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Abstract This paper presents a new approach to solve

Fractional Programming Problems (FPPs) based on two

different Swarm Intelligence (SI) algorithms. The two

algorithms are: Particle Swarm Optimization, and Firefly

Algorithm. The two algorithms are tested using several

FPP benchmark examples and two selected industrial

applications. The test aims to prove the capability of the SI

algorithms to solve any type of FPPs. The solution results

employing the SI algorithms are compared with a number

of exact and metaheuristic solution methods used for

handling FPPs. Swarm Intelligence can be denoted as an

effective technique for solving linear or nonlinear, non-

differentiable fractional objective functions. Problems with

an optimal solution at a finite point and an unbounded

constraint set, can be solved using the proposed approach.

Numerical examples are given to show the feasibility,

effectiveness, and robustness of the proposed algorithm.

The results obtained using the two SI algorithms revealed

the superiority of the proposed technique among others in

computational time. A better accuracy was remarkably

observed in the solution results of the industrial application

problems.

Keywords Swarm intelligence � Particle swarm

optimization � Firefly algorithm � Fractional programming

Introduction

This paper, considers the following general Fractional

Programming Problem (FPP) mathematical model (Ja-

beripour and Khorram 2010):

min =max zðx1; x2; :::; xnÞ ¼
Xp

i¼1

fiðxÞ
giðxÞ

ð1Þ

hkðxÞ� 0; k ¼ 1; :::;K;

mjðxÞ ¼ 0; j ¼ 1; :::; J;

xl
i � xi � xu

i ; i ¼ 1; :::; n;

giðxÞ 6¼ 0; i ¼ 1; 2; :::; p:

ð2Þ

where f , g, h and m are linear, quadratic, or more general

functions. Fractional programming of the form Eq. (1)

arises reality whenever rates such as the ratios (profit/rev-

enue), (profit/time), (-waste of raw material/quantity of

used raw material), are to be maximized often these

problems are linear or at least concave–convex fractional

programming. Fractional programming is a nonlinear pro-

gramming method that has known increasing exposure

recently and its importance, in solving concrete problems,

is steadily increasing. Furthermore, nonlinear optimization

models describe practical problems much better than the

linear optimization, with many assumptions, does. The

FPPs are particularly useful in the solution of economic

problems in which different activities use certain resources

in different proportions. While the objective is to optimize

a certain indicator, usually the most favorable return on

allocation ratio subject to the constraint imposed on the

availability of resources; it also has a number of important

practical applications in manufacturing, administration,

transportation, data mining, etc.
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The methods to solve FFPs can be broadly classified into

exact (traditional) and metaheuristics approaches.

The traditional method as: Wolf (1985) who introduced

the parametric approach, Charnes and Cooper (1973)

solved the linear FFPs by converting FPP into an equiva-

lent linear programming problem and solved it using

already existing standard algorithms for LPP, Farag (2012);

Hasan and Acharjee (2011); Hosseinalifam (2009); Stancu-

Minasian (1997), reviewed some of the methods that

treated solving the FPP as the primal and dual simplex

algorithm. The crisscross, which is based on pivoting,

within an infinite number of iterations, either solves the

problem or indicates that the problem is infeasible or

unbounded. The interior point method, as well as Dinkel-

bach algorithms both reduces the solution of the LFP

problem to the solution of a sequence of LP problems.

Isbell Marlow method, Martos Algorithm, CambiniMar-

teins Algorithm, Bitran and Novaes Method, Swarups

Method, Harvey M. Wagner and John S. C. Yuan, Hasan,

B.M., and Acharjee, S., developed a new method for

solving FLPP based on the idea of solving a sequence of

auxiliary problems so that the solutions of the auxiliary

problems converge to the solution of the FPP.

Moreover, there are many recent approaches employing

traditional mathematical methods for solving the ratio

optimization FPP as: Dür et al. (2007) who introduced an

algorithm called dynamic multistart improving Hit-and-

Run (DMIHR) and applied it to the class of fractional

optimization problems. DMIHR combines IHR, a well-

established stochastic search algorithm, with restarts. The

development of this algorithm is based on a theoretical

analysis of Multistart Pure Adaptive Search, which relies

on the Lipschitz constant of the optimization problem.

Shen et al. (2009) proposed algorithm for solving sum of

quadratic ratios fractional programs via monotonic func-

tion. The proposed algorithm is based on reformulating the

problem as a monotonic optimization problem. It turns out

that the optimal solution, which is provided by the algo-

rithm, is adequately guaranteed to be feasible and to be

close to the actual optimal solution. Jiao et al. (2013)

presented global optimization algorithm for sum of gen-

eralized polynomial ratios problem which arises in various

practical problems. The global optimization algorithm was

proposed for solving sum of generalized polynomial ratios

problem, which arise in various engineering design prob-

lems. By utilizing exponential transformation and new

three-level linear relaxation method, a sequence of linear

relaxation programming of the initial nonconvex pro-

gramming problems are derived, which are embedded in a

branch and bound algorithm. The algorithm was shown to

attain finite convergence to the global minimum through

successive refinement of a linear relaxation of the feasible

region and/or of the objective function and the subsequent

solutions of a series of linear programming sub-problems.

A few studies in recent years used metaheuristics

approaches to solve FFPs. Sameeullah et al. (2008)

presented a genetic algorithm-based method to solve the

linear FFPs. A set of solution point is generated using

random numbers, feasibility of each solution point is

verified, and the fitness value for all the feasible solu-

tion points are obtained. Among the feasible solution

points, the best solution point is found out which then

replaces the worst solution point. A pair-wise solution

points is used for crossover and a new set of solution

points is obtained. These steps are repeated for a certain

number of generations and the best solution for the

given problem is obtained. Calvete et al. (2009) devel-

oped a genetic algorithm for the class of bi-level

problems in which both level objective functions are

linear fractional and the common constraint region is a

bounded polyhedron. Jaberipour and Khorram (2010)

proposed algorithm for the sum-of-ratios problem-based

harmony search algorithm. Bisoi et al. (2011) developed

neural networks for nonlinear FPP. The research pro-

posed a new projection neural network model. It is

theoretically guaranteed to solve variational inequality

problems. The multi-objective mini–max nonlinear

fractional programming was defined and its optimality is

derived by using its Lagrangian duality. The equilibrium

points of the proposed neural network model are found

to correspond to the Karush Kuhn Trcker point associ-

ated with the nonlinear FPP. Xiao (2010) presented a

neural network method for solving a class of linear

fractional optimization problems with linear equality

constraints. The proposed neural network model have

the following two properties. First, it is demonstrated

that the set of optima to the problems coincides with the

set of equilibria of the neural network models which

means the proposed model is complete. Second, it is

also shown that the model globally converges to an

exact optimal solution for any starting point from the

feasible region. Pal et al. (2013) used Particle Swarm

Optimization algorithm for solving FFPs. Hezam and

Raouf (2013a b, c), introduced solution for integer FPP

and complex variable FPP-based Swarm Intelligence

under uncertainty.

The purpose of this paper is to investigate the solution

for the FPP using Swarm Intelligence. The remainder of

this paper is organized as follows. ‘‘Methodology’’ will

introduce Swarm Intelligence methodology. Illustrative

examples and discussion on the results are presented in

‘‘Illustrative examples with discussion and results’’.

‘‘Industry applications’’ introduces industry applications.

Finally, conclusions are presented ‘in ‘‘Conclusions’’.
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Methodology

Swarm Intelligence (SI) is research inspired by observing

the naturally intelligent behavior of biological agent

swarms within their environments. SI algorithms have

provided effective solutions to many real-world type opti-

mization problems, that are NP-Hard in nature. This study

investigates the effectiveness of employing two relatively

new SI metaheuristic algorithms in providing solutions to

the FPPs. The algorithms investigated are Particle Swarm

Optimization (PSO), and Firefly Algorithm (FA). Brief

descriptions of these algorithms are given in the subsec-

tions below.

1. Particle Swarm Optimization (PSO)

PSO (Yang 2011) is a population-based stochastic opti-

mization technique developed by Eberhart and Kennedy in

1995, inspired by social behavior of bird flocking or fish

schooling.

The characteristics of PSO can be represented as

follows:

• xk
i The current position of the particle i at iteration k;

• vk
i The current velocity of the particle i at iteration k;

• yk
i The personal best position of the particle i at

iteration k;

• byk
i The neighborhood best position of the particle.

The velocity update step is specified for each dimension

j 2 1; ;Ndf g hence, vi;j represents the jth element of the

velocity vector of the ith particle. Thus the velocity of

particle i is updated using the following equation

vk
i ðt þ 1Þ ¼ wvk

i ðtÞ þ c1r1ðtÞðyiðtÞ � xiðtÞÞ
þ c2r2ðtÞðbyiðtÞ � xiðtÞÞ:

ð3Þ

where w is weighting function, c1;2 are weighting coeffi-

cients, r1;2ðtÞ are random numbers between 0 and 1. The

current position (searching point in the solution space) can

be modified by the following equation:

xk
i ðt þ 1Þ ¼ xk

i þ vkþ1
i ð4Þ

Penalty functions

In the penalty functions method, the constrained opti-

mization problem is solved using unconstrained optimiza-

tion method by incorporating the constraints into the

objective function thus transforming it into an uncon-

strained problem.

Fitness ¼ f ðxÞ þ Penalty functions � Error:

The detailed steps of the PSO algorithm is given as below:

Step 1 Initialize parameters and population.

Step 2: Initialization Randomly set the position and

velocity of all particles, within pre-defined ranges and on D

dimensions in the feasible space (i.e., it satisfies all the

constraints).

Step 3: Velocity updating At each iteration, velocities of

all particles are updated according to Eq. (3). After

updating, vk
i should be checked and maintained within a

pre-specified range to avoid aggressive random walking.

Step 4: Position updating Assuming a unit time inter-

val between successive iterations, the positions of all

particles are updated according to Eq. (4). After updating,

xk
i should be checked and limited within the allowed

range.

Step 5: Memory updating Update yk
i and byk

i when the

following condition is met.

yk
i ðt þ 1Þ ¼

yk
i ðtÞ if f ðxk

i ðt þ 1ÞÞ� f ðyk
i ðtÞÞ:

xk
i ðt þ 1Þ if f ðxk

i ðt þ 1ÞÞ\f ðyk
i ðtÞÞ:

(

where f ðxÞ is the objective function subject to

maximization.

Step 6: Termination checking Repeat Steps 2–4 until

definite termination conditions are met, such as a pre-

defined number of iterations or a failure to make progress

for a fixed number of iterations.

2. Firefly algorithm (FA)

FA Yang (2011), is based on the following idealized

behavior of the flashing characteristics of fireflies.

All fireflies are unisex so that one firefly is attracted to

other fireflies regardless of their sex.

Attractiveness is proportional to their brightness, thus

for any two flashing fireflies, the less bright one will move

towards the brighter one. The attractiveness is proportional

to the brightness and they both decrease as their distance

increases. If no one is brighter than a particular firefly, it

moves randomly.

The brightness or the light intensity of a firefly is

affected or determined by the landscape of the objective

function to be optimized.

The detailed steps of the PSO algorithm is given as

below:

Step 1 Define objective function f ðxÞ; x ¼ ðx1; x2; :::; xdÞ,
and generate initial population of fireflies placed at random

positions within the n-dimensional search space, xi. Define

the light absorption coefficient c.

Step 2 Define the light intensity of each firefly, Li, as the

value of the cost function for xi.

Step 3 For each firefly, xi, the light Intensity, Li, is

compared for every firefly xj; j 2 1; 2; :::d.

Step 4 If , Li, is less than Lj, then move firefly xi towards

xj in n-dimensions.

J Ind Eng Int (2014) 10:56 Page 3 of 10 56

123



The value of attractiveness between flies varies rela-

tively the distance r between them:

xt
i þ 1 ¼ xt

i þ b�exp�cr2
t ðxt

j � xt
iÞ þ a�t

i ð5Þ

where b� is the attractiveness at r ¼ 0 the second term is

due to the attraction, while the third term is randomization

with the vector of random variables �i being drawn from a

Gaussian distribution a 2 ½0; 1�. The distance between any

two fireflies i and j at xi and xj can be regarded as the

Cartesian distance or the l2 norm.

Step 5 Calculate the new values of the cost function for

each fly, xi, and update the light intensity, Li.

Step 6 Rank the fireflies and determine the current best.

Step 7 Repeat Steps 2–6 until definite termination con-

ditions are met, such as a pre-defined number of iterations

or a failure to make progress for a fixed number of

iterations.

Illustrative examples with discussion and results

Ten diverse examples were collected from literature to

demonstrate the efficiency and robustness of solving FFPs.

The obtained numerical results are compared to their rel-

evance found in references; some examples were also

solved using exact method f1 and f3. Table 1 shows they

attained the comparison result. The algorithms have been

implemented by MATLAB R2011. The simulation

parameter settings results of FA are: population size, 50; a
(randomness), 0.25; minimum value of b, 0.20; c
(absorption), 1.0; iterations, 500; and PSO are population

size of 50, the inertia weight was set to change from 0.9

(wmax) to 0.4 (warming) over the iterations. Set c1:0.12

and c2 :1.2, , iterations:500.

The functions related to the difference examples list in

the previous table are followers:

f1: max z ¼ 4xþ2yþ10
xþ2yþ5

subject to x þ 3y� 30;

�x þ 2y� 5; x; y� 0.

f2 : min z ¼ xþyþ1
xþyþ2

� �1:5

	 xþyþ3
xþyþ4

� �2:1

	 xþyþ5
xþyþ6

� �1:2

	 xþyþ7
xþyþ8

� �1:1

.

subject to x � y ¼ 0; 1� x� 2; x; y� 0.

f3: min z ¼ xþyþ1
2x�yþ3

subject to 0� x� 1; 0� x� 1.

f4: max z ¼ 8xþ7y�2:33ð9x2þ4y2Þ0:5

20xþ12y�2:33ð3x2þ2xyþ4y2Þ0:5

subject to 2x þ y� 18; x þ 2y� 16; x; y� 0.

f5: max z ¼ 2xþy
x

þ 2
y

subject to

2x þ y� 6; 3x þ y� 8; �x þ y� � 1 x; y� 1.

f6: max z ¼ �x2þ3x�y2þ3yþ3:5
xþ1

þ y
x2�2xþy2�8yþ20

subject to

2x þ y� 6; 3x þ y� 8; �x þ y� � 1; 1� x� 2:25;

1� y� 4.

f7 : max z ¼ �x2y0:5þ2xy�1�y2þ2:8x�1yþ7:5
xy1:5þ1

þ yþ0:1
�x2y�1�3x�1þ2xy2þ9y�1þ12

subject to 2x�1 þ xy� 4; x þ 3x�1y� 5;

x2 � 3y3 � 2; 1� x� 3; 1� y� 3.

f8: max z ¼ 37xþ73yþ13
13xþ13yþ13

þ 63x�18yþ39
13xþ26yþ13

subject to 5x þ 3y ¼ 3; 1:5� x� 3; x; y� 0.

f9: min z ¼ 2xþy
xþ10

þ 2
yþ10

subject to �x2 � y2 þ3� 0; �x2 � y2 þ 8y � 3� 0;

2x þ y� 6; 3x þ y� 8; x � y� 1; 1� x� 3; 1� y� 4.

f10: max z ¼ 13xþ13yþ13
37xþ73yþ13

� ��1:4

	 64x�18yþ39
13xþ26yþ13

� �1:2

� xþ2yþ5vþ50
xþ5yþ5vþ50

� �0:5

	 xþ2yþ4vþ50
5yþ4vþ50

� �1:1

subject to 2xþ yþ 5v�10; 5x� 3y ¼ 0; 1:5�x�3;

x;y;v�0.

The numerical results obtained using PSO and FA

techniques are compared to assorted exact methods and

metaheuristic techniques as shown in Table 1. Four exact

methods were selected for solving the 10 benchmark

functions and carrying out the comparison. The four

methods are C.C. Transformation, Dinkelbach algorithm,

Goal Setting and Approximation and global optimization.

Neural network and harmony search are the other two

metaheuristic intelligent techniques incorporated in the

compare test. The some calculations are obtained out of

the numerical solutions of all the ten functions. PSO and

FA proved their capability in obtaining the optimal solu-

tion for all the test functions. The results were obtained

from the PSO, FA almost identical to the obtained using

exact methods. PSO and FA proved also to give better

results compared to other intelligent techniques, such as

neural network and harmony search f3; f10. Finally, PSO

and FA managed to give solutions to problems that could

not be solved with exact method due to difficult mathe-

matical calculation for complex nonlinear. Figures 1 and 2

are sample plots of two maximum and minimum function

optimization results. Figure 1a shows the objective func-

tion optimized value of (0.333) for function f3 where the

blue colored dots on the objective space represent the

swarm particle searching for the optimized minimum

value. The same particles swarm with the same color

could be observed in the decision variable space of Fig.

1b, c at values of (0,0), (0,0) trying to reach the optimized

decision variables values using FA, PSO algorithms,

respectively. Figure 2a shows the objective function

optimized value of (4.0608) for function f6 where the red

colored dots on the objective space represent the swarm
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Table 1 Comparison results of the SI with other methods

Fun. Technique/reference Decision variable optimal value Objective function optimize value

f1 (max) C.C. transformation exact method ðx�; y�Þ ¼ ð30; 0Þ z� ¼ 3:714286

Dinkelbach algorithm exact method ðx�; y�Þ ¼ ð30; 0Þ z� ¼ 3:714286

PSO ðx�; y�Þ ¼ ð30; 0Þ z� ¼ 3:7142857

FA ðx�; y�Þ ¼ ð29:949; 0Þ z� ¼ 3:7138877

f2 (min) C.C. Transformation exact method ���� ����
Dinkelbach algorithm exact method ���� ����
Jiao et al. (2006) Global optimization ðx�; y�Þ ¼ ð1:00000068; 1:0000000458Þ z� ¼ 0:3360

PSO ðx�; y�Þ ¼ ð1; 1Þ z� ¼ 0:3360

FA ðx�; y�Þ ¼ ð1; 1Þ z� ¼ 0:33603

f3 (min) C.C. Transformation exact method ðx�; y�Þ ¼ ð0; 0Þ z� ¼ 0:333

Dinkelbach algorithm exact method ðx�; y�Þ ¼ ð0; 0Þ z� ¼ 0:333

Zhang and Lu (2012) Neural network ðx�; y�Þ ¼ ð0:5; 3Þ z� ¼ 4:5

PSO ðx�; y�Þ ¼ ð0; 0Þ z� ¼ 0:333

FA ðx�; y�Þ ¼ ð0; 0Þ z� ¼ 0:333

f4 (max) C.C. transformation exact method ���� ����
Dinkelbach algorithm exact method ���� ����
Mehrjerdi (2011) Goal setting and approximation ðx�; y�Þ ¼ ð7:229; 0Þ z� ¼ 0:084

PSO ðx�; y�Þ ¼ ð1:0264; 5:7391Þ z� ¼ 0:3383

FA ðx�; y�Þ ¼ ð1:175; 6:59Þ z� ¼ 0:3382

f5 (max) C.C. transformation exact method ���� ����
Dinkelbach algorithm exact method ���� ����
Shen et al. (2011) Global optimization ðx�; y�Þ ¼ ð1; 4Þ z� ¼ 6:5

PSO ðx�; y�Þ ¼ ð1; 4Þ z� ¼ 6:5

FA ðx�; y�Þ ¼ ð1; 4Þ z� ¼ 6:5

f6 (max) C.C. transformation exact method ���� ����
Dinkelbach algorithm exact method ���� ����
Shen et al. (2011) Global optimization ðx�; y�Þ ¼ ð1; 1:75Þ z� ¼ 4:0608

PSO ðx�; y�Þ ¼ ð1; 1:7377Þ z� ¼ 4:0608

FA ðx�; y�Þ ¼ ð1; 1:7438Þ z� ¼ 4:06082

f7 (max) C.C. transformation exact method ���� ����
Dinkelbach algorithm exact method ���� ����
Shen et al. (2011) Global optimization ðx�; y�Þ ¼ ð1; 1Þ z� ¼ 5:5167

PSO ðx�; y�Þ ¼ ð1; 1Þ z� ¼ 5:5167

FA ðx�; y�Þ ¼ ð1; 1Þ z� ¼ 5:5167

f8 (max) C.C. transformation exact method ���� ����
Dinkelbach algorithm exact method ���� ����
Wang and Shen (2008) Global optimization ðx�; y�Þ ¼ ð3; 4Þ z� ¼ 5

PSO ðx�; y�Þ ¼ ð3; 4Þ z� ¼ 5

FA ðx�; y�Þ ¼ ð3; 4Þ z� ¼ 5

f9 (min) C.C. transformation exact method ���� ����
Dinkelbach algorithm exact method ���� ����
Jiao et al. (2013) Global optimization ðx�; y�Þ ¼ ð1; 1:4142Þ z� ¼ 0:48558

PSO ðx�; y�Þ ¼ ð1; 1:4Þ z� ¼ 0:48

FA ðx�; y�Þ ¼ ð1; 1:41423Þ z� ¼ 0:485604

f10 (max) C.C. transformation exact method ���� ����
Dinkelbach algorithm exact method ���� ����
Jaberipour and Khorram (2010) Harmony search ðx�; y�; v�Þ ¼ ð1:5; 1:5; 1:1Þ z� ¼ 8:1207

PSO ðx�; y�; v�Þ ¼ ð1:5; 1:5; 0Þ z� ¼ 8:279866

FA ðx�; y�; v�Þ ¼ ð1:5; 1:49; 0Þ z� ¼ 8:251791
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particle searching for the optimized maximum value. The

same particles swarm with the same color could be

observed in the decision variable space of Fig. 2b, c at

values of (1,1.7438), (1,1.7377) trying to reach the opti-

mized decision variables values using FA, PSO algo-

rithms, respectively.

Industry applications

A. Design of a gear train

A gear train problem is selected from Deb and Srinivasan

(2006), and Shen et al. (2011); shown in Fig. 3 below. A

compound gear train is to be designed to achieve a specific

gear ratio between the driver and driven shafts. It is a pure

integer fractional optimization problem used to validate the

integer handling mechanism. The gear ratio for gear train is

defined as the ratio of the angular velocity of the output

shaft to that of the input shaft. It is desirable to produce a

gear ratio as close as possible to 1=6:931. For each gear,

the number of teeth must be between 12 and 60. The design

variables Ta; Tb; Td, and Tf are the numbers of teeth of the

gears a; b; d, and f , respectively, which must be integers.

x ¼ ðTd; Tb; Ta; Tf ÞT
.

The optimization problem is expressed as:

min z ¼ 1

6:931
� bTdcbTbc

bTacbTf c

� �2

¼ 1

6:931
� bx1cbx2c
bx3cbx4c

� �2

:

subject to 12� xi � 60; i ¼ 1; 2; 3; 4:

The constraint ensures that the error between obtained gear

ratio and the desired gear ratio is not more than the 50 % of

the desired gear ratio.
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Fig. 1 Swarm distributions searching for optimization value of f3
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The detailed accuracy performance concerning the

solution of FA and PSO is listed in Table 2. The compar-

ison is held in terms of the best, error, mean, and standard

deviation values. These values were obtained out of 20

independent runs. The table also shows the best optimi-

zation value, the convergence time and the amount

addressed memory resources. First refereeing to the

obtained optimization value indicates a better achievement

for FA. On the other hand, the convergence time and the

Table 2 Result comparisons between FA and PSO on gear train

problem

FA PSO

Best 2.7E�012 2.700857E�012

Error (%) 0 % 0.0003174 %

Mean 5.1314E�012 1.1371E�011

SD 7.6868E�012 1.01307E�011

Time (s) 65 45

Memory utilization 483–484 492–494
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amount of addressed memory resources indicate a better

achievement for PSO. The PSO algorithm utilizes memory

amount of 483–484 as shown in Fig. 4, while FA algorithm

utilizes memory amount of 492–494 as shown in the same

figure.

B. Proportional integral derivative (PID) controller

Proportional integral derivative (PID) controllers are

widely used to build automation equipment in industries;

shown in Fig. 5 below. They are easy to design, implement,

and are applied well in most industrial control systems

process control, motor drives, magnetic, etc.

Correct implementation of the PID depends on the

specification of three parameters: proportional gain ðKpÞ,
integral time ðTiÞ and derivative time ðTdÞ. These three

parameters are often tuned manually by trial and error,

which has a major problem in the time needed to accom-

plish the task. and the fractional-order PID controller

parameters vector is (Kp, Ti, Td, k, d). The PID controller is

a special case of the fractional-order PID controller, we

simply set k ¼ d ¼ 1:

Assume that the system is modeled by an nth-order

process with time delay L:

GpðsÞ ¼
bmsm þ bm�1sm�1 þ :::þ b1s þ b0

sn þ an�1sn�1 þ :::þ a1s þ a0

	 e�Ls ð6Þ

Here, we assume n [ m and the system (6) is stable. The

fractional-order PID controller has the following transfer

function:

GCðsÞ ¼ Kp þ Tis
�k þ Tdsd

The optimization problem is summarized as follows:

min z ¼ zðKp; Ti; Td; k; dÞ.
subject to L�Kp; Ti; Td; k; d�U.

where the z; L;U is given by the designer. Note that the

constraint is introduced to guarantee the stability of the

closed-loop system. Also, the values of five design

parameters (Kp, Ti, Td, k, d) are directly determined by

solving the above optimization problem.

Simulation example

Consider the following the transfer function presented in

Maiti et al. (2008):

GpðsÞ ¼ 1
0:8s2:2þ0:5s0:9þ1

:

The initial parameters are chosen randomly in the fol-

lowing range: Kp; ½1; 1;000�;Ti; ½1; 500�; Td; ½1; 500�; k;
½0; 2�; d; ½0; 2�. We want to design a controller such that the

closed loop system has a maximum peak overshoot Mp ¼
10% and trise = 0.3 s. This translates to n ¼ 0:65 (damping

ratio), x0 ¼ 2:2 s�1 (undamped natural frequency). We

then find out the positions of the dominant poles of the

closed loop system,

P1;2 ¼ �nx0 
 jx0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � n2

p
:

The dominant poles for the closed loop controlled sys-

tem should lie at ð�1:43 þ j1:67Þ and ð�1:43 � j1:67Þ: For

p1 ¼ ð�1:43 þ j1:67Þ, the characteristic equation is:

1 þ KpþTið�1:43þj1:67ÞkþTdð�1:43þj1:67Þd

0:8ð�1:43þj1:67Þ2:2þ0:5ð�1:43þj1:67Þ0:9þ1
¼ 0:

Tables 3 and 4 illustrate the calculated optimized

parameters of PID controller using PSO, FA and using the

Table 3 Results for the integer order PID

Technique Kp Ti Td Step response

FA 500 249.68 500 1.0020

PSO 200 491.68 100 1.0208

Maiti et al. (2008) 214.84 361.57 76.76 1.0339

Table 4 Results for the fractional order PID

Tec. Kp Ti Td k d Step

res.

FA 786.99 484.8 308 2 1 1.0079

PSO 857.54 292.98 206.9 1.62 1.75 1.0179

Maiti et al.

(2008)

442.68 324.03 115.27 1.5 1.41 1.0288
Fig. 4 Memory usage indicator

Fig. 5 Generic closed loop

system
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algorithm of Maiti et al. (2008). In Table 3 which gives

only the result of the integer-order PID controller param-

eters, when the variables (k) and (d) are set to a value of

(1), it could be observed that the optimized parameters

calculated using FA algorithm generates the best control

step response as illustrate in Fig. 6. It could be concluded

also from the same figure that PSO algorithm with tuned

parameters introduces a better step response than Maiti

et al. (2008). Table 4 introduces optimized parameters of

the fractional-order PID controller where the same indi-

cated remarks could be observed as that of the integer

order.

Conclusions

The paper presents a new approach to solve FFPs based on

two Swarm Intelligence (SI) algorithms. The two types are

PSO, and FA. Ten-benchmark problem were solved using

the two SI algorithm and many other previous approaches.

The results employing the two SI algorithms were com-

pared with the other exact and metaheuristic approaches

previously used for handling FPPs. The two algorithms

proved their effectiveness, reliability and competences in

solving different FPP. The two SI algorithms managed to

successfully solve large-scale FPP with an optimal solution

at a finite point and an unbounded constraint set. The

computational results proved that SI turned out to be

superior to other approaches for all the accomplished tests

yielding a higher and much faster growing mean fitness at

less computational time. A better memory utilization was

obtained using the PSO algorithm compared to FA algo-

rithm. Two industrial application problems were solved

proving the superiority of FA algorithm over PSO algo-

rithm reaching a better optimized solution. A better opti-

mized ratio was obtained that generated a zero traction

error in the gear train application and a better control

response was obtained in the PID controller application. In

the two applications, the best results were acquired using

the two SI algorithms with an advantage to the FA algo-

rithm optimization results and an advantage to the PSO

algorithm in the computational time.
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