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Abstract Assuming a first-order auto-regressive model

for the auto-correlation structure between observations, in

this paper, a transformation method is first employed to

eliminate the effect of auto-correlation. Then, a maximum

likelihood estimator (MLE) of a step change in the pa-

rameters of the transformed model is derived and three

separate EWMA control charts are used to monitor the

parameters of the profile. The performance of the proposed

change-point estimator is next compared to the one of the

built-in change-point estimator of EWMA control chart

through some simulation experiments. The results show

that the proposed MLE of the change point accurately es-

timates the true change point and outperforms the built-in

estimator of EWMA chart for almost all shift values and

auto-correlation coefficients, while the built-in estimator of

EWMA chart, in general, underestimates the true change

point.

Keywords Change point � Maximum likelihood

estimator (MLE) � Step change � Simple linear profile �
Within-profile auto-correlation

Introduction and literature review

Statistical control charts have been widely used in indus-

tries to monitor quality characteristics and states of pro-

cesses. By distinguishing between common and special

causes of variability, they determine the state of a process

and generate a signal when the process moves to an out-of-

control condition. Following a signal from a control chart,

process engineers initiate a search to identify and remove

the root causes of variation. However, due to the inertia

property of control charts, the signaling time is different

from the real time at which a process starts to be affected

by special causes (change point) and in most cases, the

change had really occurred much earlier than the signaling

time. Despite the efficiency of control charts in monitoring

process changes, they do not provide any specific infor-

mation about the time and the root causes of process var-

iation. Therefore, providing an accurate estimate of the

change point would enable process engineers to eliminate

the root causes in a quick manner and improve the quality

of processes.

Many researchers proposed change-point estimates of

processes with quality characteristics following various

probability distributions. While Samuel et al. (1998a, b),

Pignatiello and Samuel (2001), Ghazanfari et al. (2008),

Perry et al. (2006, 2007), Perry and Pignatiello (2005,

2006, 2010), Fahmy and Elsayed (2006), and Noorossana

and Shadman (2009) proposed procedures to estimate the

change point in the parameters of univariate distributions,

Nedumaran et al. (2000), Atashgar and Noorossana (2010),

Niaki and Khedmati (2012, 2013, 2014a, b), and Sullivan

and Woodall (2000) considered change-point estimations

in the parameter vectors of multivariate distributions.

However, in some applications, the quality of a process can

be better characterized by a relationship between a
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response variable and one or more predictors. Such a re-

lationship is commonly referred to as a profile and may be

represented by a simple linear, a multiple linear, a poly-

nomial, or a nonlinear regression model. Simple linear

profiles are mostly used in calibration applications and are

widely studied in the literature for both Phases I and II

monitoring; see, for example, Kang and Albin (2000), Kim

et al. (2003), Zhang et al. (2009), Saghaei et al. (2009),

Mahmoud and Woodall (2004), Mahmoud et al. (2010),

Soleimani et al. (2009), and Hossienifard et al. (2011).

Besides, some authors including Mahmoud (2008), Jensen

et al. (2008), Amiri et al. (2012), and Kazemzadeh et al.

(2010) considered more complicated models such as mul-

tiple linear and polynomial regression profiles.

Although there exist remarkable research efforts on

developing methods to monitor profiles in Phases I and II,

only a few research works have been performed to estimate

the change point of processes monitored by profiles. To

name a few, Zou et al. (2007) proposed a maximum like-

lihood estimator of a step-change point in the parameters of

a general linear profile in Phase II and showed their method

works well. In another work, Zou et al. (2006) developed a

likelihood ratio statistic to estimate a step-change point in

the parameters of a simple linear profile in Phase I. In

another work, Eyvazian et al. (2011) proposed a method

based on the likelihood ratio approach to estimate the time

of a step change in the parameters of a multivariate mul-

tiple linear regression profile in Phase II. Sharafi et al.

(2013) proposed a maximum likelihood estimator of a step-

change point in binary response profiles in which logistic

regression was used to model the relationship between a

binary response and explanatory variables. In another

work, Sharafi et al. (2013) developed a maximum likeli-

hood estimator for identifying step-change points in Phase-

II monitoring of Poisson regression profiles. Interested

readers are referred to Zand et al. (2013), Kazemzadeh

et al. (2014), Keramatpour et al. (2013), and Sharafi et al.

(2013) for more references.

Although in some applications the error terms in suc-

cessive profiles are auto-correlated [see for example Jensen

et al. (2008); Kazemzadeh et al. (2010); Noorossana et al.

(2008); Zhang et al. (2014); Keramatpour et al. (2014);

Niaki et al. (2014); Jensen and Birch (2009); Amiri et al.

(2010); and Khedmati and Niaki (2015)], to the best of

authors’ knowledge there has not been any research work

on estimating the time of a step change in auto-correlated

simple linear profiles in Phase II. Therefore, in this paper, a

maximum likelihood estimator of a step change in the

parameters of auto-correlated simple linear regression

profiles is first proposed in which the auto-correlation

structure between observations in each profile is assumed

to follow a first-order auto-regressive, AR(1), model. Then,

the performance of the proposed procedure is compared to

one of the built-in change-point estimator of EWMA

control chart, where three EWMA control charts are ap-

plied to monitor the parameters of an auto-correlated

simple linear profile.

The organization of the rest of the paper is as follows:

In the next section, the auto-correlated simple linear re-

gression model and the transformation method to elim-

inate the effect of auto-correlation within each profile is

described. The process is modeled and the maximum

likelihood estimator of the change point is derived in

‘‘Process modeling and MLE derivation’’ section. The

performance of the proposed change-point estimators is

evaluated and is compared to one of the built-in estimator

of EWMA chart in ‘‘Performance evaluation’’ section

through some simulation experiments. An illustrative

example is provided in ‘‘Cadinality and coverage perfor-

mances of the confidence set estimator’’ section to

demonstrate the application of the proposed methodology.

Finally, concluding remarks are presented in ‘‘An illus-

trative example’’ section.

Auto-correlated simple linear regression model

For the jth sample collected over time, the observations are

denoted by (xi, yij), i = 1, 2, …, n, where it is assumed

there exist an auto-correlation between the error terms and

that within-profile observations at different values of the

predictor variable x are modeled by a first-order auto-re-

gressive, AR(1), model. Based on this model, when the

process is in statistical control, the relationship between the

response variable yij, the predictor variable and the error

terms is

yij ¼ A0 þ A1xi þ eij;

eij ¼ ue i�1ð Þj þ aij;
ð1Þ

where A0 and A1 are model parameters, eij’s are the cor-

related error terms, 0\u\ 1 is the auto-correlation co-

efficient, and aij’s are independent and identically

distributed (iid) normal random variables with mean zero

and variance r2, i.e., N(0, r2). We assume that the x values

are fixed and constant from profile to profile. Moreover, as

the change-point estimation is aimed in Phase-II monitor-

ing of auto-correlated simple linear profiles, the in-control

values of the parameters A0, A1, r
2, and u are assumed

known.

Considering the auto-correlation structure between the

error terms, observations in successive profiles can be ex-

pressed by yij ¼ A0 þ A1xi þ eij and y i�1ð Þj ¼ A0 þ
A1x i�1ð Þþ e i�1ð Þj. Deriving the correlated error terms eij and
e(i-1)j from these equations and replacing them into the

AR(1) auto-correlation structure shown in Eq. (1) leads to
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yij � A0 þ A1xið Þ ¼ u y i�1ð Þj � A0 þ A1x i�1ð Þ
� �� �

þ aij:

ð2Þ

According to Eq. (2), there exist auto-correlations be-

tween observations within each profile. Soleimani et al.

(2009) showed that the existing auto-correlation between

the error terms within each profile affects the performance

of the control charts for simple linear profiles. Therefore,

they applied a transformation to eliminate the effect of

auto-correlation. In this transformation, one first transforms

the observations using Eq. (3).

y0ij ¼ yij � uy i�1ð Þj: ð3Þ

Then, she/he replaces the observations yij and y(i-1)j by

their equivalents in Eq. (1). This leads to a simple linear

regression model with independent error terms as

y0ij ¼ A0 1� uð Þ þ A1 xi � uxi�1ð Þ þ eij � ue i�1ð Þj
� �

: ð4Þ

Finally, the following model is obtained

y0ij ¼ A0
0 þ A0

1x
0
i þ aij; ð5Þ

where A0
0 ¼ A0 1� uð Þ, A0

1 ¼ A1, x
0
i ¼ xi � uxi�1; and aij’s

are independent normal random variables with mean zero

and variance r2.
Now, the EWMA-3 method, first introduced by Kim

et al. (2003), is applied to monitor the transformed

simple linear profile with uncorrelated observations in

Phase II. Several researchers showed that the EWMA-3

procedure outperforms other methods such as T2 and

EWMA/R for most of the shift magnitudes in each of the

parameters (see Kim et al. (2003); Soleimani et al.

(2009) for more details). In this method, the x0-values are
coded such that the average coded value is zero. To do

this, they are subtracted from their average, i.e.,

x00 ¼ x0 � �x0. Applying this method, the least-squares

estimators of the intercept and slope will be independent

and consequently, separate control charts can be used to

monitor the three parameters of the model. The model

after the transformation becomes

y0ij ¼ B0 þ B1x
00
i þ aij; ð6Þ

in which B0 ¼ A0
0 þ A0

1
�x0, B1 ¼ A0

1; and x00i ¼ x0i � �x0
� �

.

For the EWMA control chart designed to monitor the

intercept B0, the estimator of the intercept for the jth

sample (b0(j)) in the EWMA statistics is

EWMAI jð Þ ¼ hb0 jð Þ þ 1� hð ÞEWMAI j� 1ð Þ; ð7Þ

where h 0\h� 1ð Þ is the smoothing parameter and

EWMAI(0) = B0. The lower and the upper control limits

of this control chart are given in Eq. (8), where as long as

the EWMAI statistics are within them, the intercept of the

profile is in statistical control.

LCLI ¼ B0 � LIr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h= 2� hð Þ n� 1ð Þ½ �

p
and

UCLI ¼ B0 þ LIr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h= 2� hð Þ n� 1ð Þ½ �

p
;

ð8Þ

in which LI ([0) is chosen to give a specified in-control

ARL.

For the EWMA control chart designed to monitor the

slope B1, the estimator of the slope for the jth sample (b1(j))

in the EWMA statistics is

EWMAS jð Þ ¼ hb1 jð Þ þ 1� hð ÞEWMAS j� 1ð Þ; ð9Þ

where h 0\h� 1ð Þ is the smoothing parameter and

EWMAS(0) = B1. The lower and the upper control limits

of this control chart are given in Eq. (10) and as long as the

EWMAS statistics are within these control limits, the slope

of the profile is in statistical control.

LCLS ¼ B1 � LSr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h

,

2� hð Þ
Xn

i¼2

x
00
i
2

" #vuut and

UCLS ¼ B1 þ LSr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h

,

2� hð Þ
Xn

i¼2

x
00
i

2

" #vuut ;

ð10Þ

in which LS([0) is chosen to give a specified in-control

ARL.

The third EWMA control chart is used to monitor the

error variance r2. In this control chart, the estimator of the

error variance based on residuals MSEj, is used in the

EWMA statistics as

EWMAE jð Þ ¼ max h MSEj � 1
� ��

þ 1� hð ÞEWMAE j� 1ð Þ; ln r2
�
; ð11Þ

where h 0\h� 1ð Þ is the smoothing parameter and

EWMAS(0) = ln r2. The upper control limit of this control

chart is given in Eq. (12).

UCLE ¼ LE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hvar MSEj

� �	
2� hð Þ

q
; ð12Þ

in which LE([0) is chosen to give a specified in-control

ARL, and var MSEj

� �
¼ 2r4

n�1
[see Soleimani et al. (2009) for

more details].

Process modeling and MLE derivation

As long as the statistics falls within the lower and upper control

limits, the process is assumed in statistical control with known

in-control parameters B00, B10, and r20. Following an unknown
point in time s, a change occurs and processmoves to an out-of-

control state with unknown parameters B01, B11, and r21. We

assume that the change type is a step change and when this type

of change occurs, the process remains at the new level until the

special causes are identified and removed. Based on this model,
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during the formationof the profiles j = 1, 2, …, s the process is
in control with known in-control parameters B00, B10, and r20
while, for profiles j = s ? 1, s ? 2,…, T the parameters

change to out-of-control values B01, B11, and r21; where T indi-

cates the signaling time. This model is used to derive the max-

imum likelihood estimator of the change point, denoted by ŝ.
Considering the change point to occur at s, the likeli-

hood function is given by

L s;B01;B11;r
2
1jy

� �
¼

Ys

j¼1

Yn�1

i¼1

1

r0
ffiffiffiffiffiffi
2p

p e
�

y0
ij
�B00�B10x

00
ið Þ2

2r2
0

�
YT

j¼sþ1

Yn�1

i¼1

1

r1
ffiffiffiffiffiffi
2p

p e
�

y0
ij
�B01�B11x

00
ið Þ2

2r2
1 :

ð13Þ

The logarithm of the likelihood function in Eq. (13) is

lnL s;B01;B11;r
2
1jy

� �
¼� s n�1ð Þ

2
ln 2pr20
� �

� 1

2r20

Xs

j¼1

Xn�1

i¼1

y0ij�B00�B10x
00
i


 �2

� T� sð Þ n�1ð Þ
2

ln 2pr21
� �

� 1

2r21

XT

j¼sþ1

Xn�1

i¼1

y0ij�B01�B11x
00
i


 �2

:

ð14Þ

There are four unknown parameters s;B01;B11; and r21
in the log-likelihood function in Eq. (14) that have to be

estimated. At first, the maximum likelihood estimation of

the parameters B01;B11; and r21 is obtained for all possible

values of the change point in the range 0 B t\ T, by the

following equations

B̂11 ¼
Sx00y0
� �

t;T

Sx00x00ð Þt;T
;

B̂01 ¼ y0ij
� �

t;T
�B̂11 x0ij

� �
t;T

and

r̂21 ¼
PT

j¼tþ1

Pn�1
i¼1 y0ij � B̂01 � B̂11x

00
i


 �2

T � tð Þ n� 1ð Þ ;

ð15Þ

where (.)t,T is calculated based on the profiles t to T. Then,

using the estimated parameters in Eq. (15), the MLE of the

change point denoted by ŝ is obtained as

ŝ¼argmax �t n�1ð Þ
2

ln 2pr20
� ��

� 1

2r20

Xt

j¼1

Xn�1

i¼1

y0ij�B00�B10x
00
i


 �2

� T�tð Þ n�1ð Þ
2

ln 2pr̂21
� �

� T�tð Þ n�1ð Þ
2



: ð16Þ

The estimated change point ŝ is the point that maximizes

Eq. (16) for values of 0� t\T .

The built-in change-point estimator of EWMA control

chart suggested by Nishina (1992) is also employed in this

research to evaluate the performance of the proposed

change-point estimator. Nishina (1992) proposed an esti-

mator to identify the change point in processes monitored

by EWMA control charts, following a signal from the

control chart. Since the process is monitored using three

separate EWMA control charts, the Nishina’s approach is

applied to the control chart that issues an out-of-control

signal. In this regard, if the EWMAI control chart issues an

out-of-control signal, the estimated change point, denoted

by ŝEWMA, is

ŝEWMA ¼
max j : EWMAI jð Þ�B00f g if EWMAI Tð Þ[UCLI

max j : EWMAI jð Þ�B00f g if EWMAI Tð Þ\LCLI

�

ð17Þ

In other words, if an increase in the intercept is inves-

tigated by the control chart, the change point is estimated

using ŝEWMA ¼ max j : EWMAI jð Þ�B00f g; while if a de-

crease in the intercept is investigated, the change point is

estimated by ŝEWMA ¼ max j : EWMAI jð Þ�B00f g. If the

EWMAS control chart issues an out-of-control signal, the

change point is estimated by

ŝEWMA ¼
max j : EWMAS jð Þ�B10f g if EWMAS Tð Þ[UCLS

max j : EWMAS jð Þ�B10f g if EWMAS Tð Þ\LCLS

�

ð18Þ

Finally, if the EWMAE control chart issues an out-of-

control signal, the estimated change point is obtained by

ŝEWMA ¼ max j : EWMAE jð Þ� ln r20
� �

: ð19Þ

In the next section, the performance of the proposed

change-point estimator is compared to one of the above

built-in EWMA estimator through some simulation ex-

periments, where all programming tasks are performed

using the MATLAB 7 software.

Performance evaluation

In this section, the performance of the proposed methods in

estimating the time of a step change in the parameters of

auto-correlated simple linear profiles is evaluated through

some simulation experiments. In the simulation studies, the

underlying model is considered as

yij ¼ 3þ 2xi þ eij;

eij ¼ ue i�1ð Þj þ aij
; ð20Þ

where aij’s are independent normal variables with mean

zero and variance one, and the fixed x values are set equal
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to 2, 4, 6, and 8. In the EWMA-3 control chart, the

smoothing parameter is 0.2 and the values of the pa-

rameters ðLI ; LS; LEÞ are set equal to (3.014, 3.012, 3.870),

respectively, to obtain the overall in-control ARL of ap-

proximately 200 under u = 0.1, u = 0.2, u = 0.4,

u = 0.5, u = 0.7, and u = 0.9 auto-correlation coefficient

values.

Considering a change to occur at time s = 50, the ob-

servations for the first 50 profiles are randomly generated

based on the in-control process given in Eq. (20) in which

all parameters are known and in statistical control. How-

ever, following the 51st profile, observations are randomly

generated from an out-of-control process with a step shift

in the parameters as
A01 ¼ A00 þ kr0;

A11 ¼ A10 þ br0;

r21 ¼ cr20:

: ð21Þ

The transformations are used, and the corresponding

statistic for each profile is calculated and plotted in the

EWMA-3 control chart. Following a genuine out-of-con-

trol signal, the change-point estimators in Eqs. (16–19) are

applied to determine the time of the change. This procedure

is replicated 10,000 times to obtain the averages, the

standard deviations, and the precision performances of the

estimated change point for all auto-correlation coefficients

(u = 0.1, u = 0.2, u = 0.4, u = 0.5, u = 0.7, and

u = 0.9) under investigation.

Table 1 contains the averages and standard deviations of

the change-point estimates under a step shift in the inter-

cept from A00 to A01 = A00 ? kr0 for both estimators

under different auto-correlation coefficients. Based on the

results in Table 1, while both estimators provide satisfac-

tory results in terms of the expected length of a simulation

run, E(T) = ARL ? 50, the proposed MLE of the change

point provides more accurate estimates than the built-in

estimator of EWMA control chart, for almost all shift

magnitudes and auto-correlation coefficients. Besides, the

estimated change points for small shifts are closer to the

real change point and that an increase in change-point

Table 1 Estimated change points and standard deviations of the two change-point estimators for a step shift in the intercept based on different

auto-correlation coefficients

k u = 0.1 u = 0.2 u = 0.4

E(T) EðŝÞ EðŝEWMAÞ E(T) EðŝÞ EðŝEWMAÞ E(T) EðŝÞ EðŝEWMAÞ

0.2 136.06 86.39 (48.04) 121.31 (80..84) 152.08 98.44 (61.04) 138.47 (96.87) 183.53 133.23 (96.73) 170.39 (127.84)

0.4 76.23 57.40 (16.50) 58.24 (17.87) 81.71 59.66 (19.87) 63.66 (23.51) 106.27 71.54 (33.66) 89.84 (48.70)

0.6 62.12 52.45 (8.82) 48.88 (6.04) 64.86 53.26 (10.65) 50.09 (7.42) 76.09 56.88 (17.03) 57.73 (17.92)

0.8 57.45 50.81 (6.31) 47.74 (5.11) 58.96 51.48 (7.58) 48.37 (5.17) 65.14 53.41 (10.16) 50.08 (6.92)

1 55.26 50.30 (5.11) 47.24 (5.22) 56.24 50.44 (5.41) 47.16 (5.45) 59.64 51.95 (7.93) 48.23 (5.54)

1.2 54.09 50.12 (3.84) 47.16 (5.12) 54.74 50.30 (4.37) 47.19 (5.19) 57.24 50.66 (6.67) 47.68 (5.27)

1.4 53.35 50.09 (2.95) 47.01 (5.19) 53.91 49.90 (3.92) 46.96 (5.19) 55.74 50.27 5.49) 47.44 (4.98)

1.6 52.82 50.02 (2.22) 46.94 (5.18) 53.29 50.28 (2.28) 47.07 (4.99) 54.78 50.03 (4.96) 47.31 (5.16)

1.8 52.46 50.05 (1.73) 46.93 (5.11) 52.89 50.20 (1.54) 47.29 (4.82) 54.12 50.07 (3.87) 46.86 (5.58)

2 52.16 50.04 (1.49) 46.93 (5.08) 52.48 50.02 (1.92) 47.03 (5.08) 53.63 50.15 (3.19) 47.06 (5.40)

u = 0.5 u = 0.7 u = 0.9

k E(T) EðŝÞ EðŝEWMAÞ E(T) EðŝÞ EðŝEWMAÞ E(T) EðŝÞ EðŝEWMAÞ

0.2 204.32 156.38 (112.73) 191.19 (141.79) 237.29 211.94 (163.83) 222.32 (168.95) 257.65 248.28 (193.88) 241.64 (186.42)

0.4 123.19 80.69 (46.72) 108.63 (75.06) 181.87 130.94 (93.05) 169.87 (127.39) 252.71 237.84 (186.45) 236.52 (184.91)

0.6 87.25 62.31 (21.80) 68.78 (30.12) 136.79 88.95 (53.58) 122.06 (82.12) 234.94 208.44 (165.67) 221.12 (174.52)

0.8 71.90 54.97 (14.32) 53.51 (12.51) 103.58 69.36 (32.05) 86.78 (46.82) 226.79 184.76 (140.21) 210.78 (160.74)

1 63.51 52.50 (10.93) 49.89 (6.68) 87.41 62.22 (22.27) 68.60 (29.45) 201.39 156.06 (116.50) 188.96 (142.45)

1.2 60.09 51.83 (8.01) 48.38 (5.70) 76.62 57.50 (16.08) 58.32 (17.53) 183.41 130.81 (91.63) 171.21 (127.83)

1.4 57.84 51.18 (7.10) 47.77 (4.80) 69.55 54.86 (13.21) 52.82 (11.17) 165.37 113.07 (77.10) 152.44 (107.13)

1.6 56.15 50.50 (5.68) 47.52 (5.21) 64.96 53.20 (10.73) 50.17 (7.60) 150.03 98.76 (63.76) 136.19 (94.64)

1.8 55.22 50.51 (4.51) 47.17 (5.69) 62.06 52.45 (9.04) 48.78 (5.87) 134.15 87.28 (51.30) 119.75 (76.83)

2 54.42 50.06 (4.62) 47.33 (4.80) 59.95 51.86 (8.27) 48.26 (5.65) 123.34 79.95 (42.47) 107.76 (67.96)

Standard deviations are shown in parentheses and s = 50
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estimates for larger auto-correlation coefficients results in

an increase in the average run length (ARL). In other

words, as auto-correlation coefficient gets larger the ARL

and hence the expected length of run increases and con-

sequently larger estimates of change point are obtained.

Moreover, the precision performances are reported in

Table 2 for a step shift in the intercept, in which the

probabilities P ŝ� sj j ¼ 0ð Þ, P ŝ� sj j � 1ð Þ, P ŝ� sj j � 3ð Þ;
and P ŝ� sj j � 5ð Þ are denoted by P0, P1, P3, and P5,

respectively. The results in Table 2 show that while ŝEWMA

Table 2 Estimated precision performances of the two change-point estimators for a step shift in the intercept based on different auto-correlation

coefficients

k u = 0.1 u = 0.2 u = 0.4

P0 P1 P3 P5 P0 P1 P3 P5 P0 P1 P3 P5

0.2 0.011

(0.033)

0.034

(0.062)

0.082

(0.103)

0.127

(0.144)

0.006

(0.028)

0.023

(0.048)

0.057

(0.086)

0.093

(0.108)

0.008

(0.024)

0.024

(0.037)

0.052

(0.071)

0.080

(0.090)

0.4 0.074

(0.209)

0.170

(0.334)

0.302

(0.481)

0.402

(0.574)

0.053

(0.158)

0.130

(0.251)

0.245

(0.381)

0.346

(0.468)

0.030

(0.076)

0.077

(0.129)

0.154

(0.201)

0.232

(0.250)

0.6 0.159

(0.353)

0.306

(0.537)

0.489

(0.714)

0.619

(0.806)

0.111

(0.314)

0.247

(0.510)

0.407

(0.690)

0.533

(0.773)

0.076

(0.213)

0.171

(0.342)

0.307

(0.500)

0.403

(0.599)

0.8 0.241

(0.427)

0.430

(0.599)

0.640

(0.756)

0.777

(0.835)

0.213

(0.421)

0.391

(0.595)

0.599

(0.755)

0.721

(0.826)

0.125

(0.306)

0.249

(0.474)

0.424

(0.661)

0.566

(0.768)

1 0.331

(0.456)

0.546

(0.603)

0.772

(0.740)

0.892

(0.815)

0.276

(0.420)

0.463

(0.569)

0.697

(0.712)

0.828

(0.805)

0.164

(0.398)

0.326

(0.565)

0.533

(0.750)

0.682

(0.831)

1.2 0.437

(0.483)

0.658

(0.609)

0.876

(0.737)

0.954

(0.814)

0.382

(0.474)

0.598

(0.627)

0.823

(0.744)

0.918

(0.810)

0.278

(0.443)

0.458

(0.596)

0.653

(0.745)

0.787

(0.831)

1.4 0.520

(0.486)

0.750

(0.604)

0.933

(0.730)

0.976

(0.805)

0.471

(0.476)

0.667

(0.586)

0.883

(0.715)

0.946

(0.802)

0.309

(0.462)

0.517

(0.619)

0.742

(0.745)

0.856

(0.822)

1.6 0.612

(0.481)

0.828

(0.591)

0.968

(0.719)

0.985

(0.799)

0.526

(0.480)

0.764

(0.612)

0.952

(0.734)

0.987

(0.806)

0.368

(0.460)

0.582

(0.618)

0.807

(0.752)

0.919

(0.822)

1.8 0.689

(0.478)

0.883

(0.591)

0.981

(0.714)

0.990

(0.799)

0.629

(0.505)

0.820

(0.616)

0.961

(0.740)

0.990

(0.832)

0.417

(0.472)

0.648

(0.590)

0.853

(0.711)

0.935

(0.793)

2 0.736

(0.478)

0.922

(0.588)

0.987

(0.717)

0.994

(0.801)

0.676

(0.498)

0.878

(0.604)

0.980

(0.734)

0.990

(0.813)

0.529

(0.498)

0.728

(0.615)

0.914

(0.740)

0.975

(0.810)

k u = 0.5 u = 0.7 u = 0.9

P0 P1 P3 P5 P0 P1 P3 P5 P0 P1 P3 P5

0.2 0.006

(0.018)

0.023

(0.036)

0.041

(0.059)

0.055

(0.074)

0.005

(0.013)

0.012

(0.030)

0.026

(0.043)

0.041

(0.055)

0.003

(0.011)

0.009

(0.025)

0.020

(0.038)

0.031

(0.051)

0.4 0.024

(0.053)

0.053

(0.096)

0.112

(0.141)

0.177

(0.184)

0.010

(0.023)

0.025

(0.040)

0.059

(0.068)

0.078

(0.087)

0.003

(0.010)

0.009

(0.023)

0.019

(0.043)

0.032

(0.053)

0.6 0.059

(0.145)

0.134

(0.241)

0.218

(0.352)

0.322

(0.432)

0.019

(0.040)

0.050

(0.072)

0.105

(0.120)

0.150

(0.156)

0.004

(0.012)

0.007

(0.024)

0.019

(0.041)

0.034

(0.056)

0.8 0.096

(0.255)

0.192

(0.383)

0.342

(0.546)

0.469

(0.648)

0.034

(0.077)

0.082

(0.137)

0.164

(0.215)

0.237

(0.273)

0.006

(0.012)

0.013

(0.025)

0.028

(0.039)

0.047

(0.057)

1 0.134

(0.330)

0.271

(0.514)

0.456

(0.683)

0.570

(0.778)

0.055

(0.140)

0.130

(0.226)

0.233

(0.340)

0.318

(0.414)

0.007

(0.016)

0.0183

(0.027)

0.035

(0.048)

0.051

(0.063)

1.2 0.190

(0.387)

0.338

(0.568)

0.540

(0.745)

0.673

(0.813)

0.071

(0.201)

0.158

(0.316)

0.297

(0.468)

0.400

(0.558)

0.012

(0.026)

0.029

(0.042)

0.055

(0.066)

0.085

(0.091)

1.4 0.213

(0.417)

0.388

(0.588)

0.599

(0.751)

0.753

(0.833)

0.096

(0.263)

0.203

(0.413)

0.348

(0.589)

0.471

(0.691)

0.010

(0.023)

0.024

(0.043)

0.059

(0.073)

0.088

(0.097)

1.6 0.285

(0.438)

0.491

(0.612)

0.731

(0.766)

0.854

(0.839)

0.129

(0.319)

0.262

(0.494)

0.433

(0.674)

0.557

(0.762)

0.015

(0.031)

0.041

(0.059)

0.080

(0.094)

0.118

(0.119)

1.8 0.328

(0.467)

0.543

(0.620)

0.786

(0.740)

0.910

(0.817)

0.144

(0.359)

0.297

(0.531)

0.478

(0.713)

0.608

(0.810)

0.015

(0.031)

0.044

(0.068)

0.100

(0.109)

0.147

(0.146)

2 0.405

(0.491)

0.594

(0.617)

0.832

(0.743)

0.930

(0.821)

0.185

(0.381)

0.338

(0.562)

0.533

(0.734)

0.668

(0.825)

0.022

(0.051)

0.067

(0.087)

0.132

(0.144)

0.178

(0.180)

Precision performances for ŝEWMA are shown in parentheses
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provides more precise estimates in comparison to ŝ for

small shifts, as the shift magnitudes increase the precision

performance of ŝ increases and ŝ outperforms ŝEWMA.

The results of averages, standard deviations, and preci-

sion performances of the estimated change points under a

step shift in the slope parameter from A10 to

A11 = A10 ? br0 are summarized in Tables 3 and 4. Based

on the results in Table 3, the proposed MLE of the change

point provides adequately accurate estimates for almost all

shift values and auto-correlation coefficients. In fact, in

addition to better results of ŝ in comparison to E(T), it

provides more accurate results than ŝEWMA. Moreover, the

results in Table 4 show better precision for ŝEWMA for small

shift values and better precision for ŝ as shift values

increase.

Finally, Tables 5 and 6 contain the averages, the stan-

dard deviations, and the precision performances of the

change-point estimates under a step shift in the error

variance from r20 to r21 ¼ cr20. Again, the results show that

the proposed change-point estimator ŝ provides more ac-

curate estimates compared to ŝEWMA for shifts of almost any

magnitude and all auto-correlation coefficients. Further-

more, ŝ provides more precise results than ŝEWMA especially

for large shift values.

In summary, the proposed MLE of a step change in the

parameters of an auto-correlated simple linear profile pro-

vides adequately accurate and precise estimates of the

change point, regardless of shift magnitude and auto-cor-

relation coefficient. In addition, the results obtained from

simulation experiments indicate that ŝ outperforms ŝEWMA

for almost all shift values where in most cases, ŝEWMA

underestimates the real change point.

Cardinality and coverage performances
of the confidence set estimator

In this section, the cardinality and coverage performance of

the confidence set estimator for the process change point

are evaluated. Confidence sets for the change point provide

a window of the possible change points that cover the true

change point of the process. Consequently, process

Table 3 Estimated change points and standard deviations of the two change-point estimators for a step shift in the slope based on different auto-

correlation coefficients

b u = 0.1 u = 0.2 u = 0.4

E(T) EðŝÞ EðŝEWMAÞ E(T) EðŝÞ EðŝEWMAÞ E(T) EðŝÞ EðŝEWMAÞ

0.025 158.12 106.09 (67.43) 145.10 (98.58) 170.54 122.33 (85.77) 158.07 (111.36) 195.10 141.27 (99.01) 182.57 (136.83)

0.05 90.23 62.37 (23.12) 73.40 (32.91) 95.81 66.16 (27.71) 78.54 (38.62) 110.37 76.06 (37.33) 94.63 (51.68)

0.075 68.23 54.72 (12.08) 52.48 (9.90) 71.60 55.87 (14.32) 54.37 (12.89) 81.44 58.18 (17.33) 63.25 (24.36)

0.1 61.29 52.14 (8.74) 48.67 (5.25) 62.62 52.73 (9.24) 49.19 (5.63) 67.47 55.13 (11.18) 51.87 (9.42)

0.125 57.74 50.64 (6.85) 47.92 (4.97) 58.67 51.04 (7.34) 47.84 (5.35) 61.10 52.68 (8.04) 49.03 (5.54)

0.15 55.88 50.69 (4.57) 47.45 (4.98) 56.42 50.57 (5.51) 47.57 (5.04) 58.50 51.31 (7.01) 48.13 (4.93)

0.175 54.77 50.32 (4.58) 47.08 (4.98) 55.12 50.54 (4.33) 47.04 (5.54) 56.59 50.90 (4.95) 47.57 (5.21)

0.2 53.86 50.18 (3.52) 47.15 (4.95) 54.28 50.03 (4.90) 47.06 (5.22) 55.44 50.29 (5.11) 47.33 (5.43)

0.225 53.32 50.09 (2.99) 47.01 (5.61) 53.61 50.03 (3.51) 47.20 (4.79) 54.54 50.16 (4.57) 47.12 (5.13)

0.25 52.87 50.15 (1.53) 46.59 (5.98) 53.22 50.15 (2.45) 47.08 (4.77) 53.97 50.13 (3.12) 47.02 (5.09)

b u = 0.5 u = 0.7 u = 0.9

E(T) EðŝÞ EðŝEWMAÞ E(T) EðŝÞ EðŝEWMAÞ E(T) EðŝÞ EðŝEWMAÞ

0.025 193.11 151.84 (108.63) 179.91 (132.38) 219.58 184.72 (142.62) 206.94 (159.16) 238.15 215.30 (167.65) 224.46 (173.77)

0.05 122.78 79.54 (42.58) 107.91 (66.56) 149.90 99.21 (64.09) 136.12 (95.75) 180.95 131.99 (91.66) 168.69 (123.21)

0.075 86.28 61.35 (21.34) 67.80 (27.80) 105.18 70.26 (32.69) 88.53 (47.66) 134.38 88.43 (52.83) 119.83 (79.74)

0.1 70.75 56.79 (13.19) 53.83 (11.68) 82.29 59.08 (19.78) 64.19 (25.82) 105.14 70.07 (31.48) 87.93 (48.39)

0.125 63.68 52.89 (9.81) 49.73 (7.24) 71.80 55.65 (14.25) 54.62 (13.39) 87.71 61.13 (21.96) 69.53 (31.17)

0.15 59.84 51.09 (8.15) 48.41 (5.40) 65.23 53.45 (10.51) 50.11 (7.79) 76.79 57.78 (16.62) 58.41 (18.07)

0.175 57.76 51.07 (6.25) 47.79 (5.15) 61.20 52.36 (8.49) 48.85 (5.71) 69.47 55.08 (12.90) 52.92 (11.47)

0.2 56.19 50.68 (5.10) 47.36 (4.97) 58.93 51.41 (7.32) 48.01 (5.34) 65.14 53.27 (10.96) 50.35 (7.78)

0.225 55.26 50.18 (5.10) 47.35 (5.02) 57.42 50.85 (6.53) 47.53 (5.36) 62.01 52.31 (9.16) 48.80 (6.17)

0.25 54.60 50.11 (4.79) 47.20 (5.50) 56.18 50.61 (5.58) 47.59 (4.90) 59.98 51.58 (8.26) 48.21 (5.81)

Standard deviations are shown in parentheses and s = 50
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engineers can identify the true change point more quickly.

According to Box and Cox (1964), the confidence set of the

change point estimates are obtained as

CS ¼ t : ln L tð Þ[ ln L ŝð Þ � Df g; ð22Þ

in which lnL ŝð Þ represents the maximum of the log-like-

lihood function for all values of 0 B t\ T. Based on

Eq. (22), t is included in the confidence set if the value of

the log-likelihood function at t is greater than the

Table 4 Estimated precision performances of the two change-point estimators for a step shift in the slope based on different auto-correlation

coefficients

b u = 0.1 u = 0.2 u = 0.4

P0 P1 P3 P5 P0 P1 P3 P5 P0 P1 P3 P5

0.025 0.009

(0.019)

0.025

(0.046)

0.061

(0.074)

0.100

(0.100)

0.012

(0.025)

0.029

(0.040)

0.060

(0.076)

0.094

(0.105)

0.004

(0.018)

0.017

(0.039)

0.048

(0.057)

0.081

(0.072)

0.05 0.057

(0.120)

0.106

(0.194)

0.211

(0.294)

0.306

(0.363)

0.041

(0.106)

0.112

(0.192)

0.200

(0.282)

0.278

(0.337)

0.027

(0.046)

0.076

(0.089)

0.153

(0.153)

0.203

(0.213)

0.075 0.110

(0.267)

0.229

(0.403)

0.370

(0.601)

0.480

(0.692)

0.076

(0.222)

0.180

(0.366)

0.332

(0.530)

0.452

(0.628)

0.061

(0.157)

0.143

(0.253)

0.256

(0.395)

0.366

(0.474)

0.1 0.162

(0.368)

0.334

(0.556)

0.514

(0.733)

0.628

(0.827)

0.158

(0.359)

0.294

(0.520)

0.499

(0.722)

0.620

(0.808)

0.114

(0.296)

0.244

(0.450)

0.391

(0.637)

0.510

(0.729)

0.125 0.238

(0.429)

0.426

(0.612)

0.638

(0.753)

0.768

(0.834)

0.214

(0.391)

0.407

(0.592)

0.614

(0.742)

0.745

(0.808)

0.178

(0.361)

0.326

(0.553)

0.512

(0.721)

0.639

(0.810)

0.15 0.293

(0.457)

0.499

(0.609)

0.747

(0.743)

0.869

(0.817)

0.300

(0.414)

0.515

(0.590)

0.715

(0.734)

0.838

(0.823)

0.240

(0.421)

0.402

(0.600)

0.606

(0.760)

0.752

(0.837)

0.175 0.372

(0.436)

0.595

(0.572)

0.813

(0.730)

0.924

(0.810)

0.351

(0.463)

0.569

(0.595)

0.794

(0.736)

0.907

(0.807)

0.284

(0.450)

0.491

(0.605)

0.706

(0.736)

0.828

(0.833)

0.2 0.473

(0.489)

0.705

(0.613)

0.895

(0.739)

0.967

(0.814)

0.433

(0.452)

0.656

(0.601)

0.857

(0.727)

0.940

(0.806)

0.320

(0.474)

0.539

(0.613)

0.786

(0.744)

0.889

(0.821)

0.225 0.544

(0.478)

0.779

(0.611)

0.942

(0.746)

0.977

(0.815)

0.505

(0.483)

0.736

(0.591)

0.927

(0.737)

0.973

(0.804)

0.387

(0.481)

0.623

(0.602)

0.844

(0.725)

0.944

(0.804)

0.25 0.609

(0.466)

0.825

(0.581)

0.968

(0.709)

0.985

(0.791)

0.568

(0.480)

0.781

(0.604)

0.945

(0.719)

0.981

(0.804)

0.459

(0.442)

0.676

(0.578)

0.893

(0.719)

0.957

(0.801)

b u = 0.5 u = 0.7 u = 0.9

P0 P1 P3 P5 P0 P1 P3 P5 P0 P1 P3 P5

0.025 0.013

(0.025)

0.028

(0.043)

0.050

(0.059)

0.074

(0.079)

0.006

(0.017)

0.013

(0.027)

0.033

(0.046)

0.052

(0.067)

0.003

(0.011)

0.009

(0.023)

0.022

(0.036)

0.032

(0.051)

0.05 0.028

(0.052)

0.054

(0.086)

0.127

(0.138)

0.184

(0.168)

0.016

(0.030)

0.040

(0.055)

0.082

(0.092)

0.122

(0.121)

0.009

(0.021)

0.023

(0.041)

0.052

(0.067)

0.075

(0.086)

0.075 0.065

(0.129)

0.130

(0.211)

0.229

(0.314)

0.327

(0.397)

0.043

(0.078)

0.091

(0.133)

0.159

(0.206)

0.231

(0.258)

0.025

(0.046)

0.053

(0.075)

0.108

(0.122)

0.149

(0.152)

0.1 0.107

(0.240)

0.220

(0.380)

0.346

(0.555)

0.471

(0.643)

0.062

(0.150)

0.137

(0.259)

0.258

(0.394)

0.354

(0.478)

0.037

(0.084)

0.089

(0.138)

0.168

(0.211)

0.246

(0.265)

0.125 0.142

(0.323)

0.270

(0.483)

0.443

(0.675)

0.566

(0.774)

0.096

(0.229)

0.194

(0.378)

0.341

(0.547)

0.450

(0.648)

0.054

(0.144)

0.128

(0.237)

0.235

(0.344)

0.317

(0.423)

0.15 0.198

(0.399)

0.347

(0.578)

0.542

(0.731)

0.693

(0.817)

0.119

(0.322)

0.255

(0.492)

0.422

(0.667)

0.541

(0.759)

0.074

(0.208)

0.160

(0.331)

0.290

(0.475)

0.385

(0.568)

0.175 0.237

(0.410)

0.428

(0.576)

0.643

(0.740)

0.778

(0.826)

0.157

(0.352)

0.311

(0.531)

0.500

(0.722)

0.633

(0.813)

0.113

(0.283)

0.224

(0.428)

0.369

(0.598)

0.476

(0.700)

0.2 0.292

(0.456)

0.509

(0.609)

0.717

(0.724)

0.854

(0.818)

0.205

(0.425)

0.386

(0.592)

0.588

(0.750)

0.724

(0.817)

0.120

(0.308)

0.249

(0.484)

0.417

(0.671)

0.534

(0.772)

0.225 0.347

(0.457)

0.548

(0.622)

0.785

(0.753)

0.895

(0.824)

0.238

(0.413)

0.430

(0.582)

0.643

(0.736)

0.776

(0.814)

0.149

(0.350)

0.290

(0.525)

0.485

(0.710)

0.610

(0.803)

0.25 0.418

(0.462)

0.655

(0.631)

0.848

(0.751)

0.931

(0.815)

0.288

(0.448)

0.494

(0.613)

0.720

(0.753)

0.848

(0.824)

0.186

(0.385)

0.337

(0.565)

0.542

(0.735)

0.682

(0.821)

Precision performances for ŝEWMA are shown in parentheses
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maximum of the log-likelihood function minus a reference

value D. In this paper, the cardinality and coverage percent

of the confidence set estimator is calculated for different

reference values of D = 1, D = 3, and D = 5. The results

for a step shift in the intercept of the profile are reported in

Table 7.

Based on the results in Table 7, for reference value of

D = 3 and shift of size k = 1.2, for example, the confi-

dence set estimator provides an expected cardinality of

9.617 and coverage rate of 0.9994; that is, the confidence

set contains the true change point with high probability of

0.9994.

An illustrative example

The application of the proposed approach is demonstrated

in this section using a numerical example. Consider an in-

control model as

yij ¼ 3þ 2xi þ eij;

eij ¼ 0:25e i�1ð Þj þ aij;
ð23Þ

where aij’s are independent normal variables with mean

zero and variance one, and the fixed x values are set equal

to 2, 4, 6, and 8. Moreover, the smoothing parameter is set

equal to 0.2 and the values of the parameters ðLI; LS; LEÞ
are set equal to (3.014, 3.012, 3.870) to obtain the overall

in-control ARL of 200.

Considering the change to occur at 20th profile, the first

20 profiles come from the in-control process and thereafter,

a shift of size k = 1 is induced in the intercept of the

model. The values of the statistics in Eqs. (7), (9), and (11)

are calculated and plotted on the control charts until a

signal is issued at profile 24 by the EWMAI control chart.

At this time, the two methods are employed to estimate the

change point. Figure 1 shows the EWMAI statistics plotted

on the control chart in which a signal is generated at profile

24.

Based on the results in Fig. 1, the MLE of the change

point is obtained at t = 20 while the EWMA built-in es-

timator of change point is obtained at t = 17. Conse-

quently, ŝ ¼ 20 is the estimated change point of the

process obtained from the proposed change-point

Table 5 Estimated change points and standard deviations of the two change-point estimators for a step shift in the error variance based on

different auto-correlation coefficients

c u = 0.1 u = 0.2 u = 0.4

E(T) EðŝÞ EðŝEWMAÞ E(T) EðŝÞ EðŝEWMAÞ E(T) EðŝÞ EðŝEWMAÞ

1.2 79.38 66.05 (22.66) 68.04 (25.73) 78.19 65.31 (22.01) 66.95 (24.36) 79.78 66.41 (24.16) 68.75 (26.17)

1.4 60.16 53.57 (9.18) 51.22 (6.79) 60.49 53.61 (10.64) 50.99 (7.84) 60.09 53.40 (9.54) 50.85 (7.18)

1.6 55.83 51.63 (5.76) 48.53 (5.27) 55.87 50.71 (7.83) 48.39 (5.48) 55.84 50.97 (7.03) 48.54 (5.07)

1.8 53.98 50.68 (4.39) 47.53 (5.14) 54.15 50.96 (3.86) 48.13 (4.82) 53.94 50.34 (5.61) 47.78 (4.90)

2 53.24 50.32 (4.59) 47.41 (5.01) 53.09 50.41 (3.18) 47.58 (4.39) 52.93 5033 (3.59) 47.29 (4.73)

2.2 52.49 50.14 (3.44) 47.03 (5.02) 52.47 50.27 (2.98) 47.23 (5.02) 52.58 50.27 (3.16) 47.13 (4.89)

2.4 52.14 50.12 (3.10) 47.20 (4.71) 52.16 50.17 (2.63) 47.09 (5.05) 52.09 50.12 (2.70) 47.01 (5.16)

2.6 51.97 50.09 (2.85) 47.06 (4.90) 51.95 50.08 (2.71) 47.22 (4.43) 51.93 50.06 (2.99) 47.14 (4.76)

2.8 51.73 49.99 (2.56) 46.89 (5.41) 51.75 50.01 (2.63) 47.09 (4.98) 51.79 50.05 (1.97) 46.88 (5.15)

3 51.65 50.09 (2.16) 46.95 (5.04) 51.62 49.98 (1.80) 47.06 (5.08) 51.64 50.04 (2.06) 47.12 (4.72)

c u = 0.5 u = 0.7 u = 0.9

E(T) EðŝÞ EðŝEWMAÞ E(T) EðŝÞ EðŝEWMAÞ E(T) EðŝÞ EðŝEWMAÞ

1.2 79.06 65.87 (23.70) 67.52 (24.97) 79.55 65.64 (23.68) 68.47 (26.10) 79.21 65.34 (22.31) 68.35 (24.89)

1.4 60.54 53.28 (9.84) 51.05 (7.68) 60.18 53.65 (9.30) 50.87 (7.42) 60.15 53.44 (9.18) 51.14 (7.24)

1.6 55.62 51.26 (6.29) 48.56 (5.14) 55.65 51.14 (6.14) 48.53 (5.09) 55.76 51.49 (6.10) 48.59 (5.09)

1.8 54.02 50.73 (4.92) 47.97 (4.59) 54.01 50.58 (4.70) 47.84 (4.82) 54.05 50.69 (4.89) 47.86 (4.81)

2 53.13 50.50 (3.51) 47.67 (4.75) 53.11 50.31 (4.08) 47.52 (4.77) 53.04 50.36 (6.64) 47.48 (4.72)

2.2 52.54 50.17 (3.62) 47.21 (4.72) 52.56 50.18 (3.49) 47.18 (4.88) 52.54 50.23 (3.08) 47.11 (5.08)

2.4 52.16 50.09 (2.98) 46.98 (5.04) 52.19 50.07 (3.29) 47.16 (4.84) 52.19 50.14 (2.78) 47.28 (4.76)

2.6 51.99 50.05 (2.87) 47.12 (4.94) 51.98 50.11 (2.43) 46.96 (5.11) 51.93 50.03 (2.78) 46.98 (5.07)

2.8 51.77 50.09 (1.99) 46.96 (5.04) 51.76 50.03 (2.63) 46.96 (4.99) 51.74 49.99 (2.43) 46.81 (5.18)

3 51.61 49.94 (2.46) 46.84 (5.42) 51.62 50.01 (2.13) 46.97 (4.95) 51.61 50.08 (1.51) 47.09 (4.69)

Standard deviations are shown in parentheses and s = 50
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estimator while ŝEWMA ¼ 17 is the estimated change point

obtained from the built-in estimator of EWMA control

chart. As a result, applying the proposed method, process

engineers can search around the estimated change-point

and find the root causes of process variation in a quick

manner.

Table 6 Estimated precision performances of the two change-point estimators for a step shift in the error variance and for different auto-

correlation coefficients

c u = 0.1 u = 0.2 u = 0.4

P0 P1 P3 P5 P0 P1 P3 P5 P0 P1 P3 P5

1.2 0.034

(0.080)

0.100

(0.181)

0.200

(0.300)

0.285

(0.376)

0.044

(0.072)

0.095

(0.170)

0.203

(0.302)

0.277

(0.388)

0.041

(0.075)

0.094

(0.168)

0.194

(0.284)

0.279

(0.371)

1.4 0.143

(0.203)

0.260

(0.411)

0.453

(0.623)

0.605

(0.738)

0.108

(0.183)

0.237

(0.412)

0.443

(0.616)

0.586

(0.734)

0.111

(0.176)

0.247

(0.410)

0.448

(0.618)

0.605

(0.728)

1.6 0.242

(0.273)

0.428

(0.532)

0.654

(0.714)

0.789

(0.810)

0.208

(0.232)

0.381

(0.514)

0.624

(0.733)

0.769

(0.829)

0.219

(0.261)

0.402

(0.510)

0.638

(0.719)

0.769

(0.819)

1.8 0.306

(0.279)

0.566

(0.518)

0.804

(0.716)

0.900

(0.803)

0.306

(0.310)

0.559

(0.554)

0.791

(0.747)

0.896

(0.829)

0.323

(0.319)

0.567

(0.562)

0.790

(0.741)

0.885

(0.836)

2 0.424

(0.332)

0.647

(0.548)

0.863

(0.710)

0.931

(0.802)

0.402

(0.335)

0.674

(0.556)

0.881

(0.724)

0.947

(0.814)

0.396

(0.301)

0.640

(0.517)

0.884

(0.703)

0.953

(0.795)

2.2 0.485

(0.355)

0.746

(0.537)

0.914

(0.703)

0.973

(0.794)

0.472

(0.318)

0.752

(0.549)

0.933

(0.724)

0.974

(0.809)

0.462

(0.322)

0.736

(0.537)

0.907

(0.691)

0.969

(0.792)

2.4 0.534

(0.350)

0.802

(0.550)

0.950

(0.715)

0.978

(0.798)

0.520

(0.343)

0.793

(0.541)

0.946

(0.721)

0.978

(0.800)

0.571

(0.372)

0.802

(0.564)

0.956

(0.723)

0.973

(0.799)

2.6 0.586

(0.365)

0.837

(0.534)

0.964

(0.703)

0.984

(0.805)

0.588

(0.355)

0.841

(0.544)

0.964

(0.718)

0.983

(0.796)

0.626

(0.374)

0.850

(0.546)

0.960

(0.721)

0.984

(0.805)

2.8 0.665

(0.386)

0.857

(0.554)

0.974

(0.709)

0.985

(0.798)

0.630

(0.370)

0.867

(0.569)

0.971

(0.717)

0.987

(0.811)

0.626

(0.352)

0.861

(0.547)

0.971

(0.706)

0.982

(0.802)

3 0.674

(0.356)

0.902

(0.552)

0.982

(0.717)

0.992

(0.792)

0.709

(0.393)

0.896

(0.564)

0.973

(0.735)

0.985

(0.804)

0.689

(0.377)

0.886

(0.575)

0.978

(0.720)

0.991

(0.808)

c u = 0. u = 0.7 u = 0.9

P0 P1 P3 P5 P0 P1 P3 P5 P0 P1 P3 P5

1.2 0.038

(0.079)

0.093

(0.172)

0.169

(0.282)

0.263

(0.355)

0.042

(0.077)

0.100

(0.178)

0.197

(0.294)

0.276

(0.368)

0.040

(0.079)

0.098

(0.171)

0.194

(0.294)

0.276

(0.368)

1.4 0.117

(0.197)

0.263

(0.410)

0.451

(0.627)

0.581

(0.742)

0.134

(0.199)

0.266

(0.410)

0.444

(0.625)

0.584

(0.741)

0.135

(0.193)

0.266

(0.406)

0.468

(0.616)

0.606

(0.743)

1.6 0.221

(0.292)

0.426

(0.504)

0.684

(0.725)

0.813

(0.820)

0.228

(0.261)

0.418

(0.516)

0.670

(0.719)

0.812

(0.819)

0.227

(0.275)

0.415

(0.511)

0.647

(0.721)

0.783

(0.825)

1.8 0.310

(0.304)

0.530

(0.538)

0.785

(0.737)

0.904

(0.833)

0.314

(0.312)

0.562

(0.547)

0.803

(0.732)

0.902

(0.823)

0.337

(0.294)

0.564

(0.543)

0.789

(0.735)

0.894

(0.830)

2 0.391

(0.331)

0.652

(0.564)

0.888

(0.729)

0.949

(0.815)

0.407

(0.327)

0.651

(0.560)

0.879

(0.732)

0.944

(0.821)

0.415

(0.336)

0.669

(0.555)

0.885

(0.721)

0.952

(0.815)

2.2 0.483

(0.337)

0.746

(0.553)

0.921

(0.707)

0.963

(0.794)

0.474

(0.341)

0.734

(0.541)

0.921

(0.709)

0.967

(0.798)

0.428

(0.338)

0.733

(0.538)

0.915

(0.713)

0.968

(0.798)

2.4 0.562

(0.351)

0.801

(0.528)

0.946

(0.698)

0.969

(0.797)

0.544

(0.360)

0.794

(0.553)

0.949

(0.710)

0.977

(0.808)

0.557

(0.362)

0.799

(0.559)

0.944

(0.723)

0.979

(0.810)

2.6 0.586

(0.358)

0.828

(0.550)

0.964

(0.722)

0.986

(0.808)

0.600

(0.359)

0.836

(0.542)

0.958

(0.702)

0.984

(0.796)

0.613

(0.350)

0.843

(0.542)

0.958

(0.703)

0.983

(0.801)

2.8 0.639

(0.359)

0.895

(0.551)

0.978

(0.706)

0.991

(0.795)

0.647

(0.375)

0.881

(0.546)

0.975

(0.696)

0.989

(0.793)

0.654

(0.364)

0.882

(0.547)

0.971

(0.697)

0.983

(0.789)

3 0.731

(0.381)

0.908

(0.565)

0.973

(0.708)

0.985

(0.795)

0.690

(0.375)

0.898

(0.547)

0.981

(0.714)

0.990

(0.802)

0.704

(0.376)

0.898

(0.551)

0.981

(0.715)

0.992

(0.804)

Precision performances for ŝEWMA are shown in parentheses
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Conclusions

In this paper, a maximum likelihood estimator of a step

change in the parameters of auto-correlated simple linear

profiles was derived, in which the auto-correlation structure

between observations in each profile was assumed to be a

first-order auto-regressive model. Applying a transforma-

tion technique, the effect of auto-correlation was first

eliminated and then, each of the three parameters of a

simple linear profile was monitored separately by an

EWMA control chart until a signal was generated. At this

time, the estimator was applied to estimate the true change

point. Comparing the performance of the proposed MLE of

the change point with built-in change-point estimator of the

EWMA chart, we showed that the proposed MLE provides

adequately accurate and precise estimates of the change

point and outperforms the built-in estimator of the EWMA

chart, regardless of the shift magnitude and the auto-cor-

relation coefficient.

While we showed that an increase in the auto-correlation

coefficient leads to an increase in the average run length and

hence an increase in the change-point estimates, developing

a method to estimate the change point that is not affected by

the auto-correlation coefficientmay be an interesting area for

future research. Moreover, one may extend the proposed

method for other auto-correlated profiles such as ARMA(p,

q) auto-correlated multivariate linear profiles as well. In

addition, the effect of smoothing parameter, decreasing

shifts in the parameters, and the confidence set of the pro-

posed estimators can be investigated in further studies.
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