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Abstract In some statistical process control applications,

the combination of both variable and attribute quality

characteristics which are correlated represents the quality

of the product or the process. In such processes, identifi-

cation the time of manifesting the out-of-control states can

help the quality engineers to eliminate the assignable

causes through proper corrective actions. In this paper, first

we use an artificial neural network (ANN)-based method in

the literature for detecting the variance shifts as well as

diagnosing the sources of variation in the multivariate-at-

tribute processes. Then, based on the quality characteristics

responsible for the out-of-control state, we propose a

modular model based on the ANN for estimating the time

of step change in the multivariate-attribute process vari-

ability. We also compare the performance of the ANN-

based estimator with the estimator based on maximum

likelihood method (MLE). A numerical example based on

simulation study is used to evaluate the performance of the

estimators in terms of the accuracy and precision criteria.

The results of the simulation study show that the proposed

ANN-based estimator outperforms the MLE estimator

under different out-of-control scenarios where different

shift magnitudes in the covariance matrix of multivariate-

attribute quality characteristics are manifested.

Keywords Change point estimation � Covariance matrix �
Multilayered perceptron neural network � Multivariate-

attribute processes � Phase II

Introduction

In most statistical process control (SPC) applications, the

time when a control scheme triggers an out-of-control

signal does not indicate the actual time of change in the

process. In such situations, estimating the actual time when

the fault is first manifested (called change point) is inevi-

table, because it can facilitate identifying the assignable

causes by searching in a limited time interval. We can

conclude from the literature that the most efforts have been

focused on change point estimation of univariate processes.

As one of the first methods in change point estimation of

univariate processes, Samuel et al. (1998) investigated the

time of step changes in the X-bar control chart. It is also

worth addressing two recent researches in change point

estimation of univariate and uni-attribute processes.

Assareh et al. (2013) applied Bayesian hierarchical models

to estimate change point where there exists a step change, a

linear trend and a known multiple number of changes in the

Poisson quality characteristic. Amiri et al. (2014) devel-

oped a probabilistic neural network (PNN)-based proce-

dure to estimate the variance change point in a univariate

process with normal quality characteristic. For more

information, refer to the review paper provided by Amiri

and Allahyari (2012).

In many manufacturing processes, multivariate or multi-

attribute quality characteristics, which are correlated,

characterize the quality of the products. For example, El-

Midany et al. (2010) proposed modular artificial neural

networks (ANNs) to recognize abnormal patterns, to
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identify the variables responsible for out-of-control signal

and classify the abnormal pattern parameters in multi-

variate processes. On the other hand, Niaki and Nafar

(2008) proposed a modular ANN-based method to monitor

multi-attribute quality characteristics.

In comparison with processes with a single quality

characteristic, fewer methodologies have been developed

by researchers for change point estimation of multivariate

and multi-attribute processes. Sullivan and Woodall (2000)

based on a likelihood ratio statistic proposed a preliminary

control chart for change point estimation in the multivariate

processes with individual observations when the shift

occurs in the mean vector, the covariance matrix or in both.

Nedumaran et al. (2000) developed maximum likelihood

estimator (MLE) approach to estimate step change point in

the multivariate normal process mean. Zamba and Hawkins

(2006) presented a model to estimate the time of step

change in the mean vector of multivariate processes in sit-

uations where the parameters are unknown.

Zarandi and Alaeddini (2010) estimated the time of

change in different types of control charts including uni-

variate, uni-attribute as well as the multivariate control

charts with either fixed or variable sampling strategy using a

general fuzzy-statistical clustering approach. Doğu and

Kocakoc (2011) estimated the time of step change in the

covariance matrix of multivariate normal processes, in

which a multivariate control chart based on sample

covariance is used for receiving out-of-control signals.

Niaki and Khedmati (2012) proposed a new method to

derive the maximum likelihood estimator of the time of a

step change in the mean vector of multivariate Poisson

processes. To do that, first, they employed two transfor-

mations to decrease the inherent skewness involved in

multi-attribute processes and made the distribution of

quality characteristics almost multivariate normal and

diminished correlations between the attributes. After that,

they employed a T2 control chart for detection purposes.

Finally, using a maximum likelihood estimator, they found

the actual time of a change. Niaki and Khedmati (2013) then

proposed a new multi-attribute T2 control chart based on

two transformation methods to monitor the parameter vec-

tor of multi-attribute Poisson processes. Then, to estimate

the process change point, they developed the maximum

likelihood estimators for both linear trend and step change

disturbances. Doğu and Kocakoc (2013) estimated the step

change point of multivariate normal processes when joint

mean vector and covariance matrix shifts occurred.

Besides, some researchers used artificial neural net-

works for estimating the time of change in multivariate

processes. Atashgar and Noorossana (2010) proposed a

neural network-based change point estimator to identify the

change point in the mean vector of a bivariate normal

distribution when the monotonic changes occur. At the

same time, they also diagnosed the variables responsible

for the change in the process mean vector. Ahmadzadeh

(2009) introduced a neural network to identify the time of

change in the multivariate process mean parameters.

Noorossana et al. (2011) proposed an integrated supervised

learning solution to detect the out-of-control conditions,

estimate the change point when the shift occurs in the mean

vector, diagnose the variables contributing to the out-of-

condition and determine the direction of the shift in the

mean of each contributing variable. Allahyari and Amiri

(2011) studied step change point estimation problem in

multivariate processes using a clustering approach.

Atashgar and Noorossana (2011) proposed a supervised

learning approach based on artificial neural networks to

identify the change point in a bivariate process when the

process mean vector changes linearly. They simultaneously

performed an analysis to diagnose the variables that con-

tributed to the change in the process mean vector.

Ahmadzadeh et al. (2013) developed a multivariate expo-

nentially weighted moving average (MEWMA) control

chart by using neural network for identifying the step

change point as well diagnosing the variable responsible of

the change in the multivariate process mean vector.

In some production environments, the quality of the

product is expressed by the combination of both variables

and attributes quality characteristics, where a non-zero

correlation structure between them exists. Despite some

efforts for monitoring multivariate-attribute processes,

there is no research in the literature about the change point

estimation of such processes. As the main contribution in

this paper, we propose a modular methodology based on

artificial neural networks for estimating the step changes in

the covariance matrix of multivariate-attribute processes.

Considering the literature of using ANNs in different

scopes of SPC, we realize that in almost all researches the

observations are directly fed to the ANN as the input values.

One unique aspect of our research is that we link two ANN

modules including (1) module one, which is used for

detecting variance shifts (fault detection) as well as diag-

nosing the source of shifts (fault diagnosis), and (2) module

two, which consists of some ANNs used for estimating the

time of variance step changes. In the proposed modular

methodology, the output values of the neural network

designed for detection purpose is used as the input values of

the ANN estimators required for change point estimation.

The proposed methodology is presented in Phase II;

hence, the parameters of quality characteristics are known

based on historical data. The rest of this paper is outlined as

follows: in ‘‘Modified maximum likelihood estimator’’, the

change point estimator based on MLE with some modifi-

cations is presented. In ‘‘Proposed model for change point

estimation’’, the proposed ANN-based methodology con-

sisting of two modules, fault detection/fault diagnosis
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module and change point estimation module, is described.

Then, in ‘‘Performance evaluation’’, the performance of the

proposed ANN-based method is assessed through the

simulation experiments from a given multivariate-attribute

process in comparison with the modified MLE estimator. In

‘‘Sensitivity analysis’’, a sensitivity analysis on the effect

of the location of change point on the performance of MLE

approach is conducted. In the final section, conclusions as

well as some recommendations for future researches are

given.

Modified maximum likelihood estimator

Consider a multivariate-attribute process with p variables

and q attributes where the quality characteristics are cor-

related. Let Xij ¼ Xij1; . . .;Xijp;Xijðpþ1Þ; . . .;Xijðp þ qÞ
� �T

be

the jth observations vector (j = 1, 2,…,n) of the ith sub-

group (i = 1, 2,…) where the first p elements represent the

variables, whereas the last q elements represent attribute

quality characteristics. In the first step of extending our

statistical approach, using Normal to Anything (NORTA)

inverse method, the process data are transformed to the

multivariate normal distribution. After using NORTA

inverse method, the column vector of X0
ij ¼ ðX0

ij1; . . .;X
0
ijp;

X0
ijðp þ 1Þ; . . .;X

0
ijðp þ qÞÞ

T
with the mean vector of l0 and

covariance matrix of R0 will be obtained where the mar-

ginal distribution of the elements is normal distribution.

In this study, we use a control chart in the literature for

monitoring the variability of the transformed quality

characteristics. This control chart plots the determinant of

the sample covariance matrix (|S|) as a statistic and has the

following control limits (Montgomery 2005):

UCL ¼ jR0j b1 þ L
ffiffiffiffiffi
b2

p� �
; ð1Þ

LCL ¼ jR0j b1 þ L
ffiffiffiffiffi
b2

p� �
: ð2Þ

The value of control limit coefficient (L) is set such that

a predetermined in-control average run length (ARL0) is

obtained. The parameters of b1 and b2 depend only on the

number of variable and attribute quality characteristics and

sample size and can be determined through the following

equations, respectively (Montgomery 2005):

b1 ¼ ðn� 1Þ�ðpþqÞ Y
p þ q

i ¼ 1

ðn� iÞ; ð3Þ

b2 ¼ ðn� 1Þ�2ðp þ qÞ

�
Yp þ q

i ¼ 1

ðn� iÞ �
Yp þ q

j ¼ 1

ðn� jþ 2Þ �
Yp þ q

j ¼ 1

ðn� jÞ
" #

:

ð4Þ

The control chart triggers an out-of-control alarm in the

ith subgroup if |Si| exceeds the control limits. The negative

value of LCL should be substituted by zero.

Let T be the time when the extended control chart

triggers an out-of-control alarm. Let also after incidence of

a given step shift in process variability, the covariance

matrix of multivariate-attribute quality characteristics

changes from R0 to R1 at the unknown change point s.
After that, the parameters of covariance matrix remain at

the new level until the sources of the assignable cause is

identified and omitted. Hence, the determinant of sample

matrix until the time s., i.e., |S1|, |S2|,…,|Ss |come from the

in-control state, whereas |Ss ? 1|,…, |ST| come from the

out-of-control state of the multivariate-attribute process

variability. The estimation of the parameter s by the MLE

approach (bs) is a value that maximizes the likelihood

function of observations as follows (Doğu and Kocakoc

2011):

ŝ ¼ argmax CPtg; t ¼ 0; 1; . . .; T � 1:f ð5Þ

The value of CPt is computed according to Eq. (6):

CPt ¼
trace R�1

0 �
PT

i ¼ t þ 1

Pn

j ¼ 1

ðX0
ij � l0ÞðX0

ij � l0Þ
0

 ! !

2

� n ðT � tÞ
2

ln

PT

i ¼ t þ 1

Pn

j ¼ 1

ðX0
ij � l0ÞðX0

ij � l0Þ
0 � R�1

0

n ðT � tÞ

���������

���������

0

BBB@

1

CCCA

� n ðp þ qÞ ðT � tÞ
2

;

ð6Þ

where the trace (A) is the sum of diagonal elements in

matrix A.

The proposed model for change point estimation

In this section, the proposed modular model for estimating

the change point in the covariance matrix of multivariate-

attribute processes is described. In module one, we use a

three-layered perceptron neural network that is presented

by Amiri et al. (2015) for monitoring the multivariate-at-

tribute process variability. In the first module, we aim to

detect the variance shifts and diagnose quality character-

istics responsible for out-of-control signals. Note that,

diagnosing the out-of-control quality characteristics in the

first module is equivalent to identifying which out-of-

control state has occurred. Then in the second module, we

design an artificial neural network for estimating the

change point corresponding to any out-of-control state. In a

multivariate-attribute process whose quality is character-

ized by the combination of p variables and q attributes, we
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design totally
Pp þ q

i ¼ 1

pþ q

i

� 	
¼ 2p þ q � 1 ANN estima-

tors for change estimation in the second module. Then,

based on the out-of-control state which is diagnosed in the

first module, one of the designed ANN estimators in the

second module will be activated for estimating the change

point in the covariance matrix of multivariate-attribute

quality characteristics. Note that, using only one ANN in

change point estimation instead of modular ANNs makes it

large and consequently the training process will be com-

plex and time consuming. Figure 1 presents the proposed

modular ANN-based methodology (It is supposed that the

ith out-of-control state is diagnosed in the first module).

Structure of ANN modules

In this subsection, the structure of each ANN estimator

required for estimating the time of change in each out-of-

control state is illustrated. Due to the successful perfor-

mance of multilayer perceptron neural networks in various

scopes of SPC, this type of neural network is used in

designing the ANNs of the change point estimation mod-

ule. To determine the number of nodes in the input layer of

each ANN estimator in the second module, the following

procedure is recommended. First in module one, we iden-

tify the quality characteristics contributed to the out-of-

control signal. In a multivariate-attribute process with p

Artificial neural network (ANN)
used for detecting step variance
shifts and diagnosing source(s) of

variation

Estimating the time of step variance shift
corresponding to the second out-of-control

state

Estimating the time of step variance shift
corresponding to the first out-of-control state

Estimating the time of step variance shift
corresponding to the ith out-of-control state

Estimating the time of step variance shift
corresponding to the last out-of-control state

Module I

Module II

Input: The sample standard deviation
Output (in the range of [0,1]): The ith out-

of-control state has been occurred

Input: The output of module I
Output: The time of change in the

multivariate-attribute process variability

Fig. 1 The proposed modular methodology
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variables and q attributes, there are totally
pþ q

j

� 	
; j; j ¼

1; 2; . . .; pþ q states where j quality characteristics are the

sources of variation. Obviously, in the situations where one

of the p ? q quality characteristics is responsible for out-

of-control signal, p ? q ANNs should be designed for the

change point estimation.

The following procedure is used to determine the

number of nodes in the input layer of the ANN estimator

corresponding to the out-of-control state in which the ith

quality characteristic has been diagnosed as the source of

variation: First, we generate random samples in a p-variate/

q-attribute process, each of size n. In the simulated random

samples di[ 1, whereas dj = 1, j = 1, 2,…, p ? q, j = i,

where di is the standard deviation of the ith quality char-

acteristic after a given step shift divided by its standard

deviation for the in-control state. Then, we enter the gen-

erated random samples into the ANN of the first module

until the first out-of-control signal is received. This process

is repeated in 10,000 replicates and in each replicate we

record the run length (RL) values obtained in the first

module and save them in a vector like c1. Finally, an ele-

ment in vector c1 (called m1) such that the value of pr

(RL[m1) obtained in 10,000 simulation replicates is

negligible is considered as the number of nodes in the input

layer of the neural network designed for change point

estimation of the corresponding out-of-control state. To

determine the number of input nodes, we should consider

two issues: (1) increasing the number of nodes in the input

layer of ANN modules leads to the complex ANNs in both

training and testing, (2) insufficient number of input nodes

is not desired. Because in situations where the run length

obtained by module one exceeds the number of input

nodes, the ANN module will not be usable. The input

vector used in the ANN of the first module is a column

vector as follows:

S ¼ ½s1; s2; . . .; sp þ q�T ; ð7Þ

where sj is the sample standard deviation of the jth quality

characteristic in the simulated random sample. Determin-

ing the number of input nodes in the ANN modules

required for estimating the time of change in the variance

of two quality characteristics (totally ð pþ q

2
Þ ANNs) is

almost the same as the previous p ? q ANNs. Suppose that

the quality characteristics u and v are the sources of vari-

ation in the covariance matrix of multivariate-attribute

quality characteristics. First, we generate random samples

of size n from a p-variate/q-attribute process where du,
dv[ 1, whereas dj = 1, j = 1, 2,…,p ? q, j = u, v. Then,

based on 10,000 simulation replicates, we obtain run length

values in the first module and save them in a vector like c2.

Finally, an element like m2 in the vector c2 that the value of

pr (RL[m2) obtained from 10,000 simulation replicates is

almost equal to zero is considered as the number of nodes

in the input layer of these ANNs.

This procedure is performed to determine the number of

input nodes in the neural networks that are designed for

change point estimations related to other out-of-control

states where j, j = 3,…,p ? q quality characteristics con-

tribute to the out-of-control situations. The number of

nodes in the output layer of each neural network is also

considered as equal as the number of its input layer nodes.

There is no standard guideline to determine the number of

hidden layers as well as the number of nodes in each

hidden layer. It is also stipulated in the literature that one or

two hidden layers may be sufficient in designing any neural

networks. We finalize the number of hidden layers as well

the number of nodes in each one after trial and error

experiments. We also use the sigmoid function as the

transfer function of all ANNs which send out outputs in the

range of [0, 1].

Training procedure of neural networks

The most substantial issue in the training process of each

2p ? q - 1 ANNs for change point estimation purpose is

collecting proper training data sets. The training procedure

of the kth; k = 1, 2,…,2p ? q – 1 ANN estimator corre-

sponding to the kth out-of-control state which contains mk

nodes in its input layer is presented as follows: The first

output value of ANN in the first module is used as the input

value of the ANN estimators in the second module.

Assume that the run length value obtained from the first

module is equal to h, h = 1, 2,…,mk. First of all, we

generate mk - h in-control random samples of size n. We

also simulate h random samples from a p variate/q attribute

process where kth; k = 1, 2,…,2p ? q – 1 out-of-control

state has occurred. In the next step, for each generated mk

random samples, we calculate vector S (the input vector

associated with the ANN in the first module) according to

Eq. (7). Now, we enter the generated vectors into the ANN

in the first module and record the observed values of the

first output node. Then, we save these mk values in a col-

umn vector and consider it as the input vector of the kth

ANN in the second module. Hence, the input vector of the

kth; k = 1, 2,…,2p ? q - 1 neural network which contains

mk nodes in its input layer is a column vector with mk

elements as follows:

Ok ¼ ðo1; . . .; omk � h; omk � h þ 1. . .; omk
ÞT : ð8Þ

In Eq. (8), the first mk - h elements of vector Ok are

related to the in-control samples, whereas the last h ele-

ments are associated with the out-of-control samples. We

repeat this process in 100 replicates for each value of RL;

RL = 1,…,mk. Consequently, for each possible value of
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RL, totally 100 column vectors are generated. Conse-

quently, 100 9 mk column vectors with the size of mk 9 1

are available as the input data sets required for training the

kth neural network in change point estimation module.

Note that to generate out-of-control data in the training

step, the magnitude of variance shifts in the out-of-control

quality characteristics are determined randomly. Similar

to the input vectors, the target vector of kth;

k = 1,2,…,2p ? q - 1 neural network is a mk 9 1 vector

whose elements are zero, except one element which is

equal one. The location of element one in the target vector

represents the time when in-control state is terminated, i.e.,

the first out-of-control sample is taken. After generating the

input vectors as well as their corresponding target vectors,

using back-propagation algorithm which is the most com-

mon supervised training algorithm, the ANN estimators are

trained.

Utilizing the proposed ANN modules for estimating

change point

After designing and training all the neural networks

required in change point estimation module, we should

apply them to estimate the time of actual change in the

multivariate-attribute process variability. As the first step,

using the ANN of the first module, the out-of-control state

is detected. Then, the quality characteristics which con-

tributed to cause an out-of-control alarm are diagnosed.

Recall that the diagnostic process by the ANN in module

one is equivalent to determining the out-of-control state.

Finally, based on the diagnosed quality characteristics

responsible of the change in the multivariate-attribute

process variability, only one ANN estimator is activated for

change point estimation in the quality characteristics whose

variances are changed. The flowchart of the proposed

algorithm is depicted in Fig. 2.

Recall that the target values of neural networks in the

change point estimation module are zero and one. How-

ever, when each ANN is applied in the second module, the

observed output values are not exactly equal to zero or one

and are in the range of [0, 1] due to errors. Hence, to

overcome this problem, in this paper the maximum

observed value of the neural networks is considered as the

time when the process goes to the out-of-control state. For

example, in an ANN with 50 nodes in its output layer, if the

maximum observed value is located in the 35th element of

output vector, the estimated time of change by the neural

network is obtained equal to bs ¼ 34:

Determining the number of
variables (p) and attributes (q)

Designing ANNs for change
point module (equal to of out-

of-control states)

Training ANNs for change
point estimation module

Detecting variance shifts by
ANN in module 1

Identifying source(s)
of signal

Is the first out-of-
control state occurred?

Is the second out-of-
control state occurred?

Is the last out-of-control
state occurred?

Activating the first
ANN of module II

Activating the second
ANN of module II

Activating the last
ANN of module II

Estimate the change
point

No

Yes Yes Yes

No No

Fig. 2 The proposed ANN-based algorithm
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Performance evaluation

To evaluate the performance of the proposed ANN-based

estimator in comparison with the MLE, we present a

numerical example based on simulation. In the presented

example, we use the random samples of size n = 10 under

both methods. Suppose a multivariate-attribute process in

which the quality of the products is expressed by one attri-

bute and one variable quality characteristics which are cor-

related. It is supposed that there is a correlation coefficient

equal to q = 0.357 between the quality characteristics. The

presented numerical example is focused in Phase II. Based

on the results of Phase I analysis, we assume that x1 and x2 are

attribute and variable quality characteristics with the fol-

lowing distributions when the process is in-control:

x1 � Poisson k ¼ 1ð Þ; x2 �Normal l ¼ 3; r2 ¼ 4
� �

:

After using NORTA inverse method, the mean vec-

tor and the covariance matrix of in-control transformed

data are estimated equal to l0 ¼
0:546
0

� 	
and R0 ¼

0:667 0:268
0:268 0:999

� 	
, respectively. To obtain the ARL0

roughly equal to 200 by the |S| control chart, the control

limits are determined equal to UCL = 2.1050 and

LCL = 0 (the negative value of LCL is substituted by

zero). In the MLE method, first we generate 100 in-control

data and transform them to obtain bivariate normal distri-

bution data. For the first 100 in-control random samples, it

is assumed that no false alarm is received by the extended

control chart. Hence, to overcome the probable problem, if

the value of |S| corresponding to each simulated sample

exceeds the UCL, we replace it by another in-control

random sample. Starting form the 101th taken sample, the

observations are simulated from an out-of-control state

until the extended control chart triggers an out-of-control

signal. Then, the change point in the process variability is

estimated according to Eqs. (5) and (6). For different

variance shift magnitudes, we repeat this procedure 10,000

times. Finally, in each replicate we calculate the absolute

difference of the actual and estimated change point

(jbs � sj). Then, based on the simulated values of jbs � sj,
we investigate the performance of the MLE method.

Obviously in this process (p = q = 1), there are three

states where the process variability is out of control. The

out-of-control states in the process variability include (1)

the states in which x1 contributes to out-of-control signals,

(2) states in which x2 contributes to out-of-control signals

and (3) situations in which both x1 and x2 contribute to out-

of-control signals. Hence, three ANNs are required to be

designed for estimating the actual time of change for each

out-of-control state of process variability.

Designing the ANN estimators

Using the ANN of module one for detecting purpose,

according to ‘‘Proposed model for change point estima-

tion’’, the value of Pr (RL[ 40) under a small variance

shift of d1 = 1.4 under 10,000 simulation replicates is

obtained equal to a negligible value (nearly zero). Hence, it

seems reasonable that using 40 nodes in the input layer of

the first ANN in module two (network A) is a proper

choice. As noted, the number of nodes in the output layer

of network A is also considered equal to 40. Designing the

other ANNs (networks B and C) that are designed for

change point estimation in variable x2 as well as in joint

quality characteristics x1 and x2 is almost similar to net-

work A. Using module one, the probability value of

Pr (RL[ 40) under a variance shift with a magnitude of

d2 = 1.4 under 10,000 simulation replicates is obtained

equal to 0.002. Hence, we consider 40 nodes in the input

and output layers of network B. Similarly, the probability

value of Pr (RL[ 30) under a joint shift with a magnitude

of (d1 = 1.4, d2 = 1.4) under 10,000 simulation replicates

is obtained equal to zero. Consequently, 30 nodes will exist

in the input and output layer of network C. By trial and

error experiments, the ANN estimators A, B and C have a

single hidden layer with 22, 24 and 22 nodes, respectively.

Training the ANN estimators

According to ‘‘Training procedure of neural networks’’, the

input data as well as the corresponding target vectors

required for training the networks A and B are both the

column vectors with 40 elements. To generate out-of-

control data sets in training the neural network A, we use

the shifts with the random magnitude of d1 in the standard

deviation of x1 where d1 is uniformly distributed in the

range of [1.5, 2.5]. Similarly, to generate out-of-control

data sets required for training network B, the shifts with the

random magnitude of d2 in the standard deviation of x2 are

used where d2 is also uniformly distributed in the range of

[1.5, 2.5]. The input and target vectors that are prepared for

training the network C are also the column vectors with 30

elements. Furthermore, we use simultaneous shifts in the

standard deviation of both x1 and x2 with random magni-

tude of shifts distributed uniformly in the range of

di 2 [1.5, 2.5]; i = 1, 2. Now, 4000 input data for training

network A and B and 3000 ones for training network C are

available. Finally, the ANN estimators are trained with the

generated input vectors as well as their corresponding

target vectors. The value of mean-squared error (MSE)

which is an evaluation criterion in training stage for neural

networks A, B and C is obtained equal to 0.0166, 0.0138

and 0.0142, respectively. When each trained network is
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applied for estimating the time of change in the corre-

sponding quality characteristics, we focus on the maximum

observed output and consider it as the estimation of time

when the first out-of-control sample is manifested in the

process.

To investigate the performance of ANN and MLE meth-

ods and provide a comparison study, we use three criteria in

change point estimation literature including the mean, the

standard deviation as well as the empirical distribution of

estimated change point obtained by the methods around the

actual time of process change. The performance of neural

networkA under the step variance shift (d1r1, 0) with various
magnitudes of d1 is investigated through 10,000 replicates

and compared with MLE. Table 1 shows the performance of

the ANN and MLE estimators in estimating the time of

change in the variance of x1. The results of Table 1 show that

under each variance shift magnitudes in x1, including small,

moderate and large shifts except shift with the magnitude of

(1.4r1, 0), the ANN method in all criteria outperforms the

MLE method. It is obvious that as the variance shift in the

quality characteristic x1 increases, the preciseness and

accuracy of both estimators increase.

Table 2 shows the performance of the neural network B

as well as the MLE method under the step variance shift (0,

d2r2) with various values of d2 through 10,000 replicates.

The computational results in Table 2 indicate that under

each out-of-control state considered, the ANN considerably

presents more accurate and more precise results in

comparison to MLE. We can see that under both estima-

tors, increasing the magnitude of variance shift in the

quality characteristic x2 leads to better estimates.

In Table 3, we summarize the results of applying neural

network C as well as MLE in estimating change point when

joint variance shifts in both quality characteristics have

occurred. Similar to neural networks A and B, the neural

network C performs adequately in estimating the time of

change in the process variability when both quality char-

acteristics are the sources of the out-of-control signals.

Moreover, the results of Table 3 show the superior per-

formance of the third ANN estimator (Network C) under

all change point criteria in comparison with MLE method.

The results of Tables 1 and 3 show that in all out-of-

control scenarios, the MLE approach is better than ANN in

terms of the pðjbs � sj ¼ 0Þ criterion. It means that in

10,000 replicates, the number of simulation runs in which

the MLE estimates the actual time of change is more than

ANN. However, in some simulation experiments, the MLE

estimates are imprecise. Consequently, in almost all out-of-

control scenarios except (1.4r1, 0) and (1.4r1, 1.4r2), the
ANN outperforms MLE in terms of the pðjbs � sj � iÞ; i ¼
1; 2; 3; 4; 5 criterion. In contrast to the results in Tables 1

and 3, it is observed in Table 2 that the ANN outperforms

the MLE in terms of pðjbs � sj ¼ 0Þ. Generally, the ANN

estimates are more reliable than MLE, because before

applying the ANN modules, they are trained with sufficient

data set.

Table 1 Performance of the

first ANN (Network A) and

MLE in estimating change point

in the variance of x1

Shift (1.4r1, 0) (1.6r1, 0) (1.8r1, 0) (2r1, 0)

ANN MLE ANN MLE ANN MLE ANN MLE

E(jŝ� sjÞ 8.74 32.73 2.23 20.48 0.90 14.55 0.53 9.55

Std (jŝ� sjÞ 8.71 43.02 3.26 37.94 1.53 33.70 1.04 28.16

pðjbs � sj ¼ 0Þ 11.76 33.94 30.24 57.20 48.16 72.56 61.74 81.94

pðjbs � sj � 1Þ 24.30 44.12 58.52 66.24 82.88 79.26 92.88 86.56

pðjbs � sj � 2Þ 32.48 48.54 71.58 69.66 92.12 81.04 97.60 87.62

pðjbs � sj � 3Þ 37.60 51.64 78.42 71.32 95.22 81.58 98.54 87.82

pðjbs � sj � 4Þ 42.84 53.52 83.82 72.32 97.04 81.86 99.08 87.92

pðjbs � sj � 5Þ 48.08 55.00 87.70 73.10 98.34 82.00 99.46 87.98

Shift (2.2r1, 0) (2.4r1, 0) (2.6r1, 0) (2.8r1, 0)

ANN MLE ANN MLE ANN MLE ANN MLE

E(jŝ� sjÞ 0.37 5.41 0.30 2.78 0.28 0.93 0.25 0.17

Std (jŝ� sjÞ 0.88 21.41 0.73 15.56 0.72 8.90 0.66 2.82

pðjbs � sj ¼ 0Þ 70.24 88.60 75.16 93.14 76.50 96.66 79.14 98.60

pðjbs � sj � 1Þ 96.58 91.64 97.54 95.52 97.66 98.28 97.54 99.58

pðjbs � sj � 2Þ 99.00 92.08 99.14 95.74 99.36 98.44 99.50 99.64

pðjbs � sj � 3Þ 99.18 92.22 99.34 95.82 99.48 98.44 99.52 99.64

pðjbs � sj � 4Þ 99.50 92.22 99.54 95.84 99.74 98.44 99.68 99.64

pðjbs � sj � 5Þ 99.66 92.24 99.78 95.84 99.82 98.44 99.84 99.64
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Table 2 Performance of the second ANN (Network B) and MLE in estimating change point in the variance of x2

Shift (0, 1.4r2) (0, 1.6r2) (0, 1.8r2) (0, 2r2)

ANN MLE ANN MLE ANN MLE ANN MLE

E(jŝ� sjÞ 2.81 45.17 1.20 40.48 0.97 35.97 0.73 31.32

Std (jŝ� sjÞ 3.79 44.23 1.98 44.73 2.00 44.20 1.86 43.67

pðjbs � sj ¼ 0Þ 24.86 19.88 43.64 32.54 54.50 43.84 66.06 53.48

pðjbs � sj � 1Þ 49.60 31.86 73.88 44.80 81.40 53.94 86.92 61.02

pðjbs � sj � 2Þ 64.24 37.00 87.06 49.84 90.78 57.08 93.10 62.72

pðjbs � sj � 3Þ 73.66 40.62 92.84 51.10 94.30 58.22 95.68 63.40

pðjbs � sj � 4Þ 80.24 42.72 95.32 52.18 95.30 58.62 96.14 63.72

pðjbs � sj � 5Þ 85.32 44.22 97.32 52.62 97.60 58.70 98.10 63.96

Shift (0, 2.2r2) (0, 2.4r2) (0, 2.6r2) (0, 2.8r2)

ANN MLE ANN MLE ANN MLE ANN MLE

E(jŝ� sjÞ 0.71 26.54 0.63 22.78 0.59 18.13 0.63 15.52

Std (jŝ� sjÞ 2.04 41.33 2.16 39.40 2.06 36.47 2.26 34.55

pðjbs � sj ¼ 0Þ 73.50 61.62 80.46 68.30 83.40 74.68 84.96 79.06

pðjbs � sj � 1Þ 87.66 67.96 89.30 72.94 89.69 78.82 88.98 82.26

pðjbs � sj � 2Þ 91.08 69.04 91.14 73.64 90.78 79.38 89.98 82.42

pðjbs � sj � 3Þ 94.90 69.40 95.08 73.84 95.36 79.50 94.80 82.58

pðjbs � sj � 4Þ 95.54 69.64 95.44 74.00 95.56 79.56 95.04 82.70

pðjbs � sj � 5Þ 97.72 69.82 97.50 74.20 97.38 79.60 97.04 82.74

Table 3 Performance of the third ANN (Network C) in estimating change point in the variances of x1 and x2

Shift (1.4r1, 1.4r2) (1.5r1, 1.5r2) (1.6r1, 1.6r2) (1.7r1, 1.7r2)

ANN MLE ANN MLE ANN MLE ANN MLE

E(jŝ� sjÞ 1.58 32.21 0.76 27.57 0.51 22.38 0.44 15.00

Std (jŝ� sjÞ 2.60 42.47 1.33 41.16 1.15 38.59 1.23 33.22

p ðjbs � sj ¼ 0Þ 39.10 47.54 51.78 57.30 61.20 66.32 67.02 76.78

p ðjbs � sj � 1Þ 70.18 55.50 86.58 63.84 93.20 71.12 95.04 80.12

p ðjbs � sj � 2Þ 82.02 58.12 94.74 65.42 98.62 72.46 99.20 81.04

p ðjbs � sj � 3Þ 87.82 59.38 97.50 66.24 99.36 72.80 99.58 81.52

p ðjbs � sj � 4Þ 91.34 60.08 98.40 66.76 99.66 73.12 99.68 81.76

p ðjbs � sj � 5Þ 93.48 60.74 98.94 67.08 99.70 73.40 99.68 81.84

Shift (1.8r1, 1.8r2) (1.9r1, 1.9r2) (2r1, 2r2) (2.5r1, 2.5r2)

ANN MLE ANN MLE ANN MLE ANN MLE

E(jŝ� sjÞ 0.37 10.14 0.33 5.39 0.29 2.55 0.22 0.58

Std (jŝ� sjÞ 0.89 28.32 0.96 21.25 0.91 14.68 0.91 7.52

pðjbs � sj ¼ 0Þ 70.94 83.96 74.66 90.78 78.50 94.80 86.22 99.00

pðjbs � sj � 1Þ 95 86.74 95.42 92.88 95.32 96.44 95.46 99.40

pðjbs � sj � 2Þ 99.46 87.42 99.48 93.38 99.56 96.74 99.28 99.42

pðjbs � sj � 3Þ 99.68 87.72 99.68 93.50 9974 96.82 99.52 99.42

pðjbs � sj � 4Þ 99.82 87.88 99.78 93.68 99.82 96.86 99.74 99.42

pðjbs � sj � 5Þ 99.82 87.96 99.80 93.72 99.82 96.90 99.78 99.42
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Sensitivity analysis

In this section, a sensitivity analysis on the location of the

change point (s) in the MLE approach is performed. The

results of estimating the time of change considering

separate variance shifts in x1 and x2 under different values

of s are summarized in Tables 4 and 5, respectively. The

results of estimating the change point in both quality

characteristics under different values of s are shown in

Table 6. It is concluded that in all out-of-control scenarios

Table 4 The effect of parameter s on MLE approach in estimating change point under variance shifts in x1

Shift (1.4r1, 0) (1.6r1, 0) (1.8r1, 0) (2r1, 0)

s E(jŝ� sjÞ Std (jŝ� sjÞ E(jŝ� sjÞ Std (jŝ� sjÞ E(jŝ� sjÞ Std (jŝ� sjÞ E(jŝ� sjÞ Std (jŝ� sjÞ

90 25.57 36.93 15.84 31.62 12.04 28.62 6.43 21.63

100 32.73 43.02 20.48 37.94 14.55 33.70 9.55 28.16

110 38.18 48.56 26.31 45.03 17.53 38.90 12.11 33.34

Shift (2.2r1, 0) (2.4r1, 0) (2.6r1, 0) (2.8r1, 0)

s E(jŝ� sjÞ Std (jŝ� sjÞ E(jŝ� sjÞ Std (jŝ� sjÞ E(jŝ� sjÞ Std (jŝ� sjÞ E(jŝ� sjÞ Std (jŝ� sjÞ

90 4.48 18.18 2.55 14.15 0.81 7.46 0.17 2.82

100 5.41 21.41 2.78 15.56 0.94 8.90 0.17 2.82

110 6.49 24.98 3.34 18.04 0.95 9.23 0.27 5.71

Table 5 The effect of parameter s on MLE approach in estimating change point under variance shifts in x2

Shift (0, 1.4r2) (0, 1.6r2) (0, 1.8r2) (0, 2r2)

s E(jŝ� sjÞ Std (jŝ� sjÞ E(jŝ� sjÞ Std (jŝ� sjÞ E(jŝ� sjÞ Std (jŝ� sjÞ E(jŝ� sjÞ Std (jŝ� sjÞ

90 36.52 39.27 32.79 38.97 30.31 38.95 24.81 38.26

100 45.17 44.23 40.48 44.73 35.97 44.73 31.32 43.67

110 53.41 49.22 47.96 49.89 41.30 49.49 34.65 48.44

Shift (0, 2.2r2) (0, 2.4r2) (0, 2.6r2) (0, 2.8r2)

s E(jŝ� sjÞ Std (jŝ� sjÞ E(jŝ� sjÞ Std (jŝ� sjÞ E(jŝ� sjÞ Std (jŝ� sjÞ E(jŝ� sjÞ Std (jŝ� sjÞ

90 21.55 35.80 16.57 32.36 14.15 31.02 11.25 28.26

100 26.54 41.33 22.78 39.40 18.13 36.47 15.52 34.55

110 32.89 47.16 27.50 47.16 21.63 41.47 20.16 40.72

Table 6 The effect of parameter s on MLE approach in estimating change point under shifts in x1 and x2

Shift (1.4r1, 1.4r2) (1.5r1, 1.5r2) (1.6r1, 1.6r2) (1.7r1, 1.7r2)

s E(jŝ� sjÞ Std (jŝ � sjÞ E(jŝ� sjÞ Std (jŝ� sjÞ E(jŝ� sjÞ Std (jŝ� sjÞ E(jŝ� sjÞ Std (jŝ� sjÞ

90 26.53 37.17 21.23 36.11 18.31 33.52 12.22 28.66

100 32.21 42.47 27.57 41.16 22.38 38.59 15.00 32.22

110 42.59 48.95 34.53 47.81 26.92 44.00 20.23 39.82

Shift (1.8r1, 1.8r2) (1.9r1, 1.9r2) (2r1, 2r2) (2.5r1, 2.5r2)

s E(jŝ� sjÞ Std (jŝ� sjÞ E(jŝ� sjÞ Std (jŝ� sjÞ E(jŝ� sjÞ Std (jŝ� sjÞ E(jŝ� sjÞ Std (jŝ� sjÞ

90 7.95 24.04 4.22 17.80 1.63 11.07 0.09 2.81

100 10.14 28.32 5.39 21.25 2.55 14.68 0.58 7.52

110 12.49 33.15 8.62 27.89 3.35 18.16 0.55 7.69
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including separate and joint shifts under different shift

magnitudes, decreasing the location of actual change point

s leads to more accurate and precise estimates.

Conclusions and future researches

In this paper, a modular ANN-based methodology for

estimating the time when the out-of-control state is

manifested in the multivariate-attribute processes was

studied. Before designing the ANNs required for change

point estimation in the process variability, a three-layered

perceptron ANN was applied for detecting the variance

shifts and identifying quality characteristics responsible

for the out-of-control states. After that, based on the out-

of-control quality characteristics diagnosed by this ANN,

a three-layered perceptron neural network was trained to

estimate the actual time of change in the responsible

quality characteristics. We used back-propagation algo-

rithm to train all ANN modules in the proposed change

point estimation methodology. Moreover, we present the

MLE approach for estimating the time of variance shifts.

The performance of the proposed ANN-based method as

well as the modified MLE in estimating the time of

change in the contributed quality characteristics was

investigated through a numerical example based on sim-

ulations. The results show that the proposed ANN-based

methodology outperforms the MLE in estimating the time

of step change in the process variability with multivari-

ate-attribute quality characteristics. Finally, we investi-

gate the effect of the location of the change point (s)on
the performance of MLE approach through sensitivity

analysis.

Developing our proposed methods in the case of mul-

tiple change points is highly recommended as a future

research. In addition, proposing the ANN-based method-

ology for estimating drift and isotonic change points can

also be fruitful areas for future researches.
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