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          Abstract 

In quality control charts, the problem of determining the optimum process mean arises when the deviation of 

a quality characteristic in one direction is more harmful than in the opposite direction. The failure mode in 

these two directions is usually different. A great majority of researches in this area have considered asymmet-

ric cost function for processes with single quality characteristics. In this paper, we consider processes in which 

there are more than one quality characteristics to monitor. The quality characteristics themselves may or may 

not be independent. Based upon the specification limits and the costs associated with the deviations we derive 

a formula to determine the optimum process mean. To illustrate the proposed formula and to estimate the 

costs associated with the optimum process mean we present four numerical examples by simulation. The re-

sults of the simulation studies show that considerable amount of savings can be obtained by applying the pro-

posed process means. 
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1. Introduction and literature review 

The selection of the optimal process target has be-
come an important research area in which the focus is 
to decrease costs. Production processes are usually 
designed in a way that their product satisfies a set of 
specifications. In quality control of the product, one 
of the important parameters that must be determined 
is the process mean. Determining the optimal mean of 
a manufacturing process involves a complex and fi-
nancially important decision. If deviations in the two 
directions of a quality characteristic have equal cost 
associated with, then the middle point of the tolerance 
limits specifies the mean of the process. However, 
when the deviation of a quality characteristic in one 
direction is more harmful than in the opposite direc-
tion, the optimal mean of the process is not the mid-
dle point of the tolerance limits. This problem is iden-

tified with the so-called “optimal filling problem,” 
where the product is typically a pocket of food or a 
bottle of liquid [38]. 

Several researchers have studied this problem so 
far. Springer [32] and Bettes [4] considered a filling 
univariate process, where the upper and the lower 
specification limits are given. They obtained the op-
timal mean of the process such that the total costs of 
the reprocessing and material for overfilled and under 
filled items are minimized. 

Hunter and Kartha [16] and Nelson [30] found the 
best target value for the mean of a univariate process 
so that producer’s profit is maximized. Also, under 
asymmetric price/cost condition Bisgaard et al. [5] 
developed a method to find the optimal univariate 
process mean. Carlsson [8] presented a method to 
determine the most profitable process level.  Golhar 
[14] determined the best mean value of a canning 
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process. Boucher and Jafari [6] and Al-sultan [1] dis-
cussed situations in which the items are subjected to 
lot-by-lot acceptance sampling rather than complete 
inspection plan. Leon and Wu [18] extended the dis-
cussion of Taguchi [33,34] problem of parameter de-
sign to considerations of asymmetric costs. Elsayed 
and Chen [12] determined optimum levels of process 
parameters for products with multiple characteristics. 
Bai and Lee [3] and Tang and Lo [35] presented an 
economic model to determine the process mean and 
the cut off value of the quality characteristic when 
items are sold or scrapped. Arcelus and Rahim [2] 
developed a model for simultaneously selecting op-
timum target in situations when both variable-type 
and attribute-type quality characteristics were pre-
sent. Chen and Chung [10] considered an economic 
model to determine the most profitable target value 
and the optimum inspection precision level for a pro-
duction process. 

Cain and Janssen [7] proposed target selection in 
process control under asymmetric costs. Li [19,20,21,  
22,23], Li et al. [24,25,26], Li and Wu [27], Magh-
soodloo and Li [28], Philips and Cho [31] and Wu 
and Tang [39] found the target value of the process 
mean in an unbalanced tolerance design with asym-
metric linear and quadratic quality loss function. Cho 
and Leonard [11] showed that the piecewise linear 
quality loss function for product is roughly propor-
tional to the deviation of the quality characteristic 
from its specification limits. 

Misiorek and Barnett [29] presented the sense con-
cerned with optimal targeting of the mean (and stan-
dard deviation) of a quality characteristic. Golhar and 
Pollock [13] studied the linear loss function applied 
in the filling-canning problem for determining the 
optimum-manufacturing target. Hong et al. [15] stud-
ied optimum mean value and screening limits with 
multi-class screening. Lee et al. [17] considered the 
problem of determining the optimum target value of 
the quality characteristic of interest and screening 
limits for a correlated variable under single and two-
stage screenings. 

Chandra [9] adopted step loss function and selected 
the optimum process mean based on balancing the 
cost of not meeting the upper and the lower specifica-
tion limits. However, he neglected to consider the 
quality loss for a product which is within specifica-
tions in his model. Teeravaraprug and Cho [37] stud-
ied a multivariate quality loss function and deter-
mined the most economical process target levels for 
multiple quality characteristics; the characteristics 
being the customer’s viewpoints. Veevers and Sparks 
[38] presented a method to set the optimal target 

value of the process mean and deviation. Teeravara-
prug [36] examined a situation where a product was 
classified into two grades with respect to market 
specification. He determined the optimal process 
mean that gave a maximum profit to the manufac-
turer. 

In this paper, we focus on determining the target 
value of the mean of both a single and multiple qual-
ity characteristics vector. We emphasize multivariate 
processes in which there are more than one quality 
characteristic presented while they do not have equal 
costs in the two directions of their deviations. In such 
processes, the optimal process mean determination 
may result in great savings.  

In the rest of the paper, first problem definition and 
notifications comes. Then, determining the optimum 
process mean of a process with a single quality char-
acteristic is illustrated and by using the senses of mul-
tivariate normal distribution, optimum process mean 
will be estimated for processes with multiple quality 
characteristic vectors. In order to demonstrate the 
importance of the proposed formulae, four numerical 
examples by adopting simulation will be presented. 
Then, the obtained results from the simulation study 
will be compared with those obtained from traditional 
approaches.  

2. Problem definition and notations 

Consider a product with several quality characteris-

tics denoted by ],...,,[ 21 pXXXX = . In a stable 

process, a suitable model for the variation in X can 
often be a multivariate normal distribution with mean 
vector µ  and covariance matrix Σ . Moreover, de-

fine the upper and the lower specification limits for 

the i
th quality characteristics )( iX as iusl and ilsl , 

receptively. Also, let us define ic  and ic′  to be the 

costs of the i
th characteristic lying above iusl  and 

under ilsl  respectively. We assume that for 

i=1,2,…,p the ic 's and the ic′ 's are independent of 

the distance between iusl 's and ilsl 's, and Σ  is con-

stant. 

3. Optimum process mean for univariate processes 

For a univariate quality characteristic, let the proc-
ess mean and standard deviation be µ andσ , respec-
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tively. Then, the optimal process mean can be found 
by minimizing Equation (1).  

 

)](1[)( uslFclslFcz xx −+′= ,                           (1) 

 

where (.)
X

F denotes the value of the cumulative 

probability distribution function of the quality charac-
teristic at point ".". With the normality assumption 
held, we can write Equation (1) as Equation (2). 
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Figure 1 shows a univariate normal process with 

specification limits in two directions of the process 
mean and the different costs of producing defective 
items shown.  

To minimize z, we take the derivative of z with re-
spect to µ  and set it equal to zero. That is: 

 

0
z

µ

∂
=

∂
.                                                               (3) 

 
The derivative of z with respect to � is: 
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Setting the derivation equal to zero, we will have: 
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Solving for �, the optimal value of the process 

mean )( *µ  is obtained by Equation (4). 
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To verify that
*µ is the minimum of Equation (2), 
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second derivative of z with respect to µ : 
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which is a strictly positive function, and in this re-

gard, 
*µ is a global minimum to z. 

It can be easily seen that if the costs are equal then 
the optimal process mean is given by Equation (5). 
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* lslusl +
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4. Optimum process mean for multivariate proc-
esses 

Figure 2 shows a bivariate quality characteristics 
with specification limits in two directions of the 
process mean vector and the different costs of pro-
ducing defective items.  

Having the previous notations, we define the total 
cost function in multivariate processes by Equation 
(6). 
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where
ixF is the cumulative probability distribution 

function of the ith quality characteristic )( iX . Assum-

ing normality, we know that the marginal distribution 
of the individual quality characteristic is a normal 
distribution. Then: 
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Then, the cost function becomes: 
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Note that each of the multiple integrals in Equation 
(9) is a marginal normal probability distribution of 
the ith characteristic. In this regard, when we take the 

derivative of z with respect to iµ , all of the non-

iµ terms become zero. That is for minimizing z we 

set the derivatives equal to zero as: 
 

0=
∂

∂

i

z

µ
        i=1,2,…,p.                                   (10) 

    
In other words, we have p similar equations as for 

univariate case and we can determine the optimum 
value of each quality characteristic mean by Equation 
(11).  
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where i=1,2,…,p.  

 
As in the univariate processes, it is obvious that the 

second derivatives are also strictly positive functions 

and hence
*
iµ 's are the global minimum points of the 

z function.  
From the derivation process of Equation (11) one 

may note that when we take the derivative of the cost 
function with respect to the individual means, for the 
special case of multi-normal probability distribution 
the correlation matrix disappears (since the marginal 
probability distributions become normal themselves). 
That is why the correlations do not affect the optimal 
solution. 

Equation (11) is an important formula, which de-
termines the optimal process mean vector given the 
costs, the specifications, and the variances of each 
quality characteristics. The following numerical ex-
amples give a better view of the application and the 
usefulness of this formula.  

5. Numerical examples 

In order to better understand the importance of the 
formula in Equation (11) we will present four nu-
merical examples and we will compare the results 
obtained from the proposed method with those from 
the traditional method.  
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Figure 1. Univariate normal process with specification limits. 

 
 
 
 
 
 
 

                                      
 

Figure 2. Multivariate normal process with specification limits. 
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5.1. Example 1 

Consider determining target value for process mean 
of a lumber manufacturing plant when we have only 

two quality characteristics. The variable 1x  is the 

stiffness and 2x is the bending strength in unit of lb

inch 2−  of a particular grade of lumber. The lower 

specification limits for 1x  and 2x  are 258 and 460 

respectively, and the upper specification limits are 
272 and 480 respectively. The costs of lying under lsl 

for 1x  and 2x  are $15 and $20 respectively, while 

the costs of lying above usl are $10 and $30. 
The standard deviations and the coefficient of cor-

relation between the variables derived from a large 

amount of past data are 
1xσ =10, 

2xσ =10 and 

ρ =o.6. In traditional method, the target value for the 

process mean vector is set at the central point of the 

lower and upper specification limits for 1x  and 2x , 

that is (265, 470). However, the optimum target value 
from the process mean by Equation (11) is: 

 

)258272(2

258272)1015()10(2 222
*
1

−

−+−
=

LnLn
µ  

     4481.266= , 

)460480(2

460480)3010()11(2 222
*
1

−

−+−
=

LnLn
µ  

6767.466= , 

)6767.466,4481.266(* =µ . 

To determine the effect of using a non-suitable 
product mean vector, we simulated processes for dif-
ferent sample sizes of production in two cases. In the 
first case, the process mean vector was the traditional 
one [ µ =(265,470)] while in the second case it was 

the proposed one [ µ =(266.4481,466.6767)]. In each 

case, we generated 100,000 replications by simula-
tion and calculated the corresponding costs. The total 
costs associated with the first and the second case 
became $1329615 and $1202390, respectively. These 
costs were $13285370 and $12000235, respectively 
for the cases where there were 1,000,000 replications. 
Figure 3 shows the total costs of the two cases based 
on different sample sizes between 1000 and 10000. 
From Figure 3 it can be seen that when replications 
become larger the obtained savings by employing the 
proposed process mean become larger. In other 

words, in mass production environment, determining 
the optimal value of the process mean vector can re-
sult in a great amount of money savings. 

5.2. Example 2 

As an example of a higher dimensional problem, 
consider a process concerning the test of ballistic 
missiles. In this example, there are four quality char-
acteristics, p = 4, and the cost matrix was given as: 

 

10 6 20 3

15 20 5 18

� �
= � �
� �

c  

 
 The first row of c refers to the costs of lying under 

the specification limits and the second row shows the 
costs of lying above the specification limits. The 
specification limit matrix itself is given by: 

 

 �
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where the first and the second row show the lower 
and the upper specification limits for the four quality 
characteristics, respectively. The variance-covariance 
matrix for the quality characteristics from a large 
amount of past data is: 
 

64 58.576 34.5216 42.872

58.576 100 47.268 67.3

34.5216 47.268 36 45.51

42.875 67.3 45.51 100

� �
� �
� �Σ =
� �
� �
� �

 

 
The mean vector in the traditional method is the 

central points of the specifications as 
µ =(102,142,84,100). However, using Equation (11) 

the optimum value of the process mean is: 
 

)98106(2

88106)1015()8(2 222
*
1

−

−+−
=

LnLn
µ  

      6219.103= , 

)135149(2
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2
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LnLn
µ  

      2999.146= , 
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)80188(2

8088)205()6(2 222
*
3

−

−+−
=

LnLn
µ  

      88084.80= , 

)95105(2

95105)318()10(2 222
*
4

−

−+−
=

LnLn
µ  

      9588.108= . 

 
That is: 

 

)9588.108,88084.80,2999.146,6219.103(* =µ , 

 
is the optimum process mean. 

To determine the impact of using the process mean 
obtained from the traditional method instead of the 
proposed one, one more time we simulated the proc-
ess for different sample sizes of production in two 
cases. In the first case, we applied the traditional 
mean vector while in the second case, we employed 
the proposed value of the mean vector. When the 
sample size is 100,000 replications, the cost associ-
ated with the first case is $267,800. This figure in the 
second case reduced to $203,849. Applying a sample 
size of 1,000,000 replications, these costs for the case 
one and two are $2,676,7647 and $20,387,796, re-
spectively. Figure 4 shows that the total costs of the 
two cases by simulation for different sample sizes 
from 1000 to 10000 replications.  

One more time the figure shows a huge amount of 
money savings when the proposed process mean is 
employed especially when the lot size becomes lar-
ger. 

5.3. Example 3 

Consider determining target value for process mean 
of a process when we have three quality characteris-
tics. The cost matrix is given as: 

 

�
�

�
�
�

�
=

202415

192013
c  

 
The first row of c refers to the costs of lying under 

the specification limits and the second row shows the 
costs of lying above the specification limits. The 
specification limit matrix itself is given by: 

 

�
�

�
�
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33

30
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125

120
sl  

where the first and the second row show the lower 
and the upper specification limits for the four quality 
characteristics, respectively. The variance-covariance 
matrix of the quality characteristics from a large 
amount of past data is: 
  

�
�
�

�

�

�
�
�

�

�

−−

−

−

=Σ

96.255.2

6.21296.1

55.296.18

ˆ  

 
The target value of the process mean vector in the 

traditional method is the central point of the lower 
and upper specification limits, that is (122.5, 174, and 
31.5). However, the proposed target value is given in 
Equation (11) as: 

)120125(2

120125)1513()8(2 222
*
1

−

−+−
=

LnLn
µ  

      5842.121= , 

)170178(2

170178)2420()12(2 222
*
2

−

−+−
=

LnLn
µ  

      3591.172= , 

)2535(2

2535)2019()9(2 222
*
3

−

−+−
=

LnLn
µ  

      8075.30= , 

)8075.30,3591.172,58.121(* =µ . 

To determine the effect of using a non-suitable 
product mean vector, we simulated processes for dif-
ferent sample sizes in two cases. In the first case, the 
process mean vector is the traditional one as (122.5, 
174, 31.5) while in the second case, it is the proposed 

one as
*µ =(121.58,172.3591,30.8075). In each case, 

we generate 100,000 replications by simulation and 
calculate the corresponding costs. The total costs as-
sociated with the first and the second case become 
$2385888 and $2372088, respectively.�Figure 5 
shows the total costs of the two cases based on differ-
ent sample sizes between 1000 and 10000 replica-
tions. From Figure 5, we may conclude that a similar 
result to the results of Example (2) is obtained.  
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Figure 3. The costs of the two cases in Example 1. 

 

 

 

 

 

 
 

Figure 4. The costs of the two cases in Example 2. 
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5.4. Example 4 

As an example of a higher dimensional problem, 
consider a process concerning the test of ballistic 
missiles. In this example, there were four quality 
characteristics, p=5, and the cost matrix is given as: 

 

�
�

�
�
�

�
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15

1057

6812
c  

 
The specification limit matrix itself is given by: 
 

 �
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30
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sl  

 
 The variance-covariance matrix for the four qual-

ity characteristics from a large amount of past data is: 
 

�
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�
�
�
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�

�

=Σ

79.27.21.21

9.274.113.2

7.24.125.28.1

1.215.255.1

23.28.15.14

ˆ  

 
In this example, the mean vector in the traditional 

method is 
*µ =(17.5,45,34,65,27.5). However, using 

Equation (11) the proposed value of the process mean 
is: 

 

)1520(2

1520)712()8(2 222
*
1

−

−+−
=

LnLn
µ  

      3624.18= , 

)4248(2

4248)58()10(2 222
*
2

−

−+−
=

LnLn
µ  

      9792.45= , 

)3038(2

3038)106()6(2 222
*
3

−

−+−
=

LnLn
µ  

      8723.33= , 

)6070(2

6070)1015()10(2 222
*
4

−

−+−
=

LnLn
µ  

      9934.65= , 

)2530(2

2530)1612()10(2 222
*
5

−

−+−
=

LnLn
µ  

0904.26= . 

 
That is:  
 

)0904.26,9934.65,8723.33,9792.45,3624.18(* =µ
 
is the optimum process mean. 

To determine the impact of using the process mean 
obtained from the traditional method instead of the 
proposed one, one more time we simulate the process 
for different replications in two cases. In the first 
case, we apply the traditional mean vector and in the 
second case, we employ the proposed value of the 
mean vector. 

For 100,000 replications, the total costs associated 
with the first and the second case become $931886 
and $880585, respectively. These amounts for 
1,000,000 replications are $9271179 and $8770072. 
�Figure 6 shows the total costs of the two cases in 

simulation of different sample sizes between 1000 to 
10000 replications. One more time Figure 6 shows a 
huge amount of money savings when the proposed 
process mean is employed, especially when the sam-
ple size becomes larger. 

6. Conclusions and recommendation for future 

research 

Many processes have several quality characteristics 
associated with, most of them have different costs in 
their two directions of specifications. Therefore, the 
center of the specification limits often may not de-
termine the optimum process mean. In this paper, we 
derived a formula to determine the optimal process 
mean of a process with multiple quality characteris-
tics. By four numerical examples, we showed how 
the proposed formula could be applied in manufactur-
ing environments. In addition, the effectiveness of 
applying the proposed formula, in terms of money 
savings, was compared to the one obtained by the 
traditional method. 

One of the future researches in this area is to de-
termine the optimum process mean vector in multi-
variate processes in which some combinations of 
quality characteristics lying out of specification limits 
have different costs and some combinations do not 
have any cost associated with them. 
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Figure 5. The costs of the two cases in Example 3. 
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Figure 6. The costs of the two cases in Example 4. 
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