utilization with respect to the 

dispatching rules, namely the first-come-first-

served rule, and studied their degradation with 

respect to machine failure rates. 

The problem size is enhanced considering six 

work centres and ten jobs to illustrate and validate  

 

the algorithm. The example considers a planning 

horizon of 10000 units. At any discrete point in 

time, any machine could fail randomly and inde-

pendently with the same probability of failure. 

This failure probability is dependent on the ran-

dom number cut off value. At the beginning of the 

scheduling period, 10000 numbers between 0 and 

1 are randomly generated to represent discrete 

points of time in the planning horizon, and cut off 

values are used in determining the machine failure 

probability. For example, if a cut off value is 

0.0004, then at each discrete point of time in 

planning horizon, the value of the corresponding 

random number is compared with the cut off 

value. A value less than the cut off value will re-

sult in a machine failure. For our example, a cut 

Input 
Implementation of initial 

Schedule 

Check: 

• Schedule progress 

• Production disturbance 

If 

disturbance 
Continue 

Type of disturbance: 

• Machine breakdown 

• Increased priority 

• Rush order 

• Order cancellation 

If machine breakdown 

data: 

• Where 

• When 

• Duration 

Alternative machine 

Status update: 

• Task 

• Machine 

More distur-

bances 

Provide solution 

Reschedule: 

Generate a revised schedule for all  

non-assigned task 



V. Kumar et al. / Journal of Industrial Engineering International 7(14) (2011) 7-18                                                                                                       15 

off value of 0.0004 resulted in a failure probabil-

ity of 0.06% or a failure frequency of 6, i. e., ma-

chines will fail 6 times during the planning hori-

zon. The duration of failure was machine-dep-

endent and randomly generated. Table 3 shows 

the random number cut off value, probability of 

machine failures and frequency of machine fail-

ures.  

Table 4 shows the effect of machine break-

down on the mean flow time, mean tardiness and 

ave-rage machine utilization with respect to dispa-

tching rules. The mean completion time is com-

puted using individual completion time. Machine 

utilization is equal to the time a machine was oc-

cupied divided by the maximum flow time. For 

mean tardiness, due dates for each order are as-

signed based on the total work content of orders 

and are set equivalent to (DDT *total processing 

time), where DDT is the due date tightness. In this 

experiment, a setup due date tightness factor 

(DDT) was set to 1.5.  

These performance criteria have been charted 

in Figures 2, 3 and 4. Because alternate routings 

are available in the system, the graph shows that 

in most cases, the system performance degrade-

ation is initially gradual up to a machine failure 

probability of 0-12% for FCFS rule. As the proba-

bility of failure increased, the system performance 

deteriorated drastically. This is due to the larger 

number of jobs competing for the machines avail-

able for production. 

 
Figure 2: Machine failure probability. 

 
Figure 3: Machine failure probability. 

 
Figure 4: Machine failure probability. 

Table 3: Cut off value, failure probability and frequency. 

Table 4: Performance measures versus failure probability for FCFS dispatching rule. 

Table 5: Processing times for FMS problem (Nasr and Elsayed, 1990). 

Job (i) Operations (j) Machines (MK) 

Pi Oij  M1 M2 M3 M4 M5 M6 

P1 

O11  2 3 4 - - - 

O12  - 3 - 2 4 - 

O13  1 4 5 - - - 
         

P2 

O21  3 - 5 - 2 - 

O22  4 3 - - 6 - 

O23  - - 4 - 7 11 
         

P3 O31  5 6 - - - - 

 O32  - 4 - 3 5 - 

 O33  - - 13 - 9 12 
         

P4 

O41  9 - 7 9 - - 

O42  - 6 - 4 - 5 

O43  1 - 3 - - 3 

 

Cut off Value 0.0000 0.0004 0.0008 0.0012 0.0016 0.0020 

Failure Probability 0.00 0.06 0.09 0.12 0.18 0.21 

Frequency 0 6 9 12 18 21 

Performance Measure 0.00 0.06 0.09 0.12 0.18 0.21 

Mean Flow Time 4420 4561 4611 4615 4766 5736 

Mean Tardiness 470 554 591 594 759 1639 

Average Machine Utilization 50.93 50.91 49.78 49.73 46.14 36.20 
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Table 6: Task precedence and order quantity. 

 Task1 Task2 Task2 Task2 Task2 Quantity 

Job Type1 Turn Review Drill Inspection Wash 20 

Job Type2 Bore Wash Screw Inspection  20 

Job Type3 Turn     40 

Job Type4 Mill Wash Inspection Drill Review 20 

Job Type5 Turn Wash    40 

Job Type6 Mill Wash Inspection Review  40 

Job Type7 Face Wash Inspection Drill Wash 20 

Job Type8 Mill Review    40 

Job Type9 Drill Review Wash Turn  20 

Job Type10 Mill Wash Inspection   40 

Table 7: Machines available in work cell. 

Table 8: Processing time (Setup time) information. 

Jobtask Resources 

No M1 M2 M3 M4 M5 M6 M7 M8 M9 

1—1 97(196) 88(176) 95(190) 86(172) 90(180)     

1—2      6(12) 5(10)   
1—3 34(68) 34(68) 33(66) 31(62) 32(64)     
1—4        11(22)  

1—5         7(14) 

2—1 35(70) 36(74) 32(68) 32(64) 36(72)     

2—2         10(20) 

2—3 65(130) 59(118) 62(124) 60(120) 62(124)     

2—4        15(30)  

3—1 54(108) 48(96) 48(98) 50(100) 51(102)     

4—1 41(82) 43(86) 39(78) 43(80) 38(76)     

4—2         9(18) 

4—3        8(16)  

4—4 86(172) 93(186) 84(168) 84(180) 88(176)     

4—5      610(612)    

5—1 85(170) 82(164) 89(178) 87(174) 89(178)     

5—2         6(12) 

6—1 60(120) 66(132) 60(134) 65(130) 66(128)     

6—2         7(14) 

6—3        20(40)  

6—4      6(12) 6(10)   

7—1 78(156) 84(168) 80(160) 86(172) 86(164)     

7—2         9(18) 

7—3        19(38)  

7—4 66(132) 63(124) 59(118) 63(126) 63(122)     

7—5         10(20) 

8—1 23(46) 24(44) 24(48) 24(50) 23(47)     

8—2      10(18) 10(20)   

9—1 62(124) 62(128) 71(142) 67(134) 69(138)     

9—2      8(16) 8(16)   

9—3         10(20) 

9—4 48(96) 44(88) 45(90) 48(94) 44(86)     

10—1 61(132) 65(130) 60(120) 59(118) 63(126)     

10—2         8(16) 

10—3        12(24)  
 

 Machining work cell Review work cell Inspection work cell Wash work cell 

      
Machines M1,M2,M3,M4 M4,M5 M6,M7 M8 M9 

      
Tasks Turning, Facing, Driliing Review Inspection Wash 

                Milling, Boring, Screwing   
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6. Conclusion 

In this paper, the researchers have investigated 

the application of GA-based techniques to the 

flexible manufacturing scheduling problem con-

sidering four jobs and five machines initially and 

there after enhanced to ten jobs and six machines. 

This work, and other current investigations, dem-

onstrates that the genetic algorithm method is 

broad, approximate search procedure with appli-

cations in diverse problem areas. The method does 

not depend upon an underlying continuity of the 

search space and requires no information other 

than fitness or payoff values. Since genetic algo-

rithms always work with a fixed population size, 

i.e., the number of strings (chromosomes) is fixed 

in a population and does not change with the gen-

eration; there is tremendous reduction in the space 

in which a GA looks for the optimal solution. 

In the second part of the research reported a re-

scheduling algorithms is developed that generate a 

new schedule without re-evaluating all tasks in the 

old schedule. These algorithms use the system 

status as input and reschedule the tasks when dis-

turbances occur. This is particularly in important 

in real-time and dynamic scheduling environ-

ments in modern manufacturing systems. It is ex-

pected that the proposed algorithms can be used 

together with existing computerized scheduling 

systems whether or not they use GAs. Since alter-

nate machine choices area available for the tasks 

in flexible manufacturing systems, the effect of 

disruptions on the system’s performance is mini-

mized. 

The Scheduling/Rescheduling algorithm consi-

ders a scheduling period of 10000 units. As the 

cut off value increases 0 to 0.002, then at each 

discrete point of time in the planning horizon, a 

value less than a cut off value will result in a ma-

chine failure. The machine failure frequency var-

ies from 0 to 21 for the given cutoff value consid-

ered. From the graph charted for measure of per-

formance, the system performance degradation is 

initially gradual up to a machine failure probab-

ility of 0.12% for FCFS dispatching rule. It is con-

cluded from the results that FCFS dispatching rule 

performed well for the three performance meas-

ure. An important property of genetic algorithms 

observed here was that since GAs performs a 

multi-point search as opposed to a single point, 

the time required to reach an optimal or near op-

timal solution is small compared to other ap-

proaches. Since GAs are faster, they can be used 

to reschedule the manufacturing tasks dynami-

cally in the case of interruptions. When an inter-

ruption occurs, the system status is updated and 

the genetic algorithms are rerun at that point of 

time to schedule the remaining manufacturing 

tasks. Together, these qualities permit the use of 

GA’s in complex areas such as manufacturing 

scheduling. 
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