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Abstract
This paper presents an application of interactive fuzzy goal programming to the nonlinear multi-objective reliability optimi-
zation problem considering system reliability and cost of the system as objective functions. As the decision maker always 
have an intention to produce highly reliable system with minimum cost, therefore, we introduce the interactive method to 
design a high productivity system here. This method plays an important role to maximize the worst lower bound to obtain 
the preferred compromise solution which is close to the best upper bound of each objective functions. Until the preferred 
compromise solution is reached, new lower bounds corresponding to each objective functions will be determined based on 
the present solution to develop the updated membership functions as well as aspiration levels to resolve the proposed prob-
lem. Considering judgmental vagueness of decision maker, here we consider the resources as trapezoidal fuzzy numbers 
and apply total integral value of fuzzy number to transform into crisp one. To illustrate the methodology and performance of 
this approach, numerical examples are presented and evaluated by comparing with the other method at the end of this paper.

Keywords Reliability · Fuzzy programming · Multi-objective programming · Interactive methods · Goal programming

Introduction

Since 1960, reliability engineering is one of the most impor-
tant tasks in designing and development of a technical sys-
tem. The primary goal of reliability engineer is always to 
find the best route to increase the system reliability. The 
diversity of system resources, resource constraints, and 
options for reliability improvement leads to the construction 
and analysis of several optimization models. The majority 
of reliability optimization models discussed in the various 
literatures. For example, Misra (1971) discussed the appli-
cation of integer programming to solve reliability optimiza-
tion problems. Later Kuo and Prasad (2000) and Kuo et al. 
(2001) presented some suitable method for solving reliabil-
ity optimization models. In recent time, Hao et al. (2017) 
proposed an efficient and robust algorithm of non-proba-
bilistic reliability-based design optimization (NRBDO). 
Later an efficient and accurate RBDO framework based on 

iso-geometric analysis (IGA) for complex engineering prob-
lems is established by Hao et al. (2019).

In real life system, due to some uncertainty factors in 
judgments of decision maker (DM), definitely it is not 
always possible to get consequential data for the reliabil-
ity optimization model, as there are some coefficients and 
parameters which are always imprecise due to the vagueness 
of nature. In order to handle the vague judgments of DM 
in multi-objective problems, which may be classified as a 
non-stochastic imprecise model, fuzzy approach can be used 
to solve this model. Some researchers have also used fuzzy 
technique to solve multi-objective reliability optimization 
problems. At first, Park (1987) applied fuzzy optimization 
techniques to solve the problem of reliability apportionment 
for a series system. A multi-objective formulation of reli-
ability allocation problem to maximize system reliability 
and minimize system cost has been described by Sakawa 
(1978) using surrogate worth trade methods. In recent time, 
Grag (2013) applied particle swarm optimization method 
to solve a fuzzy multi-objective reliability optimization 
problem. Dancese et al. (2014) studied reliability and cost 
analysis of a series system model using fuzzy parametric 
geometric programming. Wang et al. (2017) proposed a 
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novel reliability-based optimization model and method for 
thermal structure design in fuzzy environment.

There are various kinds of optimization techniques which 
can be used to solve nonlinear optimization problems. Goal 
programming (GP) is one of the effective methods among 
those to solve a particular type of nonlinear programming 
problem. GP has been widely applied to solve different types 
of real-world problems which involve multiple objectives. 
After applying GP, the DM can obtain a satisfactory solution 
and also can able to analyze the aspiration levels. Dhingra 
(1992) used GP to solve multi-objective reliability appor-
tionment problem in fuzzy environment. Gen and Ida (1993) 
also discussed the application of large-scale 0–1 fuzzy goal 
programming to solve reliability optimization problem. 
Later, Hwang and Lee (2009) provides an algorithm for non-
linear integer goal programming using branch-and-bound 
method and its application of this algorithm to demonstrate 
the solving procedure of reliability problems with single and 
multiple objectives.

In this paper, we are going to introduce a fuzzy multi-
objective mathematical programming problem in which sys-
tem reliability and cost of the system are to be considered 
as two objective functions. The goal of the present study is 
to apply an efficient and modified optimization technique 
to find preferred compromise solution (Leberling 1981) 
of the proposed model. This is very rare to use interactive 
weighted fuzzy goal programming (IWFGP) in reliability 
optimization model. Hence we choose IFGP technique as 
the solution procedure of the proposed optimization model 
to design a high productivity system. Wahed and Lee (2006) 
presented interactive fuzzy goal programming approach to 
solve multi-objective transportation model. Sakawa and 
Matsui (2012) and Sinna and Abo-Elnaga (2014) also used 
interactive approach to solve multi-objective programming 
under fuzzy environment.

In other existing method like fuzzy multi-objective 
goal programming (FMOGP) method (Hwang and Lee 
2004; Zangiabadi and Maleki 2007), initially the objec-
tive goal and the maximum tolerances for resources should 

be given. In the real-world situations, it is unrealistic to 
initially ask the decision maker (DM) to give goal and 
tolerances without providing any information about them. 
Therefore, the obtained solution may not be satisfactory 
for the DM. But interactive method considers a large 
variety of situations that the DM might meet when solv-
ing a nonlinear programming problem. In this paper, the 
proposed interactive approach focuses on maximizing the 
worst lower bound to obtain the preferred compromise 
solution which is close to the best upper bound of each 
objective functions. Updating both the membership values 
and the aspiration levels during the solution procedure, it 
controls the search direction. As a result, preferences of 
DM achieve the efficient solution. This process continues 
until the decision maker satisfied with the solution. Hence 
clearly this method gives a highly reliable system com-
pared to other existing methods.

The paper is organized as follows: In “Mathematical 
model” section, a reliability model of a LCD display unit is 
considered and develop a multi-objective problem for evalu-
ation; “Prerequisite mathematics” section defines some basic 
definitions related to fuzzy set; in “Interactive weighted 
fuzzy goal programming (IWFGP) method” section, IWFGP 
method is introduced; “Interactive weighted fuzzy goal pro-
gramming technique on multi-objective fuzzy reliability 
optimization problem” section provides IWFGP method for 
solving the proposed reliability model; in “Numerical exam-
ple” section, numerical examples are solved and compared 
with the existing methods. Finally, the conclusions are drawn 
in “Conclusion” section.

Mathematical model

Let Rj be the reliability of the jth component of a system and 
RS(R) be the system reliability. Let CS(R) denotes the cost 
of the system. Here we consider a complex system which 
includes a five-stage combination reliability model (Fig. 1).

Fig. 1  Reliability model of a 
LCD display unit
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Reliability model of a LCD display unit

Now we are interested to find out the system reliability of 
a LCD display unit (Neubeck 2004; Mahapatra and Roy 
2010) which consists of several components connected to 
one another. This complex system mainly consists of five 
stages Li, (i = 1, 2,… , 5) which are in series. Thus the gen-
eralized formula for the system reliability of the proposed 
model is given by

Here

L1: LCD panel with reliability R1, i.e., L1 = R1;
L2: A backlighting board containing 10 bulbs with indi-
vidual bulb reliability R2 such that the board function with 
at most one bulb failure, i.e., L2 = R10

2
+ 10R9

2

(
1 − R2

)
;

L3: Two microprocessor boards A and B hooked up in 
parallel, each of reliability R3, i.e., L3 = 1 −

(
1 − R3

)2;
L4:  Dual power supplies in standby redun-
dancy, each power supply of reliability R4, i.e., 
L4 = R4 + R4 ln

(
1∕R4

)
;

L5: EMI board with reliability R5 hooked in series with 
common input of the power supply A, i.e., L5 = R5;

Thus we have the following system reliability

Multi‑objective reliability optimization model 
(MOROM)

Here we consider the cost of the proposed complex system 
as an additional objective function. Therefore, the system 
reliability and the cost of the system are to be maximized 
and minimized, respectively subject to system space as target 
goal. Thus the model becomes

(1)RS(R) = L1 × L2 × L3 × L4 × L5 =

5∏
j=1

Li

(2)

R
S
(R) = R

1

(
R
10

2
+ 10R

9

2

(
1 − R

2

))(
1 −

(
1 − R

3

)2)

×
(
R
4
+ R

4
ln
(
1∕R

4

))
R
5

(3)

Max RS(R) = R
1

(
R10

2
+ 10R9

2

(
1 − R

2

))(
1 −

(
1 − R

3

)2)

×
(
R
4
+ R

4
ln
(
1∕R

4

))
R
5

Min CS(R) =

5∑
j=1

cj

[
tan

(
�

2

)
Rj

]
�j

s.t. VS(R) =

5∑
j=1

vjR
aj

j
≤ V

lim

0.5 ≤ Rj,min
≤ Rj ≤ 1, 0 ≤ RS ≤ 1; j = 1, 2,… , 5

Here vj and cj represent the space and cost of the jth com-
ponent of the system, respectively. Vlim is the system space 
limitation and Rj,min is the lower bound of the reliability of 
each component j.

Now to simplify the calculation and to convert the above 
problem to one type maximization problem, we consider

Thus model (3) has the following form

subject to the same constraints defined in (3)

Multi‑objective fuzzy reliability optimization model

In general the coefficients of cost parameters, resources of 
constraints are not always be specified by relevant precise 
data and has always been imprecise and vague in nature. 
This type of imprecise data is not always well represented 
by random variable selected from a probability distribution. 
But fuzzy number may represent these data. Here we con-
sider space goal Vlim as trapezoidal fuzzy number which can 
be expressed as Ṽlim = (V1L,V2L,V3L,V4L) ). Thus the above 
problem (4) reduces to the following fuzzy problem as

Prerequisite mathematics

Definition 3.1 A fuzzy set Ã in X is a set of ordered pairs 
(Zadeh 1965 first introduced the fuzzy set theory):

where X is a collection of objects denoted generically by x 
and 𝜇Ã(x) ∶ X → [0, 1] is called the membership function or 
grade of membership of x in Ã.

Definition 3.2 Chen (Chen 1985) represents a generalized 
trapezoidal fuzzy number (GTrFN) Ã as Ã = (a, b, c, d;w) , 
where 0 < w ≤ 1, and a, b, c, and d are real numbers. The 

C�
S
(R) = −CS(R)

(4)
Max RS(R)

Max C�
S
(R)

(5)

Max RS(R) = R
1

(
R10

2
+ 10R9

2

(
1 − R

2

))(
1 −

(
1 − R

3

)2)

×
(
R
4
+ R

4
ln
(
1∕R

4

))
R
5

Max C�
S
(R) = −

5∑
j=1

cj

[
tan

(
𝜋

2

)
Rj

]
𝛼j

s.t. VS(R) =

5∑
j=1

vjR
aj

j
≤ Ṽ

lim

0.5 ≤ Rj,min
≤ Rj ≤ 1, 0 ≤ RS ≤ 1; j = 1, 2,… , 5

Ã =
{(

x,𝜇Ã(x)
)|x ∈ X

}
,
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generalized fuzzy number Ã is a fuzzy subset of real line R, 
whose membership function 𝜇Ã(x) ∶ R → [0,w] is defined as

Note: Ã is a normalized fuzzy number when w = 1, and it is 
non-normalized for w ≠ 1 (Fig. 2).

Here 𝜇w

LÃ
 and 𝜇w

RÃ
 are the left and right membership func-

tions of Ã respectively.
And the inverse functions hw

LÃ
∶ [0,w] → [a, b] and 

hw
RÃ

∶ [0,w] → [c, d] are defined as

Now according to integral value method of Liou’s (Liou 
and Wang 1992) we have, for a non-normal fuzzy number 
Ã , the corresponding membership function fÃ(x) can be 
normalized by dividing the maximal value of fÃ(x) , i.e., w 
and let ̄̃A and f̄Ã are normalized fuzzy number and the cor-
responding membership function.

Let k ∈ [0, 1] be the index of optimism which represent 
the degree of optimism of a decision maker (DM). then the 
total k-integral value is defined as

where IwR(Ã) and IwL(Ã) represent the right and left integral 
values of Ã , respectively. Now, when Ã being ranked, using 
the result discussed in Liou and Wang (1992), we have

(6)𝜇
w

Ã
(x) =

⎧
⎪⎪⎨⎪⎪⎩

𝜇
w

LÃ
(x) = w

x−a

b−a
, a ≤ x ≤ b;

w, b ≤ x ≤ c;

𝜇
w

RÃ
(x) = w

x−d

c−d
, c ≤ x ≤ d;

0, otherwise

(7)hw
LÃ
(y) = a +

(b − a)

w
y;

hw
RÃ
(y) = d +

(c − d)

w
y; y ∈ [0,w].

Iw
k
(Ã) =

[
kIw

R
(Ã) + (1 − k)Iw

L
(Ã)

]

Iw
L
(Ã) =

∫

1

0

hw
LÃ
(wy)dy =

1

2
(a + b)

and Iw
R
(Ã) =

∫

1

0

hw
RÃ
(wy)dy =

1

2
(c + d)

Thus, Iw
k
(Ã) =

1

2
[k(c + d) + (1 − k)(a + b)] which does 

not depend on the value of w, i.e., whether Ã is normal 
or not. A larger value of k indicates the higher degree 
of optimism. Now for k = 0, the total k-integral value is 
Iw
0
(Ã) =

1

2
(a + b) = IL

w
(Ã) , represents a pessimistic view-

point of a DM and for optimistic DM’s viewpoint, i.e., for 
k = 1, Iw

1
(Ã) =

1

2
(c + d) = IR

w
(Ã) . When k = 0.5, the total 

k-integral value Iw
0.5
(Ã) =

1

2

[
IR
w
(Ã) + IL

w
(Ã)

]
 reflects a mod-

erately optimistic DM’s viewpoint.

Interactive weighted fuzzy goal 
programming (IWFGP) method

The interactive method is an efficient and modified opti-
mization technique and gives a highly reliable system than 
other existing methods. At the time of solving a nonlinear 
programming problem, interactive method considers a large 
variety of situations that the decision maker (DM) might 
meet. In this method DM can modify the original model con-
tinuously to obtain a satisfactory solution until the decision 
maker will be satisfied with the obtained result at each stage.

Here we are presenting a solution procedure to solve 
multi-objective reliability optimization problem (MOROP) 
by interactive weighted fuzzy goal programming technique 
and the following steps are used

Step 1 Construct a fuzzy multi-objective nonlinear pro-
gramming problem considering k objective functions as

Step 2 Solve the fuzzy multi-objective nonlinear program-
ming problem taking only one objective function at a time 
and avoid the others, so that we can get the ideal solutions. 
If all the solutions are the same, select one of them as an 
optimal compromise solution and go to step 10. Otherwise 
go to step 3.

Step 3 With the values of all objective functions evaluated 
at these ideal solutions, the payoff matrix can be formulated 
as follows (Table 1)

Step 4 Determine the best upper bound and the worst 
lower bound for constructing the membership function as 
follows

So, Lr ≤ fr(x) ≤ Ur

Here Lr and Ur are, respectively, lower and upper bounds 
of the rth objective function fr(x), ∀r = 1, 2,… , k.

Step 5 Construct the membership functions of each objec-
tive functions as follows

(8)
Maximize (f1(x), f2(x),… , fk(x))

Subject to, gi(x) ≤ b̃i, i = 1, 2,… ,m; x ≥ 0;

Ur = max
{
fr(x

1), fr
(
x2
)
,… , fr

(
xk
)}

∀r = 1, 2,… , k

and Lr = min
{
fr(x

1), fr
(
x2
)
,… , fr

(
xk
)}

∀r = 1, 2,… , k

Fig. 2  Generalized trapezoidal fuzzy number
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and

Ur is the best upper bound and Lr is the worst lower bound 
of the rth objective functions, respectively.

Step 6 Now based on the max–min operator introduced 
by Bellman and Zadeh (1970), the following decision mak-
ing is defined as

Thus, the membership function is characterized by

(9)

𝜇
wr

r
(fr(x)) =

⎧
⎪⎨⎪⎩

0 if fr(x) < Lr;

wr
fr(x)−Lr

Ur−Lr
if Lr ≤ fr(x) ≤ Ur; ∀r = 1, 2,… , k.

wr if Ur < fr(x);

(10)

𝜇r

�
gi(x)

�
=

⎧⎪⎨⎪⎩

0 if bi + pi < gi(x);

1 −
gi(x)−bi

pi
if bi ≤ gi(x) ≤ bi + pi; ∀i = 1, 2,… ,m.

1 if gi(x) < bi;

fuzzy decisions (D) = fuzzy objective goals (G)

∩ fuzzy constraints (C)

Now using positive weights Wr (r = 1,2, …, k) for the 
objectives fr(x), we have

Here positive weights Wr (r = 1, 2, …, k) reflect the deci-
sion maker’s preferences regarding the relative importance 
of each objective goal.

Step 8 Now to convert the problem to a nonlinear goal 
programming problem, positive and negative deviational 
variables �+

k
 and �−

k
 are introduced, respectively. Thus the 

goal programming problem is as follows

where Gr is the aspiration level of rth objective function.
Step 9 Evaluate each objective function corresponding to 

the solution vector R∗ and find f ∗
1
, f ∗
2
,… , f ∗

k
.

If the preferred solution obtained from (13) is satisfactory 
for the decision maker (DM), then the process is success-

fully concluded and go to step 10. Otherwise go to step 5 
and repeat the process.

Step 10 Stop.
There are some restrictions on modifying the member-

ship functions of objectives and fuzzy constraints (See 
“Appendix”).

(12)

Maximize �

Subject to, Wr w�r(fr(x)) ≥ �; ∀r = 1, 2,… , k;

�i

(
gi(x)

)
≥ �; ∀i = 1, 2,… ,m;

� ∈ [0,w] and x ≥ 0, w ∈ (0, 1],

k∑
r=1

Wr = 1.

(13)

Maximize �

Subject to, Wr w�r(fr(x)) ≥ �; ∀r = 1, 2,… , k;

�i

(
gi(x)

)
≥ �; ∀i = 1, 2,… ,m;

fr(x) − �
+
k
+ �

−
k
= Gr

x, �+
k
, �−

k
≥ 0, r = 1, 2,… , k;

� ∈ [0,w] and w ∈ (0, 1],

k∑
r=1

Wr = 1.

Now, if(i) f ∗
k
> Lk, then Lk is replaced by f ∗

k
.

if(ii) f ∗
k
> Lk, then keep these aspiration level same.

and if(iii) f ∗
k
= Uk, then replace Lk by Uk and keep them until the solution procedure is terminated.

Table 1  Payoff matrix of the solution of (8)

f
1

f
2

… fk

x1 f ∗
1

(
x1
)

f2
(
x1
)

… fk
(
x1
)

x2 f1
(
x2
)

f ∗
2

(
x2
)

… fk
(
x2
)

⋮ ⋮ ⋮ ⋮
xk f1

(
xk
)

f2
(
xk
)

… f∗
k

(
xk
)

Introducing the variable λ, where

Step 7 Obtain a preferred solution by solving the follow-
ing problem:

�D(x) = min
(
�G(x),�C(x)

)

� = min
[
�
w1

1

(
f1(x)

)
,… ,�

wk

k

(
fk(x)

)]

= min
[
�
w
1

(
f1(x)

)
,… ,�w

k

(
fk(x)

)]
= min

[
w�1

(
f1(x)

)
,… ,w�k

(
fk(x)

)]
Where, w = min(w1,w2,… ,wk)

= minr(wr), for r = 1, 2,… , k.

(11)

Maximize �

Subject to, w�r(fr(x)) ≥ �; ∀r = 1, 2,… , k;

�i

(
gi(x)

)
≥ �; ∀i = 1, 2,… ,m;

� ∈ [0,w] and x ≥ 0, w ∈ (0, 1]
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Interactive weighted fuzzy goal 
programming technique on multi‑objective 
fuzzy reliability optimization problem

To solve the above defined model (5), using “Interactive 
weighted fuzzy goal programming (IWFGP) method” sec-
tion payoff matrix is formulated as follows:

RS(R) C�
S
(R)

R1 R∗
S

(
R1

)
C′
S

(
R1

)
R2 RS(R

2)) C�∗
S

(
R2

)

Now the best upper bound and worst lower bound 
are identified, which are given by U1, U2, and L1, L2 , 
respectively.

Where L1 ≤ RS(R) ≤ U1; L2 ≤ C�
S
(R) ≤ U2

Now the linear membership functions for the objectives 
RS(R) , CS(R) and constraint VS(R) are defined as follows:

and

After electing the membership functions, the crisp model 
is formulated as follows

U1 = max
{
RS(R

1), RS(R
2)
}
; U2 = max

{
C�
S
(R1), C�

S
(R2)

}

L1 = min
{
RS(R

1), RS(R
2)
}
; L2 = min

{
C�
S
(R1), C�

S
(R2)

}

(14)𝜇
w1

RS

�
RS(R)

�
=

⎧⎪⎨⎪⎩

0 if RS(R) < L1;

w1

�
RS(R)−L1

U1−L1

�
if L1 ≤ RS(R) ≤ U1;

w1 if U1 < RS(R);

(15)𝜇
w2

C�
S

�
C�
S
(R)

�
=

⎧⎪⎨⎪⎩

0 if C�
S
(R) < L2;

w2

�
C�
S
(R)−L2

U2−L2

�
if L2 ≤ C�

S
(R) ≤ U2;

w2 if U2 < C�
S
(R);

(16)

fVS

�
VS(R)

�
=

⎧⎪⎨⎪⎩

0 if Vlim + dVS
< VS(R);

1 −

�
VS(R)−Vlim

dVS

�
if Vlim ≤ VS(R) ≤ Vlim + dVS

;

1 if VS(R) < Vlim;

(17)

Maximize �

Subject to,

W1w

(
RS(R) − L1

U1 − L1

)
≥ �;

W2w

(
C�
S
(R) − L2

U2 − L2

)
≥ �;

dVS
(1 − �) −

5∑
j=1

vjR
aj

j
−
(
I(Vlim)

)
≥ 0;

0.5 ≤ Rj,min ≤ Rj ≤ 1, 0 ≤ RS ≤ 1;� ∈ [0,w] and w ∈ (0, 1],

2∑
r=1

Wr = 1.

Here I(Vlim) denote the integral value of the space limitation 
of the system (Fig. 3).

Now from the above problem, we have the goal program-
ming problem is as follows

Numerical example

Now a five-stage combination reliability model of a complex 
system is considered for numerical exposure. The problem 
becomes as follows (Table 2):

Here we consider the resource V lim as triangu-
lar fuzzy number and taking the fuzzy input data as 
Ṽlim = (23.5, 24.5, 26.5, 27.5) for k = 0.5 and for each objec-
tive function solution vectors is given by (Table 3)

Now the upper and lower bound are given by (Table 4) 
U1 = 0.9652396, U2 = −156.059; L

1
= 0.0017051, L

2
= 

−5442.103; and can be written as 0.0017051 ≤ R
S
(R) ≤

0.9652396 and −5442.103 ≤ C�
S
(R) ≤ −156.059;

The membership functions of objectives and constraints 
are formulated and solving the goal programming problem 
(18) using LINGO package we have

(18)

Maximize �

Subject to,

W1w

(
RS(R) − L1

U1 − L1

)
≥ �;

W2w

(
C�
S
(R) − L2

U2 − L2

)
≥ �;

dVS
(1 − �) −

5∑
j=1

vjR
aj

j
−
(
I(Vlim)

)
≥ 0;

RS(R) − �
+
RS

+ �
−
RS

= GRS
;

C�
S
(R) − �

+
CS�

+ �
−
CS�

= GCS
;

0.5 ≤ Rj,min ≤ Rj ≤ 1, 0 ≤ RS ≤ 1;� ∈ [0,w] and w ∈ (0, 1],

2∑
r=1

Wr = 1.

�
+
RS
, �−

RS
, �+

C�
S

, �−
C�
S

≥ 0;

(19)

Max RS(R) = R
1

(
R10

2
+ 10R9

2

(
1 − R

2

))(
1 −

(
1 − R

3

)2)

×
(
R
4
+ R

4
ln
(
1∕R

4

))
R
5

Min C
S(R) =

5∑
j=1

cj

[
tan

(
�

2

)
Rj

]
�j

s.t. VS(R) =

5∑
j=1

vjR
aj

j
≤ V

lim

0.5 ≤ Rj,min
≤ Rj ≤ 1, 0 ≤ RS ≤ 1; j = 1, 2,… , 5

R1 = (0.999999, 0.996198, 0.872375, 0.815615, 0.999999) and

R2 = (0.500000, 0.500000, 0.500000, 0.500000, 0.500000)
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Fig. 3  The whole procedure of 
the proposed model

Yes

No

yes

Step: 1
Mathematical 
model formulation

Step: 3
formulate  pay-off matrix 

Step: 5
Construct membership function and the 
aspiration level of each goal  ( = 1,… )

Step: 6
Choose 

Step: 7
Construct -
maximization problem 

Is local 
consequence ?

Acceptable 
solution for 

DM.

Stop

Step: 4
Determine and  for each 
objective function

Step: 8 
Solve mixed integer goal 
programming problem

Step: 2
Solve k objective functions as a 
single objective

Is preferred 

solution ?

Step: 9
Modify the old and lower and 
upper bounds and aspiration 
levels

Table 2  The input data for the 
MOROM (19)

c1 c2 c3 c4 c5 v1 v2 v3 v4 v5 �j(∀j) �j(∀j) Vlim

30 25 28 35 38 7 4.80 3.75 3 8 0.6 1 25.5
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The new upper and lower bound are 0.206754 ≤

R
S
(R) ≤ 0.9652396 and −3964.032 ≤ C�

S
(R) ≤ −156.059 . 

Thus the new aspiration levels of the two objective func-
tions are 0.206754 and − 3964.032, respectively. Assume 
that the decision maker (DM) is not satisfied with this solu-
tion and needs more satisfactory solution and thus accord-
ing to discussion on modification of membership function 
in “Interactive weighted fuzzy goal programming (IWFGP) 
method” section, DM modified and resolved the model and 
will get the following compromise solution (Table 5):

Now if the DM considers this solution as preferred com-
promise solution, then the procedure is terminated, but if 
not, then the process will continue until DM will accept 
the result. Thus we have the following set of compromise 
solutions 

(
RS(R),C

�
S
(R)

)
 as: (0.0017051, − 5442.103), 

(0.206754, − 3964.032), (0.605869, − 2469.679), 
(0.820822, − 2017.214), (0.869041, − 1184.530), (0.959681, 
− 619.152), respectively.

Thus the proposed interactive weighted fuzzy goal pro-
gramming (IWFGP) method gives the preferred compromise 
solution as RS(R) = 0.959681 and C�

S
(R) = −619.152.

According to Wahed and Lee (2006), to determine 
the degree of closeness of the result obtained by IWFGP 
approach results to the ideal solution, we define the follow-
ing distance functions (Steuer 1986) as

(20)D
�
(�,K) =

[
K∑
r=1

�
�

r

(
1 − dr

)
�

]1∕
�

where � is a distance parameter and 1 ≤ � ≤ ∞ . dr repre-
sents the degree of closeness of the preferred compromise 
solution to the optimal solution vector of the rth objective 
function

Table 3  Payoff matrix of the solution of (19)

RS(R) C�
S
(R)

R1 0.9652396 − 5442.103
R2 0.001705135 − 156.059

Table 4  First modified compromise solutions of (19)

λ R1 R2 R3 R4 R5 �RS
�C′

S
RS(R) C�

S
(R)

0.9014520 0.9588488 0.9746650 0.8939865 0.8531018 0.9525368 0.205049 1479.071 0.206754 − 3964.032

Table 5  Second modified compromise solution of (19)

λ R1 R2 R3 R4 R5 �RS
�C′

S
RS(R) C�

S
(R)

0.8669917 0.957028 0.973917 0.891028 0.8490947 0.950442 0.3001151 1493.541 0.605869 − 2469.679

� =
(
�1, �2

)
 is the vector of objectives aspiration levels and ∑2

L=1
�L = 1 . Now for � = 1, 2 and ∞ we have the distance 

functions as follows:

 (i) D1(�,K) = 1 −
K∑
r=1

�rdr

 (ii) D2(�,K) =

�
K∑
r=1

�
2
r

�
1 − dr

�2
�1∕2

 (iii) 

In the given numerical example we take �1 = �2 = 0.5, (i.e., 
the objectives are equally important) and compare the solu-
tion of (19) with different approaches.

From Table 6, it is clear that the suggested approach 
gave a better preferred compromise solution and also in 
D1, D2 and D∞ compared to the solution obtained by intui-
tionistic fuzzy approach in Mahapatra and Roy (2010) and 
FMOGP method.

Conclusion

Here we introduced interactive fuzzy-weighted goal pro-
gramming method to find the preferred compromise solu-
tion of the proposed multi-objective reliability optimization 
model. Also here we consider the resources as trapezoidal 
fuzzy number and used the total integral value of fuzzy num-
ber to convert into crisp number. The main advantage of 
interactive approaches is that the DM controls the search 

i.e. dr =
the optimal solution of rth objective function

the preferred compromise solution of rth objective function

(21)
D∞(�,K) = max

r

{
�r

(
1 − dr

)}
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direction during the solution procedure and as a result, the 
DM’s preferences achieve efficient solutions. In this paper 
the proposed approach focuses on maximizing the worst 
lower bound to obtain the preferred compromise solution 
which is close to the best upper bound of each objective 
functions. Updating both the membership values and the 
aspiration levels during the solution procedure, it con-
trols the search direction. Thus the proposed method is an 
efficient and modified optimization technique and gives a 
highly reliable system than the other existing methods. An 
illustrative numerical example was provided by compar-
ing the result obtained in the interactive method with the 
other methods to demonstrate the efficiency of the proposed 
method.
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Appendix

In the proposed interactive method there are some restric-
tions on modifying the membership functions of objectives 
and fuzzy constraints. Only the following variations are 
acceptable for modification:

1. Increase in Lr: Increase in Lr leads to the rise of require-
ment on the pth objective. All feasible solutions x with 
fr(x) < Lr(new) are eliminated from the new feasible 
solution set. Now, we should increase as few require-
ments as possible in each iteration to avoid the possibil-
ity of getting into empty feasible solutions set because 
of excess increases of Lr. We must be very careful to 
modify Ur when the decision maker insists on changing 
Ur, because reduction of the upper bound Ur can lead to 
an inefficient solution.

2. For the constrains, ≤ , ≥ , = , the decrease of pi is an 
acceptable modification which can guarantee an efficient 
solution in the recalculated compromise solution step. 
The consequence of an increase of pi with ≤ , ≥ , = con-
straints might be, for example, that the feasible solution 
set increases and new possible solutions are included in 
the investigation (Fig. 4).
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