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Abstract The hub location problem arises in a variety of

domains such as transportation and telecommunication

systems. In many real-world situations, hub facilities are

subject to disruption. This paper deals with the multiple

allocation hub location problem in the presence of facilities

failure. To model the problem, a two-stage stochastic for-

mulation is developed. In the proposed model, the number

of scenarios grows exponentially with the number of

facilities. To alleviate this issue, two approaches are

applied simultaneously. The first approach is to apply

sample average approximation to approximate the two

stochastic problem via sampling. Then, by applying the

multiple cuts Benders decomposition approach, computa-

tional performance is enhanced. Numerical studies show

the effective performance of the SAA in terms of opti-

mality gap for small problem instances with numerous

scenarios. Moreover, performance of multi-cut Benders

decomposition is assessed through comparison with the

classic version and the computational results reveal the

superiority of the multi-cut approach regarding the com-

putational time and number of iterations.

Keywords Reliable hub location problem � Two-stage
stochastic programming � Sample average approximation �
Multiple cuts Benders decomposition

Introduction

In a network with many origin–destination flows, hub

facilities are used as interacting central points for different

purposes such as better controlling on network flows and

lower transportation cost. Hub networks are highly used in

real-world problems such as freight and truck transport

systems, postal network and telecommunications systems.

In logistics application of hub network, aggregation of

servicing demands in hub facilities creates economies of

scale and discount factor is considered between hub-to-hub

connections to take economies of scale into account.

The real-world problems have an uncertain nature.

Accordingly, the hub location problem should be con-

sidered with uncertain parameters such as demand and

transportation cost and, regarding the uncertainty, can

describe real-world feature and can be more realistic.

Marianov and Serra (2003) propose a model with chance

constraints to control congestion in hub facility. They

consider the network as an M/D/c queuing system where

the arrival rate of demand to hub facilities is stochastic

and c servers in hub facilities process the demand in a

deterministic time. Mohammadi et al. (2011) extend that

research by considering an M/M/c queuing system on the

hub-covering model where processing time is stochastic.

In both of these researches, a probabilistic constraint

controls the congestion in the hub facilities.

Sim et al. (2009) consider p-center hub problem with

service level constraints. They consider a stochastic travel

time for each arc. The model determines location of hubs in

the network which guarantees that the longest travel time

through the network was satisfied with predefined service

level.

Yang (2009) proposes a two-stage stochastic model to

design hub network where parameters such as discount
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factor and demands are stochastic and described by a set of

discrete scenarios. Adibi and Razmi apply a similar

approach to design air transportation network in Iran. They

consider transportation cost and demand as stochastic

parameters (Adibi and Razmi 2015). Contreras et al. (2011)

present three stochastic hub location models. They propose

these models through the two-stage stochastic program-

ming framework. The first model considers stochastic

demand. The second one considers dependent stochastic

transportation costs. Finally, the last one is associated with

independent stochastic transportation costs. They prove

that the first and second models are equivalent to the

deterministic expected value one. However, the stochastic

model was not equivalent to the deterministic expected

value problem in the third model. They consider continu-

ous distribution functions (normal and gamma distribution)

to describe uncertain parameters and apply Monte-Carlo

sampling-based techniques, sample average approximation

(SAA), to approximate them by discrete set of scenarios.

They implement Benders decomposition technique to

tackle the large-scale optimization problem.

Alumur et al. (2012) consider different types of uncer-

tainty in their research. Similar to previous research, they

consider stochastic demands and propose two-stage

stochastic models for single and multiple allocations. They

reformulate the models to the extensive deterministic

equivalent form. They regard uncertainty in the set up

costs, which no probabilistic information is available. They

model this uncertainty by minimax regrets approach.

Finally, they propose a combined robust and stochastic

model. Ghaderi and Rahmanian (2015) propose a robust

stochastic single allocation hub location problem based on

the p-robust concept. They use variable neighborhood

search algorithm to solve the problem.

In addition to uncertainty of parameters, facilities in a

network may fail due to random or intentional disruption.

Kim and O’Kelly (2009) propose a reliable model for hub

network where each link has a failure probability, and the

model tries to locate hubs and allocate demand nodes to

them so that the network has maximum reliability. Later,

Kim (2012) proposes a protective model where a backup

hub is considered after disruption of the primal link.

Similar to the previous research, the protective hub loca-

tion model aims to identify hub location and their alloca-

tion that maximize the total network reliability. Bashiri and

Rezanezhad (2015) consider path reliability in the hub

covering problem where both facility and covering relia-

bility are considered in their proposed model. In addition to

the maximizing network reliability, Snyder and Daskin

(2005) propose a reliable model to minimize total trans-

portation cost in normal and disruption situations. Gener-

ally, the random disruption can be modeled in two ways:

implicit modeling and scenario-based modeling while the

second one is more flexible against disruption (Snyder and

Daskin 2007).

An et al. (2015) propose a quadratic implicit model of

hub network where at most one hub in a path can be dis-

rupted, and they propose its linearized formulation. To

reach a proper network configuration, they propose

Lagrangean relaxation and branch and bound solution

approaches.

In addition to random failure, intentional disruption is

considered in the hub network design in later studies. In

the intentional disruption, r facilities from p unprotected

facilities are disrupted by a potential attacker (called as

r-interdiction). Recently, Parvaresh et al. (2013) have

regarded intentional disruption in the hub network

through a bi-level programming model. In their proposed

model, hub network designer’s (leader) objective is

minimization of expected transportation cost, including

the lost-sales penalty. The attacker (follower) tries to

maximize the total damage to the system. They propose

simulated annealing algorithm to solve the bi-level

model. In the other research, the same authors propose a

multiple objective bi-level programming under inten-

tional disruption (Parvaresh et al. 2014). The network

designer objectives are to minimize network total

transportation cost in usual condition and worst-case

transportation costs after r-interdiction. The attacker’s

objective is similar to the previous research. They pro-

pose simulated annealing and tabu search algorithms to

solve the model.

To the best of our known, the scenario-based model for

reliable hub location problem is not considered yet. In this

study, a reliable hub location model as scenario-based one,

which is more flexible than implicit models, is proposed

and two-stage stochastic programming formulation is used

to model reliable hub location problem. Moreover, benders

decomposition is integrated with scenario reduction tech-

nique to solve the large-scale instances.

In the next section, a two-stage stochastic mathematical

model and its deterministic equivalent form are presented.

Moreover, the approximation methods are described in

general. Sensitivity analysis and computational results are

provided in Sect. 3. Finally, the conclusion is provided in

the last section.

Problem definition

O’Kelly (1998) defined hub facility as special nodes in the

network which is located to facilitate connectivity between

interacting places. In this paper, it is considered that a

disruption may occur at hub facilities and formulated as a

two-stage stochastic problem. In the first stage, there are

some candidate nodes to establish hub facilities (Fig. 1a)
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and the model determines location of hubs (p-hubs) from

candidate nodes (Fig. 1b). After locating the hubs, in the

second stage, the random parameter (a scenario) becomes

known, and disruption may occur and some of the facilities

may fail. In the second stage, demands are assigned to the

remained hub facilities (Fig. 1c, d). The model objective is

the minimization of expected transportation cost over all

scenarios.

Model assumption

• The capacities of the hub facilities are unlimited.

• Disruption events can occur through the network

independently.

• There is a dummy hub which is never failed and an

allocated flow to the dummy hub incur penalty (the

flow is considered as an unserved one). This facility is

used to keep model feasible for all scenarios.

• The non-hub nodes can be assigned to several hubs

(multiple allocation).

• Each demand node is considered a candidate for

establishment of hub.

• A disrupted hub is considered as a demand node.

Parameters and decision variables

N Set of demand nodes;

DF Set of disrupted hub nodes;

dij The distance to travel between nodes i (origin) and

j (destination);

wij Amount of flow between nodes i - j;

a Discount factor for inter hub connections;

cijkm The cost per unit of flow between i and j, routed via

k and m as first and second hubs, respectively,

which is calculated according to

cijkm = dik ? adkm ? dmj;

qi Shows failure probability of i th node;

ps Shows probability of ith scenario occurrence;

S Set of all scenarios;

S’ Subset of all scenarios generated in SAA procedure;

ai(n) Random binary parameter that takes value 1 if ith

node is being disrupted;

N Support set of random variable;

aik Binary parameter that takes value 1 if ith node is

being disrupted in kth scenario;

xijkm Continuous decision variable that shows amount of

flow i - j that routed via hubs k and m;

Candidate hub
nodes

Demand
node

Established
Hub

Disrupted
hub

Inter-hub
connection

(a) (b)

(c) (d)

Fig. 1 Reliable hub network

structure design in two stages

(a demand and potential hub

nodes; b established hub

facilities in the first stage; c,
d two realizations of stochastic

disruption in the network and

their allocations)
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xsijkm Continuous decision variable that shows amount of

flow i - j that routed via hubs k and m in scenario s;

zi Binary decision variable which takes value 1 if hub

facility is established in ith node and 0 otherwise.

Each node in the network may fail or not and failures are

independently and identically distributed according to the

Bernoulli distribution. Therefore, in a realized scenario, the

facilities can be divided into normal and disrupted facilities

(DF). The occurrence probability of each scenario can be

calculated as follows:

ps ¼
Y

j2DFs
qj

Y

j2NnDFs
ð1� qjÞ

and there are 2|N|-1 scenarios.

Mathematical modeling

In the first stage, the location of hub is determined.

Stage 1:

min S1 ¼ E½Qðx; nÞ� ð1Þ
X

i

zi ¼ P ð2Þ

zdummy ¼ 1 ð3Þ

subject to: zi 2 f0; 1g; 8i ð4Þ

One of the P established hubs is a dummy hub. The term

Qðx; nÞ, recourse function, is the optimal value of the

second stage problem:

Stage 2:

Qðx; nÞ ¼ min S2 ¼
X

i

X

j

X

k

X

m

cijkmxijkm ð5Þ

subject to:
X

k

X

m

xijkm ¼ wij 8i; j ð6Þ

X

m

xijkm þ
X

mjm 6¼k

xijkm �wijzkð1� akðnÞÞ 8i; j; k;

m; n 2 Nk

ð7Þ

xijkm � 0 8i; j; k;m ð8Þ

The objective function (1) contains the expected value

of second stage objective function. Constraint (2) deter-

mines the number of hubs in the network. Constraint (3)

assures that dummy hub should be established in the net-

work. Constraint (4) imposes integrality requirement of

location variables. The hubs location should be determined

before observing the realization of uncertain binary

parameters. The second stage objective is to minimize total

transportation cost. Constraint (6) ensures that the flow

i - j is routed through hubs. Constraint (7) guarantees that

the flow i - j can be routed from node k if node k is

selected as hub. Constraint (8) enforces the flow to be non-

negative.

Simply, the above formulation can be considered as an

extensive deterministic equivalent form as the following:

minE:F ¼
X

i

X

j

X

k

X

m

X

s2S
pscijkmx

s
ijkm ð9Þ

subject to:
X

k

X

m

xsijkm ¼ wij; 8i; j; 8s 2 S ð10Þ

X

m

xsijkm þ
X

m;m 6¼k

xsijkm �wijzkð1� aksÞ 8i; j; k;m; 8s 2 S

ð11Þ
xsijkm � 0 8i; j; k;m; 8s 2 S; zi 2 f0; 1g; 8i

As it is obvious in above formulation, the number of

scenarios increases exponentially as the number of candi-

date nodes increases. The extensive deterministic equiva-

lent form is difficult to solve directly since this form

contains many scenario-dependent variables. Two common

approaches can be applied in stochastic programming to

tackle this drawback: decomposition techniques such as

Benders decomposition, L-shaped methods and scenario

approximation techniques such as SAA. In this paper,

integrated solution approach is applied to overcome the

computational difficulty.

Sample average approximation

Sample average approximation (SAA) is a Monte-Carlo-

based approach that is used to solve two-stage stochastic

programming. The SAA approximates the true optimal

value by solving generated samples of stochastic parame-

ters, and it is used in the reliable facility location problem

with a large number of scenarios (Gade and Pohl 2009;

Shen et al. 2011; Aydin and Murat 2013). The steps of

SAA procedure are as follows (Kleywegt et al. 2001).

Step 1: Generate independent scenarios (S’) and solve

the following SAA problem:

min S:P ¼
X

i

X

j

X

k

X

m

X

s2S0

1

jS0jcijkmx
s
ijkm ð12Þ

subject to:
X

k

X

m

xsijkm ¼ wij 8i; j 2 N; 8s 2 S0 ð13Þ

X

m

xsijkm þ
X

m;m 6¼k

xsijkm �wijzkð1� aksÞ 8i; j; k;m 2 N;

8s 2 S0

ð14Þ

xsijkm � 0 8i; j; k;m 2 N; 8s 2 S0; zi 2 f0; 1g8i ð15Þ

Step 2: Repeat Step 1 M times and solve SAA problem

and records (z*m, S.P*m) for m = 1…M.
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Step 3: Calculate the statistical lower bound of true

objective function according to (16):

Zl ¼
1

M

XM

m¼1

S:P�m ð16Þ

The variance of the lower bound is calculated as

follows:

r2Zl ¼
1

MðM � 1Þ
XM

m¼1

ðz�m � ZlÞ2 ð17Þ

Step 4: Generate N’ (jN 0 �j jS0j) of independent identi-
cally distributed random scenarios and solve the following

problem where location variables are fixed and selected

from one of the recorded solutions of Step 2. The extracted

value is considered as the statistical upper bound of the true

problem.

minZu ¼
X

n2N0

X

i

X

j

X

k

X

m

1

jN 0jcijkmx
n
ijkm ð18Þ

Zu estimates upper bound of the true objective function

and its variance can be calculated according to the

following:

r2Zu ¼
1

N 0ðN 0 � 1Þ
X

n2N 0

X

i

X

j

X

k

X

m

cijkmx
n
ijkm � Zu

 !2

ð19Þ

Step 5: Calculate the optimality gap by subtracting the

lower bound from the upper bound:

SAAgap ¼ Zu � Zl ð20Þ

and the variance of optimality gap is calculated as follows:

r2gap ¼ r2Zl þ r2Zu ð21Þ

Multiple cuts Benders decomposition solution

approach

The stochastic models are needed much more computa-

tional effort in comparison to deterministic one. Moreover,

hub location problem is NP-hard. The proposed model

contains these two complexity issues and an efficient

algorithm is required. Therefore, stochastic decomposition-

based approach is proposed to tackle with these

complexities.

Van Slyke and Wets (1969) extended Benders decom-

position method for mixed integer stochastic models. SAA

can approximate the original two stochastic problem via

sampling and reduce the number of scenarios. However,

solving reliable hub location problem involving S’ sce-

narios is still difficult. Therefore, an integration of sam-

pling approach and decomposition technique is applied to

enhance computational performance.

Benders decomposition method decomposes the original

stochastic problem into two main parts: the master problem

and the slave problem. Generally, the master problem

involves the first stage decision variables and slave problem

contains second stage variables with considering fixed values

for first stage variables.Due toblock structure of the extensive

form problem (Birge and Louveaux 1997), the slave problem

can be decomposed into scenario subproblems. In following,

the master and slave problem (22)–(25) is presented:

Slave Problem (for each scenario 8s 2 S):

minðSPÞ ¼
X

i

X

j

X

k

X

m

cijkmxijkm ð22Þ

subject to:
X

k

X

m

xijkm ¼ wij 8i; j ð23Þ

X

m

xijkm þ
X

m;m 6¼k

xijkm �wijz
fixed
k ð1� aksÞ 8i; j; k;m ð24Þ

xijkm � 0 8i; j; k;m ð25Þ

In the above formulation, slave problem is optimized by

considering fixed location variables for each scenario. To

generate optimality cut, dual variable associated with the

slave problem is required. Therefore, the dual forms of the

slave problems are stated as follows:

Dual of slave problem (for each scenario 8s 2 S):

max
X

i

X

j

wijsij �
X

i

X

j

X

k

wijz
fixed
k ð1� aksÞpijk ð26Þ

sij � pijk � pijm �Cijkm 8i; j; k;m 2 N; k 6¼ m ð27Þ

sij � pijk �Cijkk 8i; j; k ð28Þ

pijk � 0 8i; j; k; sij is free: ð29Þ

For the proposed problem, we are facing the following

master problem:

Master problem:

minðMPÞ ¼
X

s2S
hs ð30Þ

X

i

zi ¼ P ð31Þ

zdummy ¼ 1 ð32Þ

J Ind Eng Int (2017) 13:445–453 449

123



hs þ
X

i

X

j

X

k

pswijzkð1� aksÞpiterijk �
X

i

X

j

pswijs
iter
ij

8s 2 S; iter ¼ 1; . . .; current Benders iteration

ð33Þ
zi 2 f0; 1g; 8i 2 I hs � 0 ð34Þ

where Eq. (33) is set of optimality cuts generated in

each iteration. It is worth noting that Eqs. (31) and (32)

guarantee the feasibility of slave problems and there is

no need to add Benders feasibility cuts to the master

problem.

An aggregation of all dual information into one

optimality cut leads to losing information in the single

cut method (Trukhanov et al. 2010). Birge and Lou-

veaux modified Benders decomposition method called

multiple cuts Benders decomposition where the dual

information of all scenarios is kept during algorithm

execution. In the multiple cuts Benders decomposition

method, optimality cuts are generated by each scenario

in each iteration. In Algorithm 1, procedure of the

multiple Benders decomposition method for proposed

problem is demonstrated based on (Birge and Louveaux

1988).

Algorithm 1. Multiple Cuts Benders Decomposition for 
proposed problem

UB←∞, LB← -∞, iter←0
Optimality cut set =∅
Termination←0;
While Termination=0

Solve Master problem;
LB←MP*;
For each s∈S do

Solve slave problems;
If 

(1 ) iter iter
s ij k ak s ij ij sijk

i j k i j
p w z a p wπ τ θ− + ≥∑∑∑ ∑∑

then
Generate Optimality cut;

UB←min(UB , Σs ps
*

sSP );
If UB – LB<epsi then

Termination←1;
Else

Add generated cuts to Optimality cut set;
iter←iter+1;

Stop;

The proposed solution approach is depicted in Algo-

rithm 2.

Algorithm 2. Proposed solution approach for reliable 
hub location problem 

For each i=1 to |M| do 

Generate independent scenarios; 

Call Algorithm 1 to solve SAA problem; 

Record *iz and *. iS P ; 

Calculate lower bound and its variance according to 
Equations 16 and 17; 

Generate N' scenarios and estimates upper bounds and its 
variance according to Equations 18 and 19; 

Calculate Optimality gap and its valiance according to 
Equations 20 and 21; 

Stop; 

Computational analysis

All the computational tests were carried out on the laptop

computer with Intel Core i5 CPU with 2.5 GHz clock

speed and 4 GB of RAM. The proposed models are solved

by the GAMS (version 23.5.2) with CPLEX solver and

CAB data set is used to do the computational tests.

Failure probability effect on the network

For sensitivity analysis of the proposed model, a 9-node

problem (a = 0.5) from CAB dataset is generated. The

number of established hubs varies from two to six in which

one of them is a dummy hub. The penalty cost of flows

used the dummy hub is considered as 1:5	max
i;j

fci;jg. The

computational results are depicted in Fig. 2. By consider-

ing Fig. 2, it can be concluded that

• It is expected that when the number of hubs in the

network increases, the total cost of network decreases,

• Trend of proposed network toward classical hub

network (q = 0) is observed as the failure probability

decreases,

• When failure probability increases, because of facilities

unavailability, the total expected transportation cost

increases.

• The model is more sensitive (in objective function

value aspect) to failure probability when the number of

hubs reduces.
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Sensitivity analysis of replication and sample size

Quality of SAA result depends on the proper selection of

sample size and number of replications. From statistical

point of view, increase in both sample size and the number

of replications leads to better approximation. In contrast,

from computational point of view, increasing these two

parameters increases computational time. To determine the

effect of sample size and number of replications, 10-node

CAB data set (a = 0.5 and p = 3 and N0 = 1000) is used.

The results are reported in Table 1 and Fig. 3. The result

shows that the sample size is highly effective in quality of

SAA procedure (in terms of optimality gap). However, as it

is depicted in Fig. 4, the computational time increases by

increasing the sample size.

Multiple and single cut Benders decomposition

The performance of single and multiple cuts Benders

decomposition in terms of computational time and number

of iteration has been investigated in this subsection. To do

so, four instances with different hub network parameters

from the 26 nodes-CAB data set are considered. The

algorithm terminates when the convergence criterion is

reached (epsi is considered to be 1). In these cases, ten

scenarios are generated randomly. The results show that

multiple cuts method outperforms single cut method in

both mentioned aspects (Table 2). The computational

results demonstrate the superiority of the proposed multiple

cuts method over the single one in terms of computational

time and number of algorithm iterations.

SAA and multiple cut Benders decomposition

In this subsection, Benders decomposition is applied inside

SAA procedure for instances with a large number of sce-

narios. To do so, 26 nodes-CAB data set is considered. It is

clear that solving the reliable p-hub location problem with

225 scenarios is impossible even by Benders decomposi-

tion. Therefore, applying scenario reduction technique such

as SAA seems to be necessary. In this section, SAA

parameters are set to be |S0| = 15, M = 15 and N0 = 250.

The results are reported in Table 3. It is worth men-

tioning that without using the proposed algorithm, the same

Fig. 2 Sensitivity analysis of failure probability

Table 1 Optimality gap in different values of sample size and

replication

Sample size |S0|

1 5 10 20 30 40

Replication 20 9.36 8.52 6.92 4.70 4.68 4.10

40 9.10 8.36 6.34 5.11 4.76 4.05

60 9.23 8.23 6.27 5.17 4.59 4.25

80 9.25 8.11 6.51 4.99 4.25 4.22

100 9.23 7.88 6.62 5.26 4.34 4.21

Fig. 3 Trend of decreasing optimality gap by increasing the sample

size
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Fig. 4 Trend of increasing CPU time by increasing the sample size
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case cannot be solved. The results show that by considering

the same failure probability and number of hubs in the

network, as the discount factor is decreasing, the optimality

gap increases. Moreover, by considering the fact that the

uncertainty is concerned to strategic decisions, optimality

gap is fairly good when the number of hubs in network

increases. However, CPU time increases when number of

hubs increases.

Conclusions

In this paper, a two-stage stochastic programming prob-

lem is proposed to design multiple allocation hub network

under disruption risk. The model tries to minimize the

expected transportation cost. The two-stage stochastic

model grows exponentially with the number of facility,

and a scenario reduction technique is applied to tackle the

issue of facing the large number of scenarios. In addition

to the approximation scenarios by SAA, Benders

decomposition approach is used inside the SAA to

increase computational performance. Computational

results show that the SAA can provide a good approxi-

mation in terms of optimality gap (especially in small

instances). The results show that SAA performance is

sensitive to the sample size. Two variants of benders

decomposition are applied to solve large cases of reliable

p-hub location problem. The comparison of the compu-

tational results obtained by these two approaches showed

that the multiple cuts benders outperformed the classic

one. Considering the arc failure probability in the reliable

hub location problem using the mentioned algorithm can

be considered as a future research direction.
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P a Location Lower

bound

Upper

bound

Gap % rZl rZu rgap Average

iteration

Average time

for each SAA

problem (min)

0.05 3 0.2 6-12-26 4.388E?09 5.074E?09 13.52 2.532E?07 1.615E?08 1.869E?08 13.7 8.53

0.05 3 0.5 12-20-26 4.861E?09 5.200E?09 6.50 2.011E?07 1.231E??08 1.432E?08 16.4 8.53

0.05 3 0.8 8-25-26 5.115E?09 5.427E?09 5.74 1.765E?07 7.140E?07 8.905E?07 15.4 8.67

0.1 3 0.2 6-22-26 4.637E?09 5.713E?09 18.83 3.800E?07 2.538E?08 2.918E?08 12.9 6.93

0.1 3 0.5 12-20-26 4.981E?09 5.812E?09 14.30 3.490E?07 2.304E?08 2.653E?08 12.4 7.56

0.1 3 0.8 11-25-26 5.244E?09 5.873E?09 10.71 3.374E?07 2.411E?08 2.748E?08 12.9 7.56

0.05 5 0.2 4-12-17-24-26 2.757E?09 2.955E?09 6.71 2.406E?07 3.917E?07 6.323E?07 37.3 20.07

0.05 5 0.5 2-4-7-12-26 3.625E?09 3.726E?09 2.72 1.919E?07 2.684E?07 4.604E?07 64.0 33.13

0.05 5 0.8 1- 4-12-17-26 4.145E?09 4.201E?09 1.33 1.334E?07 2.034E?07 3.369E?07 57.0 21.07

0.1 5 0.2 1-4-12-17-26 2.993E?09 3.156E?09 5.18 2.501E?07 4.876E?07 7.377E?07 40.1 21.53

0.1 5 0.5 1-4-12-17-26 3.736E?09 3.893E?09 4.03 2.458E?07 5.813E?07 8.271E?07 41.4 22.47

0.1 5 0.8 1-4-12-17-26 4.227E?09 4.379E?09 3.47 2.461E?07 3.129E?07 5.590E?07 33.2 24.40
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