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Phase II monitoring of auto-correlated linear
profiles using linear mixed model
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Abstract

In many circumstances, the quality of a process or product is best characterized by a given mathematical function
between a response variable and one or more explanatory variables that is typically referred to as profile. There are
some investigations to monitor auto-correlated linear and nonlinear profiles in recent years. In the present paper,
we use the linear mixed models to account autocorrelation within observations which is gathered on phase II of
the monitoring process. We undertake that the structure of correlated linear profiles simultaneously has both
random and fixed effects. The work enhanced a Hotelling’s T2 statistic, a multivariate exponential weighted moving
average (MEWMA), and a multivariate cumulative sum (MCUSUM) control charts to monitor process. We also
compared their performances, in terms of average run length criterion, and designated that the proposed control
charts schemes could effectively act in detecting shifts in process parameters. Finally, the results are applied on a
real case study in an agricultural field.

Keywords: Profile monitoring; linear mixed model; MCUSUM, MEWMA; Hotelling’s T2; autocorrelation;
average run length
Introduction
Control charts are used to detect anomalies in the pro-
cesses. They are most often used to monitor production-
related processes. In many business-related processes,
the quality of a process or product can be characterized
by a relationship between a response variable and one or
more explanatory variables which is referred to as pro-
file. The purpose of the analyzing of profile in phase I is
to determine the stability of the process and estimate pa-
rameters, however, in phase II, analyzers are interested
in rapidly detecting the significant shifts in the process
parameters. Phase I analysis of simple linear profiles has
been investigated by a number of authors such as Stover
and Brill (1998), Kang and Albin (2000), Kim et al. (2003)
and Mahmoud et al. (Mahmoud and Woodall 2004, 2007).
Many authors including Kang and Albin (2000), Kim et al.
(2003), Noorossana et al. (2004), Gupta et al. (2006),
Zou et al. (2006), Saghaei et al. (2009), and Mahmoud
et al. (2009) have investigated phase II monitoring of
simple linear profiles. Noorossana et al. (2010a, b)
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investigated monitoring of multivariate simple linear pro-
files on phase II. Zou et al. (2007) and Kazemzadeh et al.
(2009a, b) considered cases when the profiles can be char-
acterized by multiple and polynomial regression models re-
spectively. Mahmoud (2008) considered phase I monitoring
of multiple linear profiles, and Kazemzadeh et al. (2008)
proposed three methods for monitoring the kth-order poly-
nomial profile in phase I. Ding et al. (2006), Moguerza et al.
(2007), Williams et al. (2007), and Vaghefi et al. (2009) in-
vestigated nonlinear profiles. In these studies, it is implicitly
assumed that the error terms within or between profiles is
independently and identically normally distributed; how-
ever in some cases, these assumptions can be violated.
Noorossana et al. (2010a, b) analyzed the effects of non-
normality on the monitoring of simple linear profiles.
Noorossana et al. (2008) and Kazemzadeh et al. (2009a, b)
investigated autocorrelation between successive simple lin-
ear and polynomial profiles respectively. Soleimani et al.
(2009) proposed a transformation to eliminate the
autocorrelation between observations within a simple
linear profile in phase II. Jensen et al. (2008) proposed
two T2 control charts based on linear mixed model
(LMM) to account for the autocorrelation within linear
profiles in phase I. They concluded that the linear mixed
an Open Access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.
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model is superior to the least square approach for unbal-
anced or missing data, especially when the number of
observation within a profile is small and the correlation
is weak. Jensen and Birch (2009) used nonlinear mixed
model to account correlation within nonlinear profiles. Qie
et al. (2010) investigated nonparametric profile monitoring
with arbitrary design using mixed models. They proposed a
control chart that combines the exponentially weighted
moving average control chart based on local linear kernel
smoothing and a nonparametric regression test under the
assumption that observations within and between individ-
ual profiles are independent of each other.
The present study acts as an extension of the work of

Jensen et al. (2008) in applying a linear mixed model on
the presence of autocorrelation within linear profiles on
phase I control chart applications; conversely, our focus
is on phase II of profile monitoring in which one could
use the proposed control charts to detect any departures
from the given profile parameters.
The remainder of the paper is organized as follows. In

‘Linear mixed model’ Section, the LMM is mathematic-
ally presented. In the ‘Proposed methods’ Section, our
methods including three modified multivariate control
charts namely Hotelling T2, multivariate exponential
weighted moving average (MEWMA) and a multivariate
cumulative sum control charts (MCUSUM) are illustrated.
In ‘Simulation studies’ Section, the results of simulation
study to evaluate the performance of the methods are
presented. In addition, a case study from an agriculture
field is investigated on the Section ‘Case study’. The final
section closes with concluding remarks.

Linear mixed model
Linear mixed models (Laird and Ware 1982) are popular
for analysis of longitudinal data. A linear mixed model
contains fixed and random effects and is linear in these
effects. This model allows us to account autocorrelation
within profiles. In matrix notation, a mixed model can
be represented as

y ¼ Xβþ Zbþ �; ð1Þ

where y is a vector of observations, with mean E(y) =Xβ,
β is a vector of fixed effects, b is a vector of independent
and identically distributed (IID) random effects with mean
E(b) = 0 and variance-covariance matrix Var(b) =D, ϵ is a
vector of IID random error terms with mean E �Þ ¼ 0ð
and variance Var �Þ ¼ Rð , and X and Z are matrices of
regressors relating the observations y to β and b.
In the 1950s, Charles Roy Henderson provided the

best linear unbiased estimate (BLUE) of fixed effects and
best linear unbiased predictions (BLUP) of random effects.
Subsequently, mixed modeling has become a major area
of statistical research, including work on the computation
of maximum likelihood estimates, nonlinear mixed effect
models, missing data in mixed effects models, and Bayesian
estimation of mixed effects models (West et al. 2007).
Henderson’s ‘mixed model equations’ (MME) are

(Robinson 1991) as follows:

X
0
R−1X X

0
R−1Z

Z
0
R−1X Z

0
R−1ZþD−1

� �
β̂

b̂

 !
¼ X

0
R−1y

Z
0
R−1y

� �

ð2Þ

The solutions to the MME, β̂ , and b̂ are BLUEs and
BLUPs for β and b, respectively.
Mixed models require somewhat sophisticated comput-

ing algorithms to fit. Solutions to the MME are obtained by
methods similar to those used for linear least squares. For
complicated models and large datasets, iterative methods
may be needed.
In profile monitoring, one could suppose that the jth

response follows a LMM; therefore,

yj ¼ Xjβþ Zjbj þ εj; j ¼ 1; 2;…;m; ð3Þ

where Xi is a (nj × p) matrix of regressors, and Zj is a
(nj × q) matrix associated with random effects. β is a
(p × 1) vector of fixed effects, and yj is the (nj × 1) response
vector for the jth profile. The coefficient vector of the
random effect terms is bj~MN (0,D), and D is assumed to
be a diagonal matrix; thus, the random effects are assumed
not to be correlated with each other. In addition, it is
assumed that Cov(εj, bj) = 0 and εj is (nj × 1) vector of
errors where εj ~MN (0,Rj). If the errors are assumed to
be independent, Rj = σ2I, but correlated, the functional
structure for the error terms may be used.

As noted before, it is considered that β̂ is an estima-

tor of β, and b̂ j is a predictor of bj, then ŷj ¼ Xj β
̂ is the

population average, and ŷj ¼ Xj β
̂ þZjb

̂
j is the profile

specific prediction; so if D and Rj are known, then it
can be shown as follows:

β̂ ¼
Xm

j¼1
X

0
jV

−1
j Xj

� �−1 Xm

j¼1
X

0
jV

−1
j yj

� �
; ð4Þ

and the BLUP of b is

b̂ j ¼ DZ
0
jV

−1
j yj−Xj β̂
� �

; ð5Þ

where Vj ¼ ZjDZ
0
j þ Rj is the overall estimated variance

covariance matrix (Schabenberger and Pierce 2002).

Proposed methods
In this paper, we propose a linear mixed model approach
for accounting the correlation within linear profiles in
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phase II. It is assumed that profiles are correlated based
on first-order autoregressive (AR(1)) structure.
If the errors follow an auto-correlated structure such

as an AR(1) structure, then Rj by Schabenberger and
Pierce (2002) is given as Equation 6. More details on the
types of correlated errors structures could be acquired in
this reference as

Rj ¼ σ2

1 ρ ρ2 ⋯ ρnj−1

ρ 1 ρ ⋯ ρnj−2

ρ2 ρ 1 ⋯ ρnj−3

⋮ ⋮ ⋮ ⋱ ⋮
ρnj−1 ρnj−2 ρnj−3 ⋯ 1

2
66664

3
77775: ð6Þ

It is assumed that for the jth sample collected over time,
our observations are (Xi,yij), i = 1,2,…,n and j = 1,2,…,m.
We considered the case that all the fixed effects have a
corresponding random effect, (Xj =Zj). If the process is in
control, the problem can be formulated as follows:

yij ¼ β0 þ b0j
� �þ β1 þ b1j

� �
xi1 þ…

þ βp−1 þ bp−1j
� �

xp−1i þ εij ð7Þ

and

εij ¼ ρεij−1 þ aij; ð8Þ

where εij are the correlated error terms and aij are white
noises as aij~N(0,σ2). The β0, β1,…,βp − 1 are fixed effects
that are the same for all profiles. The b0j,b1j,…,bp − 1j are
random effects for the jth profile and they are normal ran-
dom variables with zero mean and variance of σ2

0; σ
2
1;…;

σ2p−1, respectively, which are not to be correlated with each

other and also not to be correlated with the errors. The x
values are fixed and constant from profile to profile. In this
article we especially focused on phase II of the monitoring
process, so all profile’s parameters, process variance, and
correlation coefficient are known in phase I. Accordingly,
we utilized the modified Jensen et al. (2008) approach to
monitor autocorrelation on phase II.

The Hotelling’s T2 statistic control chart
As a first proposed control chart, we use T2 statistic to
monitor the fixed effects for each sample. This statistic
is given by

T2
j ¼ β̂ j−β0

� �0

∑−1 β̂ j−β0
� �

; ð9Þ

where β̂ j ¼ X−1
j V−1

j Xj

� �−1
X−1

j V−1
j yj

� �
and β0 denote the

in-control value of β.
In Equation 9 the variance covariance matrix of fixed

effects is
X

β
¼ X

0
jV

−1
j Xj

� �−1
.

The upper control limit, UCL, is chosen to achieve a
specified in control average run length (ARL).

The MEWMA control chart
Our second proposed control chart is based on MEWMA
proposed by Lowry et al. (1992) for monitoring the vector
of β̂ j. Here the MEWMA statistics is as follows:

zj ¼ θ β̂ j−β0

� �
þ 1−θð Þzj−1; ð10Þ

where z0 = 0 and θ(0 < θ < 1) is the smoothing parameter.
Therefore, the chart statistic denotes by MEWMAj is
given by

MEWMAj ¼ z
0
j

X
Z
−1zj; ð11Þ

where
X

z
¼ θ

2−θ

X
β
¼ θ

2−θ
X

0
jV

−1
j Xj

� �−1
.

This control chart gives a signal when EWMAj > UCL,
where (UCL > 0) is chosen to achieve a specified in con-
trol ARL.

The MCUSUM control chart
The third suggested method is based on the MCUSUM
control chart which is proposed by Crosier (1988). In
this method, the statistic is given by

sj ¼
0 for cj ≤ k

sj−1 þ β̂ j−β0

� �
1−k=cj
� �

; for cj > k
;

(
ð12Þ

where

cj ¼ sj−1 þ β̂ j−β0

� �0X−1
sj−1 þ β̂ j−β0
� �� 	1=2

and s0 = 0

and k is a selected constant.
The estimator of variance covariance matrix is

X
β
¼ X

0
jV

−1
j Xj

� �−1
: ð13Þ

The chart gives a signal if s
0
j

X−1
sj

� �1=2
> UCL where

(UCL > 0) is chosen to achieve the desired in-control ARL.

Simulation studies
To show the performance of the proposed methods, we
considered the underlying linear profile as Equation 14:

yij ¼ 3þ b0j þ 2þ b1j
� �

xi þ εij; ð14Þ
where

εij ¼ ρεi−1j þ aij; ð15Þ
and aij~N(0,1),b0j ~N(0,.1),b1j ~ N(0,.1). In our simulation
investigation, we considered three significant different
autocorrelation coefficients: a ρ = 0.1 to designate a weak
type auto-correlated process, intermediate autocorrelation



Table 1 Simulated UCL for control charts

ρ Value UCL for control charts

T2 MEWMA MCUSUM

0.1 10.75 9.8 5.56

0.5 6.68 8.8 4.98

0.9 8.32 7.30 4.15
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by ρ = 0.5, and strong autocorrelation by ρ = 0.9. The in-
control ARL is roughly set equal to 200 and the ARL
values were evaluated through 10,000 simulation replica-
tions under different shifts in intercept, slope, and errors
(standard deviation). For MEWMA control chart, the
smoothing parameter θ is chosen to be 0.2. As a general
rule, to design MCUSUM control chart with the k ap-
proach, one chooses k to be half of the delta shift which is
the amount of shift in the process that we wish to detect,
expressed as a multiple of the standard deviation of the
data points. Accordingly, we set k equal to 0.5 (for more
detail see Montgomery 2005). UCLs of control charts are
designed to achieve a specified in control ARL of 200. The
simulated UCLs for each proposed control chart are
shown in Table 1.
The three proposed control charts are compared on

different scenarios of the example in terms of ARL, and
the calculated amounts for the different changes in the
intercept is shown in Table 2.
According to the Table 2, under λσ shift in the intercept,

when autocorrelation is weak (ρ = 0.1), the MEWMA
method performs relatively similar to MCUSUM control
chart, and they also have better performance for detecting
the small, moderate, and large shifts than the T2 control
chart. In the intermediate and strong autocorrelation
circumstance (ρ = 0.5) and (ρ = 0.9), MCUSUM performs
uniformly better than the other two methods. Moreover,
MEWMA uniformly performs better than T2 control
chart. Figure 1 presented the derivative ARL under dif-
ferent shifts in intercept when autocorrelation is differ-
ent in three levels. Table 3 shows the simulation results
under different shifts in slope.
Table 2 ARL comparisons under different λσ shift in intercept

Method λ 0.2 0.4 0.6 0.8

T2 ρ = 0.1 184.1 147.3 109.3 78

MEWMA 129.2 60.3 31.2 18.2

MCUSUM 126.4 57 29.4 17.1

T2 ρ = 0.5 192 168.2 135.2 99.4

MEWMA 152.4 79 40.5 23.7

MCUSUM 133 63.5 33.1 20.4

T2 ρ = 0.9 198.5 196 192.1 185.4

MEWMA 189.5 162.8 128.8 93.2

MCUSUM 186.5 158.9 118.9 77.5
From Table 3, under βσ shift in slope, while the auto-
correlation is weak (ρ = 0.1), the proposed MCUSUM
method uniformly performs better than MEWMA method.
Also, MEWMA performs consistently better than T2

method. In addition, similar results are obtained when
the autocorrelation is intermediate (ρ = 0.5). Once the
amount of autocorrelation coefficient is high, MCUSUM
and MEWMA methods perform uniformly better than
the T2 method and also, MCUSUM method performs
relatively similar to MEWMA method. Figure 2 illustrates
ARL under different shifts in slope once autocorrelation
be changed in the aforementioned levels.
Next comparisons of the proposed three control charts

in terms of ARL under δσ shift in the standard deviation
followed. Table 4 shows that the proposed T2 chart per-
forms significantly better than MEWMA and MCUSUM
charts in different amount of correlation coefficients. In
addition for strong and intermediate autocorrelation
condition, MEWMA and MCUSUM have similar manners
and when the autocorrelation is weak, MEWMA relatively
achieves better performance. Derivative ARL under differ-
ent shifts of standard deviation is presented in Figure 3
when autocorrelation is different.
Based on the simulation results, it is evident that the

proposed MEWMA and MCUSUM methods act rela-
tively better than the T2 chart in detecting shift in the
parameters of profile; conversely, the proposed T2 chart
performs better than the MEWMA and MCUSUM in
detecting shift in the variation.

Case study
Consider the case study carried out by Schabenberger
and Pierce (2002). It was a real data set from ten apple
trees which 25 apples are randomly chosen on each tree.
Their focus was on the analysis of the apples in the lar-
gest size, with initial diameters exceeded 2.75 in. Totally
there were 80 apples in aspiration size. Diameters of the
apples were recorded in every 2 weeks during 12 weeks.
Figure 4 shows 16 diameters out of 80 apples in the time
domain. In their investigation, functional profile between
1 1.2 1.4 1.6 1.8 2

52.6 36.4 25.5 18.1 13.2 9.7

12.2 9.2 7.1 5.8 4.9 4.3

11.1 9 7.1 6.1 5.3 4.7

73.2 53.4 38.8 27.4 20.2 14.7

15.4 11.2 8.6 6.9 5.8 5

13.8 10.5 8.2 6.4 5.7 5

173.7 162.5 150 135.5 121.1 107.2

65.2 44.4 29.1 20.9 15.3 11.9

45.8 28.4 19.7 14.8 11.9 9.7
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Figure 1 ARL comparisons under λσ shift in intercept with ρ = 0.1, 0.5, and 0.9.

Table 3 ARL comparisons under different βσ shift in slope

Method β 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

T2 ρ = 0.1 196.3 194.2 178.3 164 146.6 128 109.8 96.6 82.1 68.3

MEWMA 184.2 144.3 106.3 78.1 56.6 41.5 32.5 25.1 20.2 17.2

MCUSUM 180.4 136.5 95.3 66.6 47.5 33.2 26.2 21.5 16.7 14.9

T2 ρ = 0.5 198.3 195.2 181.4 163.3 143.7 126.5 108.6 93.4 78.5 66.8

MEWMA 188 142.3 107.3 76.4 56.1 41.4 31.7 24.5 19.8 16.6

MCUSUM 178 133.4 92.9 65.5 47.2 35.4 28.2 22 17.8 13.3

T2 ρ = 0.9 197.1 193.6 179.2 162.1 141.7 125.6 107.1 91.9 79.5 67.5

MEWMA 185.9 143.9 105.3 78.2 57.4 43.1 33.6 26.6 21.3 17.9

MCUSUM 184.1 143.6 104.3 75.8 57.2 42.1 32.3 25.4 21.2 17.3
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Figure 2 ARL comparisons under βσ shift in slope with ρ = 0.1, 0.5, and 0.9.
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time and diameter considered as quality characteristic
that needs to be monitored over time. Schabenberger
and Pierce (2002) and also later Soleimani et al.
(2009) modeled such correlation between observations
by a first-order autoregressive model of AR(1). Based
on the preceding analysis, the following statements
Table 4 ARL comparisons under δσ shift in standard deviatio

Method δ 1.2 1.4 1.6 1.8

T2 ρ = 0.1 71.3 32.3 17.6 10.9

MEWMA 87.3 46.3 29.4 20.1

MCUSUM 95.2 53.3 33.7 25

T2 ρ = 0.5 83.2 36.9 20.1 12.4

MEWMA 95.1 51.5 31.5 21.9

MCUSUM 95.3 52.2 32.6 23.3

T2 ρ = 0.9 89.2 58.2 34.3 20.3

MEWMA 117.7 71.2 48.1 33.1

MCUSUM 117.5 71 46.8 32.4
hold a linear mixed model equation for the declared
case study:

yij ¼ 2:8321þ b0j þ 0:02875þ b1j
� �

xi þ εij; ð16Þ
εij ¼ :3825εi−1j þ aij;
n

2 2.2 2.4 2.6 2.8 3

7.8 5.9 4.8 4.2 3.5 3.3

14.6 11.8 9.6 8.3 6.8 5.9

18.4 14.5 11.7 10.2 8.5 7.3

8.5 6.3 4.9 4 3.5 3.1

15.9 12.3 10 8.1 6.8 6

17.4 13.4 11.3 9.3 8 7.1

14.3 10.5 7.9 6.3 5.5 4.2

23.7 18.2 14.4 11.8 9.8 8.2

23.4 17.6 14.1 11.7 9.8 8.2
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Figure 3 ARL comparisons under δσ shift of standard deviation with ρ = 0.1, 0.5, and 0.9.
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where b0j ~N(0,0.008653), b1j ~N(0,0.00005), and a0j ~N
(0,0.000365).
The estimator of variance-covariance matrix of fixed

effects gives by

X 1:4244 −:3034
−:3034 0:0870

� 	
: ð17Þ

Consequences of simulation run in the previous sec-
tion leads us to use MEWMA and MCUSUM which
have relatively similar performance on detecting shift
in the profile parameters rather than the T2 method.
Hence, the proposed MEWMA control chart was ap-
plied in monitoring the linear profile. The smoothing
constant (θ) is set equal to 0.2. In order to achieve an
in control ARL of 200, the upper control limit is set
equal to 7 based on 10,000 simulation runs. In order
to examine performance of the control chart, six ran-
dom samples from the in control simple linear profile
are initially generated. Formerly, three random sam-
ples are generated to show an out-of-control condition
under the intercept shift coefficient of 0.6. Figure 5
illustrates sensitivity of the MEWMA control chart
based on our proposed method which temperately depicts
quick signal.



Figure 4 Measured diameters of apples during a period of 12 weeks. (Schabenberger and Pierce 2002).
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Concluding remarks
We have studied the sensitivity of three multivariate control
charts to detect one-step permanent shift in any parameters
of a mixed model linear profile. Our specially designed
MCUSUM, MEWMA, and T2 control charts were also
studied as competitors of each other to depict shifts in
intercept and slope parameters and also process vari-
ation while first-order autoregressive model describes
correlations within observations.
The performances of the methods were compared in

terms of average run length criteria. Table 5 shows the
summarized results.
The following summary recommendations are made:

1 The proposed approach has good performance
across the range of possible shifts and it can be used
0
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Figure 5 MEWMA control chart under intercept shift coefficient
of 0.6.
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in phase II of linear profile monitoring on the
presence of autocorrelation within observations.

2 The anticipated MEWMA and MCUSUM methods
almost uniformly perform better efficiency than the
T2 Hotelling control chart under different step shifts
in the intercept and slope parameters of linear
profile.

3 The Hotelling T2 control chart has better
performance in comparison with the MEWMA and
MCUSUM methods under shifts in the process
standard deviation.

4 The process circumstance in terms of correlation
coefficient has no significant effects on selecting the
best choice for monitoring method.
ble 5 Comparisons on the performance of control
arts under different shifts and autocorrelation status

ocess circumstance Shift on Priority to use

eakly auto-correlated Intercept MEWMA≈MCUSUM > T2

Slope MCUSUM >MEWMA > T2

Standard deviation T2 >MEWMA >MCUSUM

termediately
to-correlated

Intercept MCUSUM >MEWMA > T2

Slope MCUSUM >MEWMA > T2

Standard deviation T2 >MCUSUM≈MEWMA

rongly auto-correlated Intercept MCUSUM >MEWMA > T2

Slope MEWMA≈MCUSUM > T2

Standard deviation T2 >MCUSUM≈MEWMA
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