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Abstract Design of experiments (DOE) offers a great deal

of benefits to any manufacturing organization, such as

characterization of variables and sets the path for the opti-

mization of the levels of these variables (settings) trough the

Response surface methodology, leading to process capabil-

ity improvement, efficiency increase, cost reduction.

Unfortunately, the use of thesemethodologies is very limited

due to various situations. Some of these situations involve

the investment on production time, materials, personnel,

equipment; most of organizations are not willing to invest in

these resources or are not capable because of production

demands, besides the fact that they will produce non-con-

formant product (scrap) during the process of experimenta-

tion. Other methodologies, in the form of algorithms, may be

used to optimize a process. Known as direct search methods,

these algorithms search for an optimum on an unknown

function, trough the search of the best combination of the

levels on the variables considered in the analysis. These

methods have a very different application strategy, they

search on the best combination of parameters, during the

normal production run, calculating the change in the input

variables and evaluating the results in small steps until an

optimum is reached. These algorithms are very sensible to

internal noise (variation of the input variables), among other

disadvantages. In this paper it is made a comparison between

the classical experimental design and one of these direct

search methods, developed by Nelder and Mead (1965),

known as the Nelder Mead simplex (NMS), trying to over-

come the disadvantages and maximize the advantages of

both approaches, trough a proposed combination of the two

methodologies.

Keywords Direct search methods � Design of

experiments � Nelder and Mead

Introduction

One of the main differences between the classical experi-

mentation process and the stochastic optimizationmethods

is that, in the classical experimentation, many of the runs

designed and obtained are useless because they are out of

specification, they are non-conformant parts (scrap), while

in the direct search methods, the idea is to run the process,

minimize the non-conformant product and find the best

parameters combination. One of the most used method-

ologies is the one proposed originally by Box (1957),

modified by Spendley et al. (1962) and then by Nelder and

Mead (1965), among many others, these authors are the

ones that had contributed dramatically to the original

proposal of Box. The Box́s algorithm, known as evolutive

operations (EVOP), got transformed by Spendley as sim-

plex-EVOP, while the modification of Nelder and Mead is

known simply by Nelder–Mead simplex (NMS).

Direct search methods (DSM) prosecute the purpose of

optimization: to get the response or responses to a maxi-

mum, a minimum or a target. The main differences in

respect to the classical experimentation and optimization

methods (DOE, response surface methodology) are shown

on Table 1.

DSM are also known as optimization techniques free of

restrictions. These methods were very popular in the 60s,
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but by the 70s they lost popularity because of the scientific

community critics. Never the less, these methods are still in

use, in fact, in the last 15 years they had suffered many

changes and modifications, investigators are continuously

trying to overcome some of their restrictions and/or

applying them to particular situations.

Taguchís crossed array

Experimental design, Classical or Taguchi, requires an

arrangement to combine all the levels of all the variables

considered in the design. This generates all the combina-

tions or some of the combinations (fractional designs) of

those levels named ‘‘runs’’. These runs are executed and

the results analyzed and evaluated. The measure of error

and effects is considered to guide the actions to be taken in

terms of input variable adjustment.

Taguchi developed a special arrangement, to consider

variables defined as noise factors, identified as crossed

array. The purpose of this arrangement is to run the original

design (control variables), under the noise factors condi-

tions, executing the experimental runs and finding the best

level combination of the control variables under this con-

dition is what makes a process robust. In Fig. 1, a L9
(3)4 9 L8(2)

3crossed array example is shown, Taguchi

(1986). The Inner array contains the nine runs for the

control variables; the ‘‘outer’’ array contains the eight runs

for the noise variables.

An important observation requests attention: Designed

Experiments will provide de best levels for the variables

included in the study, but these levels are not necessarily

the optimum ones. In order to find an optimum, another

methodology needs to be applied. This strategy is the

response surface methodology, which works under the

same conditions of the DOE.

The Nelder and Mead simplex

As shown in Fig. 1, in the classical arrays the levels are pre

designed, this is, once the arrangement is defined, these

levels stay fixed during the process of experimentation. In

the NMS, the algorithm starts with pre designed levels,

then these levels are modified trough the iterations of the

algorithm according to a set of rules (operations of the

simplex). This is the mechanism applied to modify the

levels of the factors, so the optimization is accomplished.

Spendley et al. (1962) proposal consists in the use of a

simplex (a geometric arrangement); in general, a polyhe-

dron of n ? 1 vertex (for a two input variables this will be

a triangle). The search mechanism consists in using one of

the vertex as pivot (called the worse vertex), to estimate the

next vertexes, always moving towards the best vertex

Table 1 Differences between DOE/RSM and direct search methods

Methodology Execution

conditions

Number of variables Number of

levels

Advantages Disadvantages

DOE/RSM Production is

suspended

during

experimentation

Non restricted Non

restricted

Can analyze many variables,

many levels. Big changes in

the input variables help

measure the effects on the

response(s)

Production lost

Many runs will be

scraped

Investment on time,

personnel, and

materials is needed

Direct search

methods

The optimization

is reached

during normal

production run

Two or three, as the number of

input variables increases, the

complexity of the analysis

increases and efficiency of the

algorithm decreases

dramatically

Restricted

by the

number

of input

variables

It is an ‘‘on the run’’ process,

no production is lost; the

generation of scrap is a

minimum. No extraordinary

resources are required

The efficiency of the

algorithm decreases in

proportion of the

magnitude of the

internal variation

(noise)

 E 1 1 1 1 2 2 2 2 

F 1 1 2 2 1 1 2 2 

G 1 2 1 2 1 2 1 2 

Run A B C D         

1 1 1 1 1         

2 1 2 2 2         

3 1 3 3 3         

4 2 1 2 3         

5 2 2 3 1         

6 2 3 1 2         

7 3 1 3 2         

8 3 2 1 3         

9 3 3 2 1         

Fig. 1 Taguchís crossed array, example
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(maximum, minimum, target), until the optimum combi-

nation is found (the response converges to the desired

point), as an example, Fig. 2 is shown.

Nelder and Mead (1965) modified Spendleýs model

adding four operations to the polyhedron: reflection, con-

traction, expansion and shrinkage, an example of these

operations is shown on Fig. 3.

In these methods, the iterative process continues until the

algorithm cycles from one simplex to another, when this

happens, it indicates that a local optimum has been found.

Another indicator is that the simplex becomes very small and

the variance of the response is reduced. Spendley et al. (1962)

concludes that the speed ofmovement towards the optimum is

inversely proportional to the variation in the response variable.

It can be observed that there is a great difference between

these two strategies, while the classical methods need to

suspend production, generate scrap, utilize extraordinary

resources, equipment time, etcetera, the DSM is executed

during normal production. As shown on Table 1, both

strategies have advantages and disadvantages.

As pointed before, Nelder and Mead modified the

Spendley Simplex algorithm adding four operations.

Box and Draper (1966) concluded that this algorithm,

known until today as NMS, is the most efficient and

dependable. Many additions and modifications have been

done to this algorithm [Hunter andKittrell (1966); Parkin-

son and Hutchinson (1971); Torczon (1989) and Walter

Frederick (1991)]; but the essence of it remains intact.

After an exhaustive review of most of these Direct

search methods, we can conclude on the following:

Strengths

– Can be applied to a continuous process, non-confor-

mant product (scrap) is minimized.

– The operations added by Nelder and Mead make the

iterative process faster and efficient, trough a consid-

erable reduction of iterations.

– A significance test and a start and stop criteria proposed

by Sánchez-Leal (1991) provides a guide line to reduce

unnecessary iterations and costs.

Weaknesses

– Most of these methods do not consider noise factors.

– Because noise factors are not considered, these algo-

rithms cannot be used to characterize processes.

– Taguchi methods consider noise factors, but an inva-

sive classical experimentation is needed.

– There is no clear definition of the best way to measure

the response (or is has not been considered in these

algorithms); the most used approximation is the

Taguchís signal to noise ratio, but there are many

concerns about its efficiency and dependability.

Considering the strengths and weaknesses found, this

new proposal is named Armentum because it really is an

agglomeration of the main concepts of the strongest

methodologies studied. The idea is to eliminate the weak-

nesses while it is supported by the strengths, among other

characteristics it considers:

– The concept of continuous operation of Box (1957).

– The minimization or elimination of non-conformant

product (scrap).

– A noise environment, added by high effect factors

(uncontrollable factors, although controllable for exper-

imentation purposes).

– The evaluation of the response in terms of real

capability (Ppk), as stop/start criteria.

– The inclusion of a dual response. Dual response is a

media to add robustness to the process because it

considers the media and the standard deviation at the

same time.
Fig. 2 The EVOP-simplex algorithm, Spendley et al. (1962),

example

Fig. 3 Operations on the NMS: reflection, contraction, expansion and

shrinkage
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Methodology

Two control variables and two noise variables are consid-

ered to illustrate the logics of this algorithm. Figure 4

shows the basic proposal, in which the objective is to uti-

lize the NMS algorithm, adding noise conditions in each

vertex, as an analogy with the Taguchís crossed array, this

is to ‘‘penalize’’ the operative conditions with the systemic

variation (noise).

Figure 5 shows how the external array will follow the

new vertex generated, using as example the reflection, one

of the NMS operations:

It has to be noted that the external array is not optimized

by the NMS operations, because it is not of interest to

optimize these noise conditions, their purpose is to penalize

the control variables, this is the way to add robustness to

the process.

As shown on Fig. 6, the process continues until the best

conditions are found. This algorithm can be extended to

more applications, such as screening, for example. The

external array can be considered not only as noise factors,

but also as control variables, if this is the case, the NMS

operations and algorithm can be applied to them as well.

As explained before, the concept of Taguchís crossed

array is used here, but instead of using one orthogonal array

as an inner array and another orthogonal array as the outer

array, we are using the variable simplex as inner array and

a factorial 22 as outer array; We have to keep in mind that

the idea of the NMS as inner array is used to maintain the

‘‘continuous running process’’ objective.

Figure 7 shows a graphical representation of the crossed

array proposed by Taguchi while Figs. 8, 9 and 10 repre-

sent the conditions analog to Taguchís concept for the

proposed new algorithm.

Results

In order to test this new combination of methodologies, it

was applied to a continuous flexography process that is

used to print a particular product label. The machine is a

Mark Andy 830, Figs. 11 and 12 shows the machine and a

schematic of the operation basics of the process.

It is important to mention that originally, the evaluation

of the quality of the printed label was made visually, based

on the experience of the process operator and the quality

inspectors. It is not the purpose of this paper to document

all the activities and the methodological steps followed to

transform this visual inspection into a hard system, but it is

important to consider these issues before any experimen-

tation. The output measure was transformed to a continu-

ous variable named luminosity, measured by an instrument

that distinguishes three dimensional planes of light: lumi-

nosity, red–green spectrum and yellow–blue spectrum.

Statistical analyses lead to implement luminosity as a

correlation equivalent to the visual inspection. The

Fig. 4 Basic proposal

Fig. 5 The external array follows the new vertex

Fig. 6 The NMS iterative process with the external array
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experimentation and optimization data are presented as this

output variable.

The classical array

In order to characterize this process, a Full Factorial

Design, in two levels, two blocks and four central points

was applied. Table 2 shows the factors and the levels

considered for experimentation and Fig. 13 the arrange-

ment and the output variable measurements (luminosity).

The design of the product is to print five lines of labels

at the same time; for comparative purposes, only the data

of the first line of labels is shown. Line one of labels is on

the outer border of the material band, so it is more sensitive

Fig. 7 Taguchís crossed array

Fig. 8 The inner array is replaced with a simplex (two control

variables)

Fig. 9 The outer array is replaced with a 22 factorial design

Fig. 10 Final approach

Fig. 11 Mark Andy 380 Source: http://www.flexoexchange.com
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to changes in the input variables. This condition is a con-

stant on all the comparisons.

Figure 14 shows the results from Minitab�; note that the

3-way interactions were removed because they resulted

statistically irrelevant. On Figs. 15 and 16 it is shown the

standardized effects Pareto chart and the main effects plot,

respectively.

P values of 0.000 on plate card angle and 0.056 on ink

pressure indicate main effects relevance. From all this

information it can be concluded that the mayor effects are

generated by the variables speed, ink pressure and plate

card angle. The dotted line on Fig. 16 indicates the

response optimum for luminosity that is 66 units. This goal

and its acceptable tolerance (between 65 and 67 units) were

determined by a multifunctional team: production, quality

control, process engineering and top management.

In this phase of the whole process, the next step should

be to design a new experiment with the strongest input

variables only, including more levels to increase the

spectrum of parameters and find the ‘‘best’’. It has to be

Fig. 12 The flexography process

Table 2 First DOE set up

Control variable Level 1 Level 2

Process speed 275 RPM 225 RPM

Drying On Off

Ink viscosity 20 s 16 s

Plate card pressure 10 angle degree -10 angle degree

Ink wheel pressure 2.56 in. 2.52 in.

Fig. 13 Full factorial design with four central points
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Fig. 14 Analysis of variance,

factorial design

Term

AC

BD

B

AB

BC

AD

A

C

CD

D

1086420

A Speed
B Drying
C InkPressure
D PlateCardAngle

Factor Name

Standardized Effect

2.05

Pareto Chart of the Standardized Effects
(response is L1,  = 0.05)

Fig. 15 Standardized effects

pareto chart for luminosity
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275250225 ONOFF 2.562.542.52 100-10

Block(Viscosity)

M
ea

n

Speed Drying InkPressure PlateCardAngle

Main Effects Plot for L1
Data Means

Fig. 16 Main effects plot for

luminosity

(Drying) OFF OFF ON ON

Z 1 -1 -1 1 1

x 1 x 2 (Speed) 250 270 250 270

Plate 
Card 
Angle

Ink 
Pressure

Z 2 -1 1 -1 1

1 0 2.56 66.95 67.23 67.66 65.27 267.11 66.7775 1.0465618 3.91718549

2 5 2.54 62.53 61.49 62.61 60.13 246.76 61.69 1.1583897 7.78516906

3 -5 2.57 90.11 93.01 91.31 90.95 365.38 91.345 1.2185647 29.0006942

4 10 2.53 92.5 92.99 93.25 93.03 371.77 92.9425 0.3163727 27.891618

5 6.25 2.54 59.71 59.33 60.63 59.94 239.61 59.9025 0.5463439 7.73653173

6 1 .25 2.55 63.28 63.41 61.24 62.89 250.82 62.705 1.0013491 6.29904727

7 -3.125 2.56 66.43 66.75 64.94 64.82 262.94 65.735 0.9970791 3.2562372

8 -1 .875 2.56 66.31 66.04 65.56 65.64 263.55 65.8875 0.3513189 1.16645683

9 -5.3125 2.57 63.72 62.21 63.75 63.47 253.15 63.2875 0.7292176 4.90015285

10 -11 .25 2.58 89.09 93.62 90.7741 91.96 365.4441 91.361025 1.9116986 31.0961208

11 1 .875 2.55 62.69 62.638 62.27 62.7 250.298 62.5745 0.2048113 4.03993389

12 -6.875 2.57 63.4 63.5 62.51 64.71 254.12 63.53 0.9038068 5.18142029

13 -0.3125 2.55 66.22 66 65.84 67.68 265.74 66.435 0.844492 2.96847587

14 0.9375 2.55 67.52 67.5 66.65 68.14 269.81 67.4525 0.6119572 3.28837173

15 -2.1093 2.56 65.29 65.07 64.96 65.68 261 65.25 0.317805 1.70341491

16 -3.6718 2.56 64.81 64.78 64.65 65.34 259.58 64.895 0.3046856 2.01905689

17 -2.832 2.56 65.29 65.16 64.92 65.86 261.23 65.3075 0.3989465 1.88933959

18 -1 .2695 2.56 66.21 65.93 65.58 65.81 263.53 65.8825 0.2622181 0.90415431

19 -0.0683 2.55 66.33 67.72 66.3 67.52 267.87 66.9675 0.7579523 3.24135686

20 -0.5468 2.55 66.53 67.41 65.89 66.44 266.27 66.5675 0.6288813 2.45414385

21 -2.2607 2.56 64.95 65.88 65.98 65.65 262.46 65.615 0.4643634 1.77809009

22 -1 .118 2.56 66.03 66.35 65.79 66.166 264.336 66.084 0.2358191 0.79145742

23 -0.5468 2.55 67.49 66.87 66.29 66.13 266.78 66.695 0.6180345 2.54910356

24 -0.2783 2.55 66.1 65.23 64.88 66.98 263.19 65.7975 0.9405096 3.02402884

25 -1 .6516 2.56 65.92 66.02 65.65 66.46 264.05 66.0125 0.3367863 1.02285885

26 -0.736 2.56 66.1 66.06 65.79 66.58 264.53 66.1325 0.3285701 1.1182104
27 -1 .4227 2.56 66.14 65.95 65.93 66.58 264.6 66.15 0.301883 1.05564894

28 -0.9649 2.55 66.06 65.7 65.63 66.02 263.41 65.8525 0.2189939 0.80448173

Dual 
Response

R(d)

Control 

Sy X

variable

Vertex No.
–

Fig. 17 The Armentum worksheet
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kept in mind that the Design and analysis of experiments

do not find and optimum; they only lead to the best option

available.

Response surface methodology will be the proper

approach to optimize the process, nevertheless this

methodology implies more runs, more scrap, more pro-

duction lost, more resources. As a matter of fact, a great

deal of effort was needed to convince high management to

let this team run the first experiment; this is a common

situation in the real world.

The hybrid combination: Armentum

The Nelder–Mead simplex combination with the Tagu-

chís crossed array was initiated generating three starting

vertexes (combinations) of the control variables included

in the analysis. These variables were the ink pressure

and plate card angle, set as the inner array (the simplex

algorithm). Production speed and drying were considered

as noise factors and set as the factorial 22 outer array. A

worksheet was designed to arrange the simplex iterations

and the outer 22 array, and to register the runs output

and to evaluate the response. Figure 17 shows the

worksheet with the results of the algorithm run. As an

evaluation of the response and in order to provide

another way to penalize the process, so it gets more

robust, a dual response was used, which was optimized

to a minimum, considering the goal of 66 units of

luminosity, Montgomery (1997). The first three vertexes

are set as an initial simplex, the rest are calculated with

the NMS operations.

Rd ¼ �y� 66ð Þj j þ 3Sx ð1Þ

According to Eq. 1, the goal of the dual response is cero,

meaning that the objective has been reached. In this case

the algorithm was stopped at vertex no. 28 because the stop

criterion was found; the simplex began to cycle from one

vertex to another.

Process capability and comparisons

On Figs. 18 and 19 the initial and the final capability of the

process can be seen. In both cases, a 30 label random

sample was taken. The initial capability study was run

according to the actual operation conditions of the process.

The graphs were generated with Minitab�.

On Table 3 it is shown a comparison between the two

approaches. It has to be considered that the methodologies

were used on a different phase; the first DOE was applied

to characterize the process and the new combination to

67.867.266.666.065.464.864.2

LSL 65
Target *
USL 67
Sample Mean 65.8063
Sample N 30
StDev(Overall) 0.72182
StDev(Within) 0.830888

Process Data

Pp 0.46
PPL 0.37
PPU 0.55
Ppk 0.37
Cpm *

Cp 0.40
CPL 0.32
CPU 0.48
Cpk 0.32

Potential (Within) Capability

Overall Capability

PPM < LSL 200000.00 131979.26 165911.62
PPM > USL 133333.33 49095.22 75413.56
PPM Total 333333.33 181074.48 241325.18

Observed Expected Overall Expected Within
Performance

LSULSL
Overall
Within

Process Capability Report for Initial Luminosity

Fig. 18 Initial capability, luminosity
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optimize it. Never the less, if a response surface analysis

were used to optimize the process, a lot of useless runs

should be scraped, production stopped, etcetera. As a ref-

erence, on Fig. 20 it is shown the first design for RSM with

14 runs, 2 replicates, 3 cube and 3 axial central points and

an Alfa of 1.414; the RSM requires at least two designs, a

first one to determine the best fitted equation of the

response surface and a second one to minimize or maxi-

mize the response. The data for RSM on Table 2 is only

estimation.

Conclusions

There is a substantial practical difference in these method-

ologies. In has been proved that DOE requires extraordinary

resources, production lost and generates scrap during the

process of experimentation. This new combination can be

applied to any continuous production process, generating

less scrap and with the great advantage of not stopping

production, which is one of the main inhibitors for the use of

these continuous improvement strategies.

66.966.666.366.065.765.465.1

Pp 2.10
PPL 1.98
PPU 2.21
Ppk 1.98
Cpm *

Cp 2.40
CPL 2.27
CPU 2.53
Cpk 2.27

Potential (Within) Capability

Overall Capability

PPM < LSL 0.00 0.00 0.00
PPM > USL 0.00 0.00 0.00
PPM Total 0.00 0.00 0.00

Observed Expected Overall Expected Within
Performance

LSL 65
Target *
USL 67
Sample Mean 65.947
Sample N 30
StDev(Overall) 0.159052
StDev(Within) 0.138787

Process Data
LSULSL

Overall
Within

Process Capability Report for Final Luminosity

Fig. 19 Final capability, luminosity

Table 3 Methodology

comparison results
Methodology Runs Acceptable production Scrap

DOE 40 0 labels 70,508 labels

Armentum 28 140,000 labels 20,000 labelsa

RSM (first design only) 28 0 labels 49,000 labels

a The algorithm starts with predetermined vertexes (levels) near the known as best from the first DOE
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In this case study, the process was completely out of

control, so the first DOE was designed to characterize de

variables. This note is important because in most cases a

process that is actually running, is a process that has an

acceptable level of efficiency, this is, it produces mostly

good parts but the levels of the control variables are not

necessarily the optimum ones, neither the response vari-

able. Under these conditions, the new algorithm can be

developed from the initial experimentation process.
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