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Abstract

A cutting stock problem is one of the main and classical problems in operations research that is modeled as LP
problem. Because of its NP-hard nature, finding an optimal solution in reasonable time is extremely difficult and at
least non-economical. In this paper, two meta-heuristic algorithms, namely simulated annealing (SA) and tabu
search (TS), are proposed and developed for this type of the complex and large-sized problem. To evaluate the
efficiency of these proposed approaches, several problems are solved using SA and TS, and then the related results
are compared. The results show that the proposed SA gives good results in terms of objective function values
rather than TS.
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Background
A one-dimensional cutting stock problem (1D-CSP) is one
of the famous combinatorial optimization problems,
which has many applications in industries. In this prob-
lem, the amount of residual pieces of processed stock rolls,
called trim loss (i.e., wastage) is a significant objective in
most studies that should be minimized. A standard one-
dimensional cutting stock problem (S1D-CSP) as a kind
of the above problem is known as an NP-complete one
(Gradisar et al. 2002). Finding solutions for this problem es-
pecially for large-sized problems is extremely difficult. In
fact, due to the NP-hardness of this problem, it is computa-
tionally intractable to obtain its optimum solution in a rea-
sonable time for medium to large-sized problems, and
hence researchers have tried to develop meta-heuristic
algorithms for solving such a problem. In fact, applying
these algorithms is not easy to reliably state that which of
these algorithms is best for the given problem. However, it
is possible to identify methods that consistently produce
better results compared to others for a certain problem.
The assumptions of the S1D-CSP are as follows.

� In this problem, all used stock lengths should be cut
to the end in as much as it is possible.
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� All stock lengths are identical and there is no
difference between the lengths of them.

In a standard cutting problem, each cutting stock is
consumed totally, because the remaining is as cutting
waste. While in a general one-dimensional stock cutting
problem (G1D-CSP), as another kind of the 1D-CSP,
stock cutting residuals can be used later. Also, in a GlD-
CSP, the storage stock has different lengths. Reduction
of cutting wastes is one of the main goals in the cutting
process and also one of the basic purposes in the 1D-
CSP. A standard one dimensional cutting stock problem
(S1D-CSP) and different procedures have been reviewed
by many researchers. (Varela et al. 2009) worked on a
practical cutting stock problem from a production plant
of plastic rolls as a variant of the well-known one dimen-
sional cutting stock. They proposed a heuristic solution
based on a GRASP algorithm in their work.
(Cui 2005) proposed an algorithm to produce T-shape

cutting patterns applied in the manufacturing of circular
and sectional blanks for stators and rotors. The pro-
posed algorithm uses the knapsack algorithm and an
enumeration method to determine the optimal combin-
ation of blank rows in the strips, the strip numbers and
directions in the pattern. A heuristic algorithm for the
one-dimensional cutting stock problem with usable left-
over is presented by (Cui & Yang 2010).
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Their algorithm consists of two procedures, namely
linear programming and sequential heuristic procedures
that fulfill the major and remaining portions of the item
demands, respectively. This algorithm is able to balance
the cost of the consumed bars, the profit from left-
overs and the profit from a shorter stocks reduction.
(Armbruster 2002) presented a solution approach for
the capacitated one-dimensional cutting stock problem
under technological constraints by concentrating on
solving the pattern sequencing problem occurring from
the technological constraints. (Dikili et al. 2007) devel-
oped a novel approach for one-dimensional cutting stock
problems in ship production via the cutting patterns
obtained by the analytical methods at the mathematical
modeling stage. The proposed method is able to cap-
ture the ideal solution of analytical methods. The main
advantage of their proposed method is to guarantee in
obtaining an integer solution. Also, the method behaves
so that the trim loss is minimized and the stock usage
is maximized.
(Liang et al. 2002a) proposed an evolutionary algo-

rithm based on evolutionary programming for cutting
stock problems considering contiguity. Two new muta-
tion operators are proposed in their work. Results
found by the evolutionary programming are signifi-
cantly better than or comparable to those found by
the genetic algorithm (GA). It is worth to note that
evolutionary programming uses mutation as the pri-
mary search operator and does not employ any
crossover.
(Poldi & Arenales 2009) proposed heuristics for the

one-dimensional cutting stock problem with limited
multiple stock lengths. They reviewed some existing
heuristics and proposed others for solving the integer
one-dimensional cutting stock problem with multiple
stock lengths. Their study deals with the classical one-
dimensional integer cutting stock problem. The given
objective function is to minimize the waste (i.e.,
trim loss).
(Umetani et al. 2003) considered the 1D-CSP, in which

the number of different cutting patterns is constrained
within a given bound. They proposed a meta-heuristic
algorithm incorporated with an adaptive pattern gener-
ation technique. The proposed meta-heuristic searches a
solution with small deviations from the given demands
while using the fixed number of different cutting pat-
terns. (Reinertsen & Vossen 2010) considered the prob-
lem of cutting stock problems with due date while
addressing common cutting considerations, such as
aggregation of orders, multiple stock lengths and cutting
different types of material on the same machine. In their
work, meeting due dates is more important than redu-
cing the scrap. Also, in condition that there is no feas-
ible production plan, their models find a cutting plan
with the minimum weighted tardiness. (Liang et al.
2002b) applied the newest perfect algorithm, which is
similar to genetic algorithm, with a mobility function
for a cutting stock problem. (Weng et al. 2003) ap-
plied the GA to the manufacturing rule oriented cut-
ting of a sectional steel problem for the shipbuilding
industry.
(Sung et al. 2004) applied tabu search (TS) to develop

an optimization procedure based on the cutting pro-
cesses in the shipbuilding industry. (Yang et al. 2006)
developed the efficient TS method with a mixed object-
ive function for the one dimensional cutting stock prob-
lem under a small amount of various cutting conditions.
Their proposed TS method consists of a mixed objec-
tive function that helps the algorithm to discover the
best solution during the one-by-one neighborhood
searching processes. (Gradisar et al. 2002) presented
an experimental study of various methods aimed at
minimizing trim-loss, in their work they mentioned
that the LP-based method is possible only when the
stock is of the same length or few groups of stand-
ard lengths. When all stock lengths are different fre-
quencies, an approach can be used that treat by each
item individually.
In addition, (Chen et al. 1996) proposed a simulated

annealing (SA) method for the one-dimensional cutting
stock problem. A meta-heuristic method based on ACO
was presented to solve a one-dimensional cutting stock
problem by (Eshghi & Javanshir 2005). In their work,
based on probabilistic laws that designed, ants do select
various cuts and then select the best patterns. Also,
(Dyckhoff 1990) developed a classification scheme for
cutting stock problems through a large variety of appli-
cations reported in the literature so that classified pro-
blems using four characteristics; namely, dimensionality,
kind of assignment, assortment of large objects and as-
sortment of small items. He classified the cutting stock
problems solutions into two groups: 1) item-oriented
approach that treats each item to be cut separately
and 2) pattern-oriented approach. So that in this
approach at the beginning order lengths are combined
into cutting patterns, for which the frequencies that are
necessary to satisfy the demands, are determined in a
succeeding step. In the second approach, the classic LP-
based namely “delayed pattern generation” proposed
(Gilmore & Gomory 1961; Gilmore & Gomory 1963) or
any other LP-based method is mostly used. (Javanshir &
Shadalooee 3) developed a mathematical model for 1D-
CSP by defining the virtual cost for the trim loss of each
stock. They solved their developed model with SA algo-
rithm. Also, 1D-CSP considered in their work is taken
into account as item-oriented.
It is not easy to define exactly which meta-heuristic

algorithm is best for which type of problem. However, it
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is possible, for a given problem, to identify algorithms
that consistently produce better results compared with
those results produced by other algorithms. For this rea-
son, in this paper, we compare the efficiency and effective-
ness of two well-known meta-heuristic, namely simulated
annealing (SA) and tabu search (TS), in producing the
cutting plan with the lowest trill loss. In addition, we
present a mixed-integer linear programming (MILP)
mathematical model for a standard one-dimensional cut-
ting stock problem that minimizes the trim losses of the
cutting orders. Because of the NP-hard nature of this
problem, the presented mathematical model can find an
optimal solution by a standard OR software (e.g., Lingo)
for small-sized problems.
This paper is organized as follows. Section 2 presents

the mathematical programming model for the S1D-CSP.
Simulated annealing (SA) and tabu search (TS) algo-
rithms for the considered problem are proposed in
Sections 3 and 4, respectively. The computational ex-
perience is represented in Section 5. Finally, conclusion
is made in Section 6.
Mathematical model of S1D-CSP
This section presents a mixed-integer linear program-
ming (MILP) model for a standard one-dimensional cut-
ting stock problem (S1D-CSP). Minimizing the sum of
cutting wastes or cutting remaining unusable in satisfy-
ing of needs (demands) is the objective function of the
presented model.
Notations
To formulate the S1D-CSP, the following notations are
used.

i order number (i = 1,. . .,n).

j stock number (j = 1,. . .,m).

dj stock length.

tlj stock wastes.

si order lengths.

ni required number of orders with si length.

T sum of the cutting wastes in the cutting
program.
Decision variables

The following variables are used in the presented MILP
model.

xi,j integer variable, number of orders with si length

that are cut from stock j.
yj zero–one variable that equals to one if the stock

j is applied in the cutting plan otherwise, equals
to zero.
Mathematical model
The MILP model for a standard one-dimensional cutting
stock problem can be defined as follows.

min T ¼
Xm

j¼1

tlj ð1Þ

s.t.

Xm

j¼1

xij ¼ ni 8i ð2Þ

Xn

i¼1

xij:si þ tlj ¼ dj:yj 8j ð3Þ

yj 2 ð0; 1Þ
xi;j 2 integer

Minimizing the total trim loss is the objective function
(1) of the model. Constraint (2) guarantees cutting needs
of orders with regards to the storage stock. Constraint
(3) calculates the cutting waste of each stock in the cut-
ting process.
Due to NP-hard nature of this problem, the computa-

tional time increases exponentially and finding optimal
solution for large-size problem is extremely difficult.
This model is solved by the Lingo software using a
branch-and-bound method, and the computational times
and the state of the method for 20 randomly generated
problems with different sizes are shown in Table 1.
Results show finding optimal solution for large-scale
problems (15, 16, 17 and 18), in a reasonable time
and gradually with increasing the size of the problems
(19 and 20), even finding feasible area of solutions,
is so hard.
Since finding the optimal solution in a reasonable time

for medium to large-sized problems is intractable, a
number of researchers have considered developing
meta-heuristics to compute near-optimal solutions. It is
noticeable that identifying methods consistently produ-
cing better results, as compared to others, for a certain
problem is very important and interesting. Among the
meta-heuristics, simulated annealing (SA) and tabu
search (TS) are the ones whose applications have
been widely explored for different combinatorial opti-
mization problems. In this work, effectiveness and effi-
ciency of these meta-heuristics for the given problem are
compared.

Simulated annealing for S1D-CSP
(Kirkpatrick et al. 1983) introduced simulated annealing
(SA) as a meta-heuristic algorithm in 1983. It draws its
inspiration from physical annealing of solids. In this



Table 1 NP-hard nature of the S1D-CSP

Problems Requested
orders

State CPU
time
(Sec.)

1 9 Global optimum
found

1

2 15 1

3 32 2

4 45 4

5 59 7

6 72 10

7 85 28

8 98 59

9 110 607

10 190 2570

11 305 6077

12 950 15185

13 1503 58106

14 1704 79202

15 1850 Cannot find any global
optimum after a
24-hours run

16 1990

17 2500

18 3645

19 4985 Cannot find any feasible
area of solutions after
a 24-hours run

20 5750
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algorithm, it may become stuck in a local optimum.
To prevent this from happening and trapping in a
local optimum, the algorithm occasionally makes a
random change to the solution even through the
change does not immediately improve the result. This
may allow the program to break free of a local
optimum and find a better solution later. If the change
does not lead to a better solution, the algorithm will
probably undo the change in a short time anyway. SA
consists of internal and external loops. Task of the in-
ternal loop controls the attaining balance in each
temperature and updating temperature.
The Metropolis decision-making loop (i.e., possibility

of acceptance of non-improvement) is inserted in the in-
ternal loop. According to the decision-making loop, if
the current solution Scurrent cannot improve the objec-
tive function comparing with the new neighboring solu-

tion Snew; then, if y < e
�Δ
T (i.e., Δ= E(Snew)-E(Scurrent) > 0

and y 2[0,1]), the new solution will be accepted. In fact,
the acceptance possibility of a neighboring solution is
dependent on changing the amount of the objective
function, and current temperature. The value of T starts
at initial temperature T0 and is slowly reduce according
to the cooling ratio a <1(i.e., Tk+1 = a.Tk).
Also, the external loop controls the stopping condition

of SA. A given SA may iterate for a number of times at
each temperature, called the Markov chain length. The
neighborhood search structure generates a new solution
from the current candidate solution by slightly changing
it. How move from one solution to another one in the
solution space is dependent on the structure of design-
ing operators. Attaining to the undiscovered area of
exploration space pertain to design efficient operators.
The generic flow of SA is given below.

Select an initial temperature T0 > 0;
Generate an initial solution, S0, and make it the current
solution, Scurrent , and the current best solution, Sbest;
repeat

set repetition counter n = 1;

repeat

Generates the solution Snew in the neighborhood of
Scurrent;
Calculate Δ = f(Scurrent)-f(Snew);
If (Δ ≤ 0) then Scurrent = Snew;
else Scurrent = Snew with the probability P(Δ,T);
if (Snew < Sbest) then Sbest = Snew ;

n = n + 1;

until n > Markov chain length;

Reduce the temperature T;
until the stopping criterion is met.
Solution representation
The first step in developing of a meta-heuristic proced-
ure is to design the solution representation. In this
paper, with regards to the problem nature, the initial so-
lution is created randomly. This solution is constructed
as a (1 × m)-array, so that m equal to the number of
orders. Each order placed in a cell randomly as illu-
strated in Figure 1.
Neighborhood generation (perturbation)
To search solution space, attaining to undiscovered
areas and finding the best solutions, using suitable
neighborhood search operators is required. As stated
before, designing this operator is dependent on the so-
lution representation. Mechanism of the neighborhood
generation should be able to construct the entire solu-
tion space. In this paper, in order to generate the
neighboring solution, the algorithm randomly changes
the place of two orders in the current solution in its
array, as shown in Figure 2. This strategy is very sim-
ple and guarantees searching the whole of the solution
space.



O1 O3 O4 O2

Figure 1 Representation of a solution with four orders.
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Fitness function
The objective function considered in this paper mini-
mizes the total trim loss. It is assumed that the stock
length is standard with the equal length (e.g., 12 meters
considered in this paper). By considering the position of
each order in the array from the first (i.e., leftmost) to
the end (i.e., rightmost), the total waste is computed. So
that all the orders, which the summation of their length
is lesser than (or equal to) the length of stock, are
assigned to it for cutting and the difference between
them considered as the trill loss of that stock and so on,
till all orders are assigned.

Temperature decreasing function
Temperature is used to compute the acceptance prob-
ability of a solution that is worse than the previous one.
In the proposed SA algorithm, a geometric function is
used as follows.

Tk ¼ αTk�1 ð4Þ

where, α is a constant less than 1, but it is very close to
1 (i.e., a typical value for α is chosen between 0.85 and
o.95). k is the temperature transformations counter. The
high amount of α is as the slow temperature reduction
that leads to the best search of neighbors; but, the solu-
tion time increases. Adversely, less amount of α is an
indicator of the quick temperature reduction and leads
to quicker search in neighbors and sooner coverage in
the algorithm.

Markov chain length
One of the most important parameters in determining
the quality of resultant solutions of SA is the number of
searched points in solution space at each temperature,
called Markov chain length. In our proposed SA, this
counter is denoted by MarChain_Length and used in the
O1 O3

O4 O3

Figure 2 Neighborhood generation.
inner loop of SA as a counter. The Markov chain length
considered in our proposed SA depends on the problem
size (i.e., number of orders).

Outer counter variable
The outer counter variable is increased by one, when-
ever a solution is not selected by probability and
shows the number of rejection of perturbed solutions.
In fact, if this variable reaches to a pre-determined fixed
value as input parameter, the search procedure is
stopped or started again depending on the other criteria.
Because there is no superior solution exists in the neigh-
borhood, and the search is reached to a near optimal/
optimal solution.

Stopping criterion
In our proposed SA, the stopping criterion is a number
of consecutive times in the cooling process that does
not lead to improvement of the objective function as
input data.

Tabu search for S1D-CSP
(Glover 1990) first proposed tabu search (TS) as a
higher-level heuristic algorithm used for solving
optimization problems. It avoids entrapment in cycles by
forbidding or penalizing moves that take the solution,
in the next iteration, to points in the solution space
previously visited by using the list of prohibited neigh-
boring solutions known as tabu list. Aspiration defined in
the tabu search restricts the search from being trapped
into a solution surrounded by tabu neighbors. Thus, it
helps in the checking condition for the acceptance of
solutions, known as a main feature of TS. It also allows
search to override the tabu status of the solution and
provides backtracking of the recent solutions as they lead
to a new path towards a better solution. The generic
structure of the TS algorithm is given below.

Step 1. (initialization)
O4

O

(A). Generate initial solution Sinitial
(B). Scurrent = Sinitial
O2

1 O2



Table 2 Result obtained from SA and TS and branch-and-
bound methods

Problems B&B method SA TS

Jahromi et al. Journal of Industrial Engineering International 2012, 8:24 Page 6 of 8
http://www.jiei-tsb.com/content/8/1/24
(C). Record the current best known solution by
setting Sbest = Scurrent , define best_cost = f(Sbest)

(D). Set tabu list (H) to empty.

OFV* OFV GAP OFV GAP

1 4.5 4.5 0.0 4.5 0.0
Step 2. (choice and termination)
2 7.5 7.5 0.0 7.5 0.0

3 16 16 0.0 16 0.0

4 22.5 22.5 0.0 22.5 0.0

5 29.5 29.5 0.0 29.5 0.0

6 36 38 5.6 40 11.1
Determine Candidate-N(Scurrent) as subset of
N(H, Scurrent).
Select Snew from Candidate-N(Scurrent).
(Snew is called a highest evaluation element of
Candidate-N(Scurrent).
Terminate by a chosen iteration cut-off rule.
7 34 37 8.8 39 14.7
Step 3. (update)

8 39.2 43 9.7 44 12.2

9 44 45 2.3 50 13.6

10 76 79 3.9 85 11.8

11 122 125.4 2.8 141 15.6

12 285 302 6.0 336 17.9

13 450.9 511 13.3 540 19.8
Re-set Scurrent = Snew.
If f(Scurrent) < best_cost or f(Scurrent) < Aspiration
perform Step 1(B)
Update the tabu list (H) and Aspiration
conditions.
Return to Step 2.
14 511.2 599.5 17.3 612 19.7

* Objective function value (meter).

Tabu list
A tabu list is a set of recently visited solutions and keeps
tracking the previously visited solutions in order to
restrict the algorithm to revisit the pre-visited solutions.
In fact, at every step, the algorithm checks for verifying
whether the newly generated solution is lately visited.
The tabu list task helps the algorithm to visit more new
neighboring solutions.

Aspiration
Aspiration is a tabu search variable whose function is to
restrict the search from being trapped at a solution sur-
rounded by tabu neighbors. If a solution has a neighbor-
hood of only tabu solutions, the one with objective
function value better than aspiration will be chosen to
explore further.

Computational experience
As mentioned earlier, it is not easy to reliably determine
which meta-heuristic method is the best for which prob-
lem; but, it is possible to identify methods consistently
producing better results, as compared to others for
a certain problem. In this section, effectiveness and
efficiency of the SA and TS algorithms for the 1D-CSP
are considered.
The proposed SA and TS algorithms are coded in

Microsoft C#.Net and executed on a Pentium processor
running at 2.5 GHz and 2 GB of RAM. The results of
solving the 14 small and medium-size test problems
solved by branch-and-bound (B&B), SA and TS algo-
rithms are shown in Table 2. This table shows the
objective function value (OFV) and the gap between
solutions obtained from SA and TS with optimal solu-
tions of the B&B method. The results show that SA and
TS algorithms are suitable and both of them even are
capable to obtain an optimal solution for small-sized
problems. Also, these algorithms can find good results
for the medium-sized problems so that the gap between
them and optimal solution is lower that 20% (the first 14
randomly generated problems are in the small to
medium range of size).
To compare the efficiency of these algorithms with

each other, the six large-scale problems (15, 16, 17, 18,
19 and 20) are solved and the total stocks used in each
solution, the total trim losses and total trim loss ratio of
each algorithm are represented in Table 3. The total trim
loss ratio can be defined by:

Total trim loss ratio ¼ Sum of trim loss of all used stocks
Stocks used � standard length

� 100%

ð5Þ

It is obvious that SA outperforms TS to get a better
minimum number of stocks used or less total trim loss
(i.e., total trim loss ratio) so that the mean of the total
trim loss ratio of SA for the problems is 6.49 percent
while it is 7.45 percent in TS. Figure 3 shows CPU times
of two algorithms for the twenty mentioned problems.
It is noticeable that more CPU times of the SA algo-
rithm in comparative with TS is due to the internal and
external loops and extremely depends on the Markov
chain length.



Table 3 Comparison between SA and TS algorithms

Problems Requested
orders

SA TS

Stocks used Trim loss Total trim loss ratio (%) Stocks used Trim loss Total trim loss ratio (%)

1 9 5 4.5 7.50 5 4.5 7.50

2 15 9 7.5 6.94 9 7.5 6.94

3 32 15 16 8.89 15 16 8.89

4 45 25 22.5 7.50 25 22.5 7.50

5 59 34 29.5 7.23 34 29.5 7.23

6 72 42 38 7.54 44 40 7.58

7 85 51 37 6.05 56 39 5.80

8 98 55 43 6.52 61 44 6.01

9 110 60 45 6.25 69 50 6.04

10 190 111 79 5.93 128 85 5.53

11 305 149 125.4 7.01 173 141 6.79

12 950 501 302 5.02 554 336 5.05

13 1503 850 511 5.01 865 540 5.20

14 1704 951 599.5 5.25 1097 612 4.65

15 1850 1150 751 5.44 1165 1170 8.37

16 1990 1110 897 6.73 1222 1412.4 9.63

17 2500 1350 993 6.13 1480 1955.6 11.01

18 3645 1901 1287 5.64 1984 2192.4 9.21

19 4985 2713 2004.2 6.16 2671 3198 9.98

20 5750 3112 2614 7.00 3221 3930.8 10.17

Average 6.49 7.45
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Conclusions
In this paper, a mixed-integer linear programming
(MILP) model for a standard one-dimensional cutting
stock problem (S1D-CSP) has been presented. Due to its
NP-hardness, finding feasible solution in a reasonable
time, especially for medium to large size problems, is
impossible. To solve such a hard problem, two well-
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Figure 3 CPU times of the proposed SA and TS algorithms.
known meta-heuristics based on simulated annealing
(SA) and tabu search (TS) have been proposed and
developed. To compare the efficiency of these algo-
rithms, a number of test problems have been solved, and
the associated results in terms of the objective function
(i.e., trim loss) and CPU time have been compared. The
results show the efficiency of our proposed SA in finding
10 11 12 13 14 15 16 17 18 19 20

roblems

hm SA algorithm
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cutting plan as its output with lesser trim loss rather
than TS. In addition, the results show that TS outper-
forms SA in terms of the CPU time.
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