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Abstract The flexible job shop scheduling problem (FJSP)

is a generalization of the classical job shop scheduling

problem that allows to process operations on one machine

out of a set of alternative machines. The FJSP is an NP-

hard problem consisting of two sub-problems, which are

the assignment and the scheduling problems. In this paper,

we propose how to solve the FJSP by hybrid metaheuris-

tics-based clustered holonic multiagent model. First, a

neighborhood-based genetic algorithm (NGA) is applied by

a scheduler agent for a global exploration of the search

space. Second, a local search technique is used by a set of

cluster agents to guide the research in promising regions of

the search space and to improve the quality of the NGA

final population. The efficiency of our approach is

explained by the flexible selection of the promising parts of

the search space by the clustering operator after the genetic

algorithm process, and by applying the intensification

technique of the tabu search allowing to restart the search

from a set of elite solutions to attain new dominant

scheduling solutions. Computational results are presented

using four sets of well-known benchmark literature

instances. New upper bounds are found, showing the

effectiveness of the presented approach.

Keywords Scheduling � Flexible job shop � Genetic
algorithm � Local search � Holonic multiagent � Hybrid
metaheuristics

Introduction

Scheduling is a field of investigation which has known a

significant growth these last years. The scheduling prob-

lems appear in all the economic areas, from computer

engineering to industrial production and manufacturing.

The job shop scheduling problem (JSP), which is among

the hardest combinatorial optimization problems (Sonmez

and Baykasoglu 1998), is a branch of the industrial pro-

duction scheduling problems.

The flexible job shop scheduling problem (FJSP) is a

generalization of the classical JSP that allows to process

operations on one machine out of a set of alternative

machines. Hence, the FJSP is more computationally diffi-

cult than the JSP. Furthermore, the operation scheduling

problem, the FJSP presents an additional difficulty caused

by the operation assignment problem to a set of available

machines. This problem is known to be strongly NP-Hard

even if each job has at most three operations and there are

two machines (Garey et al. 1976).

To solve this problem, Pinedo (2002) developed a set of

exact algorithms limited for instances with 20 jobs and 10

machines. Birgin et al. (2014) presented a mixed integer

linear programming (MILP) model, but it took a very large

time to generate a scheduling solution. Shafigh et al. (2015)

developed a mathematical model integrating layout config-

uration and production planning in the design of dynamic
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distributed layouts. Their model incorporated different

manufacturing attributes such as demand fluctuation, system

reconfiguration, lot splitting, work load balancing, alterna-

tive routings, machine capability, and tooling requirements.

On the other hand, a community of researchers used the

metaheuristics to find near-optimal solutions for the FJSP

with acceptable computational time. Brandimarte (1993)

proposed a hierarchical algorithm based on tabu search

metaheuristic for routing and scheduling with some known

dispatching rules to solve the FJSP. Hurink et al. (1994)

developed a Tabu Search procedure for the job shop prob-

lem with multi-purpose machines. Dauzère-Pérès and Paulli

(1997) presented a new neighborhood structure for the

problem, and a list of Tabu moves was used to prevent the

local search from cycling. Mastrolilli and Gambardella

(2000) used tabu search techniques and presented two

neighborhood functions allowing an approximate resolution

for the FJSP. Bozejko et al. (2010a) presented a tabu search

approach based on a new golf neighborhood for the FJSP,

and in the same year, Bozejko et al. (2010b) proposed

another new model of a distributed tabu search algorithm for

the FJSP, using a cluster architecture consisting of nodes

equipped with the GPU units (multi-GPU) with distributed

memory. A novel hybrid tabu search algorithm with a fast

Public Critical Block neighborhood structure (TSPCB) was

proposed by Li et al. (2011) to solve the FJSP. For the

genetic algorithm, it was adopted by Chen et al. (1999),

where their chromosome representation of solutions for the

problem was divided into two parts. The first part defined

the routing policy and the second part took the sequence of

operations on each machine. Kacem et al. (2002a) used a

genetic algorithm with an approach of localization to solve

jointly the assignment and job shop scheduling problems

with partial and total flexibility, and a second hybridization

of this evolutionary algorithm with the fuzzy logic was

presented in Kacem et al. (2002b). Jia et al. (2003) proposed

a modified genetic algorithm for the FJSP, where various

scheduling objectives can be achieved such as minimizing

makespan, cost, and weighted multiple criteria. Ho et al.

(2007) developed a new architecture named LEarnable

Genetic Architecture (LEGA) for learning and evolving

solutions for the FJSP, allowing to provide an integration

between evolution and learning in an efficient manner within

a random search process. Gao et al. (2008) adapted a hybrid

genetic algorithm (G.A) and a variable neighborhood des-

cent (V.N.D) for FJSP. The G.A used two vectors to rep-

resent a solution and the disjunctive graph to calculate it.

Then, a V.N.D was applied to improve the G.A final indi-

viduals. Zhang et al. (2014) presented a model of low-car-

bon scheduling in the FJSP considering three factors, the

makespan, the machine workload for production, and the

carbon emission for the environmental influence. A meta-

heuristic hybridization algorithm was proposed combining

the original Non-dominated Sorting Genetic Algorithm II

(NSGA-II) with a local search algorithm based on a neigh-

borhood search technique. Kar et al. (2015) presented a

production-inventory model for deteriorating items with

stock-dependent demand under inflation in a random plan-

ning horizon. This model is formulated as profit maxi-

mization problem with respect to the retailer and solved by

two metaheuristics, which are the genetic algorithm and the

particle-swarm optimization. Kia et al. (2017) treated the

dynamic flexible flow line problem with sequence-depen-

dent setup times. A set of composite dispatching rule-based

genetic programming are proposed to solve this problem by

minimizing the mean flow time and the mean tardiness

objectives. Moreover, the particle-swarm optimization was

implemented by Xia and Wu (2005) in a metaheuristic

hybridization approach with the simulated annealing for the

multi-objective FJSP. A combined particle-swarm opti-

mization and a tabu search algorithm were proposed by

Zhang et al. (2009) to solve the multi-objective FJSP.

Moslehi and Mahnam (2011) presented a metaheuristic

approach based on a hybridization of the particle-swarm

optimization and local search algorithm to solve the multi-

objective FJSP. In addition, other types of metaheuristics

were developed in this last few years, such as (Yazdani et al.

2010) implementing a parallel variable neighborhood search

(PVNS) algorithm to solve the FJSP using various neigh-

borhood structures. A new biogeography-based optimization

(BBO) technique is developed by Rahmati and Zandieh

(2012) allowing to search a solution area for the FJSP and to

find the optimum or near-optimum scheduling to this prob-

lem. Shahriari et al. (2016) studied the just in time single

machine scheduling problem with a periodic preventive

maintenance. A multi-objective version of the particle-

swarm optimization algorithm is implemented to minimize

the total earliness–tardiness and the makespan simultane-

ously. In addition, it is noted that metaheuristics based on

constraint programming (CP) techniques have been used for

the FJSP. Hmida et al. (2010) proposed a variant of the

climbing discrepancy search approach (C.D.S) for solving

the FJSP, where they presented various neighborhood

structures related to assignment and sequencing problems.

Pacino and Hentenryck (2011) considered a constraint-based

scheduling approach to the flexible job shop problem. They

studied both the large neighborhood search (LNS) and the

adaptive randomized decomposition (ARD) schemes, using

random, temporal, and machine decompositions. Oddi et al.

(2011) adapted an iterative flattening search (IFS) algorithm

for solving the flexible job shop scheduling problem

(FJSSP). This algorithm applied two steps, a first relaxation

step, in which a sub-set of scheduling decisions was ran-

domly retracted from the current solution, and a second

solving step, in which a new solution was incrementally

recomputed from this partial schedule. Moreover, a new
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heuristic was developed by Ziaee (2014) for the FJSP. This

heuristic is based on a constructive procedure considering

simultaneously many factors having a great effect on the

solution quality. Furthermore, distributed artificial intelli-

gence techniques were used for this problem, such as the

multiagent model proposed by Ennigrou and Ghédira (2004)

composed by three classes of agents, job agents, resource

agents, and an interface agent. This model is based on a

local search method which is the tabu search to solve the

FJSP. In addition, this model was improved in Ennigrou and

Ghédira (2008), where the optimization role of the interface

agent was distributed among the resource agents. Henchiri

and Ennigrou (2013) proposed a multiagent model based on

a hybridization of two metaheuristics, a local optimization

process using the tabu search to get a good exploitation of

the good areas and a global optimization process integrating

the particle-swarm optimization (PSO) to diversify the

search towards unexplored areas. Rezki et al. (2016) pro-

posed a multiagent system combining many intelligent

techniques such as: multivariate control charts, neural net-

works, bayesian networks, and expert systems, for complex

process monitoring tasks that are: detection, diagnosis,

identification, and reconfiguration.

In this paper, we present how to solve the flexible job shop

scheduling problem by a hybridization of two metaheuristics

within a holonic multiagent model. This new approach fol-

lows two principal steps. In the first step, a genetic algorithm is

applied by a scheduler agent for a global exploration of the

search space. Then, in the second step, a local search tech-

nique is usedbya set of cluster agents to improve thequality of

the final population. Numerical tests were made to evaluate

the performance of our approach based on four data sets of

Kacem et al. (2002b), Brandimarte (1993), Hurink et al.

(1994), and Barnes and Chambers (1996) for the FJSP, where

the experimental results show its efficiency in comparison

with other approaches.

The rest of the paper is organized as follows. In the next

section, we define the formulation of the FJSP with its

objective function and a simple problem instance followed

by which we detail the proposed hybrid metaheuristic

algorithm with its clustered holonic multiagent levels. The

experimental and comparison results are provided in the

subsequent section. The final section rounds up the paper

with a conclusion.

Problem formulation

The flexible job shop scheduling problem (FJSP) could be

formulated as follows.There is a set ofn jobs J ¼ fJ1; . . .; Jng
to be processed on a set of m machines M ¼ fM1; . . .;Mmg:
Each job Ji is formed by a sequence of ni operations

fOi;1;Oi;2; . . .;Oi;nig to be performed successively according

to the given sequence. For each operationOi;j; there is a set of

alternative machines MðOi;jÞ capable of performing it. The

main objective of this problem is to find a schedule mini-

mizing the end date of the last operation of the jobs setwhich is

the makespan. The makespan is defined by Cmax in Eq. 1,

where Ci is the completion time of a job Ji:

Cmax ¼ max1� i� nðCiÞ: ð1Þ

The FJSP scheduling problem is divided into two sub-

problems:

• The operations assignment sub-problem assigns each

operation to an appropriate machine.

• The operations sequencing sub-problem determines a

sequence of operations on all the machines.

Furthermore, the adopted hypotheses in this problem are:

• All the machines are available at time zero.

• All jobs are ready for processing at time zero.

• The order of operations for each job is predefined and

cannot be modified.

• There are no precedence constraints among operations

of different jobs.

• The processing time of operations on each machine is

defined in advance.

• Each machine can process only one operation at a time.

• Operations belonging to different jobs can be processed

in parallel.

• Each job could be processed more than once on the

same machine.

• The interruption during the process of an operation on a

machine is negligible.

To explain the FJSP, a sample problem of three jobs and

five machines is shown in Table 1, where the numbers

present the processing times and the tags ‘‘–’’ mean that the

operation cannot be executed on the corresponding

machine.

A metaheuristic hybridization within a holonic
multiagent model

Glover et al. (1995) elaborated a study about the nature of

connections between the genetic algorithm and tabu search

metaheuristics, searching to show the existing opportuni-

ties for creating a hybrid approach with these two standard

methods to take advantage of their complementary features

and to solve difficult optimization problems. After this

pertinent study, the combination of these two metaheuris-

tics has become more well known in the literature, which

has motivated many researchers to try the hybridization of

these two methods for the resolution of different complex

problems in several areas.
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Ferber (1999) defined a multiagent system as an artificial

system composed of a population of autonomous agents,

which cooperate with each other to reach common objec-

tives, while simultaneously each agent pursues individual

objectives. Furthermore, a multiagent system is a computa-

tional system where two or more agents interact (cooperate

or compete, or a combination of them) to achieve some

individual or collective goals. The achievement of these

goals is beyond the individual capabilities and individual

knowledge of each agent (Botti and Giret 2008).

Koestler (1967) gave the first definition of the term

‘‘holon’’ in the literature, by combining the two Greek words

‘‘hol’’ meaning whole and ‘‘on’’ meaning particle or part. He

said that almost everything is both a whole and a part at the

same time. In fact, a holon is recursively decomposed at a

lower granularity level into a community of other holons to

produce a holarchy (Calabrese 2011). Moreover, a holon

may be viewed as a sort of recursive agent, which is a super-

agent composed by a sub-agents set, where each sub-agent

has its own behavior as a complementary part of the whole

behavior of the super-agent. Holons are agents able to show

an architectural recursiveness (Giret and Botti 2004).

In this work, we propose a hybrid metaheuristic approach

processing two general steps: a first step of global explo-

ration using a genetic algorithm to find promising areas in

the search space and a clustering operator allowing to

regroup them in a set of clusters. In the second step, a tabu

search algorithm is applied to find the best individual solu-

tion for each cluster. The global process of the proposed

approach is implemented in two hierarchical holonic levels

adopted by a recursive multiagent model, named genetic

algorithm combined with tabu search in a holonic multiagent

model (GATSþHM), see Fig. 1. The first holonic level is

composed by a scheduler agent which is the Master/Super-

agent, preparing the best promising regions of the search

space, and the second holonic level containing a set of

cluster agents which are the workers/sub-agents, guiding the

search to the global optimum solution of the problem. Each

holonic level of this model is responsible to process a step of

the hybrid metaheuristic algorithm and to cooperate between

them to attain the global solution of the problem.

In fact, the choice of this new metaheuristic hybridiza-

tion is justified by that the standard metaheuristic methods

use generally the diversification techniques to generate and

to improve many different solutions distributed in the

search space, or using local search techniques to generate a

more improved set of neighbourhood solutions from an

initial solution. However, they did not guarantee to attain

promising areas with good fitness converging to the global

optimum despite the repetition of many iterations; that is

why, they need to be more optimized. Therefore, the

novelty of our approach is to launch a genetic algorithm

based on a diversification technique to only explore the

search space and to select the best promising regions by the

clustering operator. Then, applying the intensification

technique of the tabu search allowing to relaunch the

search from an elite solution of each cluster autonomously

to attain more dominant solutions of the search space.

The use of a multiagent system gives the opportunity for

distributed and parallel treatments which are very com-

plimentary for the second step of the proposed approach.

Indeed, our combined metaheuristic approach follows the

paradigm of ‘‘Master’’ and ‘‘Workers’’ which are two

recursive hierarchical levels adaptable for a holonic mul-

tiagent model, where the scheduler agent is the Master/

Super-agent of its society and the cluster agents are its

Workers/Sub-agents.

Scheduler agent

The scheduler agent (SA) is responsible to process the first

step of the hybrid algorithm using a genetic algorithm called

neighborhood-based genetic algorithm (NGA) to identify

areas with high average fitness in the search space during a

fixed number of iterations MaxIter, see Fig. 2. In fact, the

Table 1 Simple instance of the FJSP

Job Operation M1 M2 M3 M4 M5

J1 O1;1 2 9 4 5 1

O1;2 – 6 – 4 –

J2 O2;1 1 – 5 – 6

O2;2 3 8 6 – –

O2;3 – 5 9 3 9

J3 O3;1 – 6 6 – –

O3;2 3 – – 5 4

Fig. 1 Metaheuristic hybridization within a holonic multiagent model
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goal of using the NGA is only to explore the search space,

but not to find the global solution of the problem. Then, a

clustering operator is integrated to divide the best identified

areas by the NGA in the search space to different parts,

where each part is a cluster CLi 2 CL the set of clusters,

where CL ¼ fCL1;CL2; . . .;CLNg: In addition, this agent

plays the role of an interface between the user and the

system (initial parameter inputs and final result outputs).

According to the number of clusters N obtained after the

integration of the clustering operator, the SA creates

N cluster agents (CAs) preparing the passage to the next step

of the global algorithm. After that, the SA remains in a

waiting state until the reception of the best solutions found

by the CA for each cluster. Finally, it finishes the process by

displaying the final solution of the problem.

Individual’s solution presentation

The flexible job shop problem is composed by two sub-

problems: the machine assignment problem and the oper-

ation scheduling problem; that is why, the chromosome

representation is encoded in two parts: machine assignment

part (MA) and operation sequence part (OS). The first part

MA is a vector V1 with a length L equal to the total number

of operation, where each index represents the selected

machine to process an operation indicated at position p, see

Fig. 3a. For example p ¼ 2; V1ð2Þ is the selected machine

M4 for the operation O1;2: The second part OS is a vector

V2 having the same length of V1; where each index rep-

resents an operation Oi;j according to the predefined oper-

ations of the job set, see Fig. 3b. For example, the operation

sequence 1–2–1–3–2–3–2 can be translated to:

ðO1;1;M5Þ ! ðO2;1;M1Þ ! ðO1;2;M4Þ ! ðO3;1;M3Þ !
ðO2;2;M3Þ ! ðO3;2;M1Þ ! ðO2;3;M2Þ:

To convert the chromosome values to an active schedule,

we used the priority-based decoding of Gao et al. (2008). This

method considers the idle time which may exist between

operations on a machine m, and which is caused by the

precedence constraints of operations belonging to the same job

i. LetSi;j is the starting timeof anoperationOi;j (which canonly

be started after processing its precedent operationOi;ðj�1Þ)with

its completion timeCi;j: In addition,wehavean execution time

interval [tSm; t
E
m] starts form tSm and ends at tEm on amachine

m to allocate an operation Oi;j: Therefore, if j ¼ 1; Si;j takes

tSm; else if j� 2; it takes maxftSm;Ci;ðj�1Þg: In fact, the

availability of the time interval [tSm; t
E
m] for an operation Oi;j

is validated by verifying if there is a sufficient time period to

complete the execution time pijm of this operation, see Eq. 2:

if j ¼ 1; tSm þ pijm � tEm

if j� 2; maxftSm;Ci;ðj�1Þg þ pijm � tEm:
ð2Þ

The used priority-based decoding method allows in each

case to assign each operation to its reserved machine fol-

lowing the presented execution order of the operation

sequence vector V2: Therefore, to schedule an operation

Oi;j on a machine m, the fixed idle time intervals of the

selected machine are verified to find an allowed available

period to its execution. Therefore, if a period is found, the

operation Oi;j is executed there, else it is moved to be

executed at the end of the machine m.

Noting that the chromosome fitness is calculated by

FitnessðiÞ which is the fitness function of each chromosome

Fig. 2 First step of the global process by the scheduler agent

Fig. 3 Chromosome representation of a scheduling solution
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i and CmaxðiÞ is its makespan value, where i 2 f1; . . .;Pg
and P is the total population size, see Eq. 3:

FitnessðiÞ ¼ 1

CmaxðiÞ
: ð3Þ

Population initialization

The initial population is generated randomly following a

uniform law based on a neighborhood parameter to make the

individual solutions more diversified and distributed in the

search space. In fact, each new solution should have a pre-

defineddistancewith all the other solutions tobe consideredas

a new member of the initial solution. The used method to

determinate the neighborhood parameter is inspired from

Bozejko et al. (2010a), which is based on the permutation

level of operations to obtain the distance between two solu-

tions. In fact, the dissimilarity distance is calculated by veri-

fying the difference between two chromosomes in terms of the

placement of each operationOi;j on its alternativemachine set

in themachine assignment vectorV1 and its execution order in

the operation sequence vector V2: Therefore, if there is a

difference in the vector V1; the distance is incremented by

MðOi;jÞ (is the number of possible n placement for each

operation on its machine set, which is the alternative machine

number of each operation Oi;j), because it is in the order of

O(n). Then, if there is a difference in the vector V2; the dis-

tance is incremented by1, because it is in the order ofO(1). Let

Chrom1ðMA1;OS1Þ and Chrom2ðMA2;OS2Þ two chromo-

somes of two different scheduling solutions, MðOi;jÞ the

alternative number ofmachines of each operationOi;j; L is the

total number of operations of all jobs and Dist is the dissimi-

larity distance. The distance is calculated first by measuring

the difference between the machine assignment vectors MA1

and MA2 which is in order of O(n), then by verifying the

execution order difference of the operation sequence vectors

OS1 and OS2 which is in order of O(1). We give how to

proceed in Algorithm 1.

Noting that Distmax is the maximal dissimilarity dis-

tance and it is calculated by Eq. 4, representing 100% of

difference between two chromosomes:

Distmax ¼
Xn

i¼1

Xi;ni

i;1

MðOi;jÞ
" #

þ L: ð4Þ

Selection operator

The selection operator is used to select the best parent

individuals to prepare them to the crossover step. This

operator is based on a fitness parameter allowing to analyze

the quality of each selected solution. However, progres-

sively, the fitness values will be similar for the most

individuals. That is why, we integrate the neighborhood

parameter, where we propose a new combined parent

selection operator named fitness-neighborhood selection

operator (FNSO) allowing to add the dissimilarity distance

criteria to the fitness parameter to select the best parents for

the crossover step. The FNSO chooses in each iteration two

parent individuals until engaging all the population to

create the next generation. The first parent takes succes-

sively in each case a solution i, where i 2 f1; . . .;Pg and P

is the total population size. The second parent obtains its

solution j randomly by the roulette wheel selection method

based on the two fitness and neighborhood parameters

relative to the selected first parent, where j 2
f1; . . .;Pgnfig in the P population and where j 6¼ i: In fact,

to use this random method, we should calculate the fitness-

neighborhood total FN for the population, see Eq. 5, the

selection probability spk for each individual Ik; see Eq. 6,

and the cumulative probability cpk; see Eq. 7. After that, a

random number r will be generated from the uniform range

[0,1]. If r� cp1; then the second parent takes the first

individual I1; else it gets the kth individual Ik 2
fI2; . . .; IPgnfIig and where cpk�1\r� cpk:

• The fitness-neighborhood total for the population:

FN ¼
XP

k¼1

½1=ðCmax½k� � Neighborhood½i�½k�Þ�: ð5Þ

• The selection probability spk for each individual Ik:

spk ¼
1=ðCmax½k� � Neighborhood½i�½k�Þ

FN
: ð6Þ

• The cumulative probability cpk for each individual Ik:

cpk ¼
Xk

h¼1

sph: ð7Þ

¼) For Eqs. 5, 6, and 7, k ¼ f1; 2; . . .;Pgnfig
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Crossover operator

The crossover operator has an important role in the global

process, allowing to combine in each case the chromo-

somes of two parents to obtain new individuals and to

attain new better parts in the search space. In this work, this

operator is applied with two different techniques succes-

sively for the parent’s chromosome vectors MA and OS.

Machine vector crossover A uniform crossover is used

to generate in each case a mixed vector between two

machine vector parents, Parent1-MA1 and Parent2-MA2,

allowing to obtain two new children, Child1-MA10 and

Child2-MA20: This uniform crossover is based on two

assignment cases; if the generated number is less than 0.5,

the first child gets the current machine value of parent1 and

the second child takes the current machine value of par-

ent2. Else, the two children change their assignment

direction, first child to parent2 and the second child to

parent1, see Algorithm 2.

Operation vector crossover An improved precedence

preserving order based on crossover (iPOX), inspired from

Lee et al. (1998), is adapted for the parent operation vector

OS. This iPOX operator is applied following four steps, a

first step is selecting two parent operation vectors (OS1 and

OS2) and generating randomly two job sub-sets Js1/Js2
from all jobs. A second step is allowing to copy any ele-

ment in OS1/OS2 that belong to Js1=Js2 into child indi-

vidual OS01/OS
0
2 and retain them in the same position. Then,

the third step deletes the elements that are already in the

sub-set Js1=Js2 from OS1/OS2: Finally, fill orderly the

empty position in OS01/OS
0
2 with the reminder elements of

OS2/OS1 in the fourth step, see the example in Fig. 4.

Mutation operator

The mutation operator is integrated to promote the children

generation diversity. In fact, this operator is applied on the

chromosome of the new children generated by the crossover

operation. In addition, each part of a child chromosome MA

and OS has separately its own mutation technique.

Machine vector mutation This first operator uses a ran-

dom selection of an index from the machine vector MA.

Then, it replaces the machine number in the selected index

by another belonging to the same alternative machine set,

see Fig. 5.

Operation vector mutation This second operator selects

randomly two indexes index1 and index2 from the opera-

tion vector OS. Next, it changes the position of the job

number in the index1 to the second index2 and inversely,

see Fig. 6.

Replacement operator

The replacement operator has an important role to prepare

the remaining surviving population to be considered for the

next iterations. This operator replaces in each case a parent

by one of its children which has the best fitness in its

current family.

Clustering operator

By finishing the maximum iteration number MaxIter of the

genetic algorithm, the scheduler agent applies a clustering

operator using the hierarchical clustering algorithm of

Johnson (1967) to divide the final population into N clus-

ters, see Fig. 7, to be treated by the cluster agents in the

second step of the global process. The clustering operator is

based on the neighbourhood parameter which is the dis-

similarity distance between individuals. The clustering

operator starts by assigning each individual IndivðiÞ to a

cluster CLi; so if we have P individuals, we have now P

clusters containing just one individual in each of them. For

each case, we fixe an individual IndivðiÞ and we verify

successively for each next individual IndivðjÞ from the

remaining population (where i and j 2 f1; . . .;Pg; i 6¼ j) if

the dissimilarity distance Dist between IndivðiÞ and

IndivðjÞ is less than or equal to a fixed threshold Distfix

(representing a percentage of difference X% relatively to

Distmax, see Eq. 8) and where ClusterðIndivðiÞÞ 6¼
ClusterðIndivðjÞÞ: If it is the case, MergeðCluster

Fig. 4 iPOX crossover example for the OS vector
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ðIndivðiÞÞ;ClusterðIndivðjÞÞÞ; else continue the search for

new combination with the remaining individuals. The

stopping condition is by browsing all the population indi-

viduals, where we obtained at the end N clusters:

Distfix ¼ Distmax� X%: ð8Þ

Cluster agents

Each cluster agent CAi is responsible to apply successively

to each cluster CLi a local search technique which is the

tabu search algorithm to guide the research in promising

regions of the search space and to improve the quality of

the final population of the genetic algorithm. In fact, this

local search is executed simultaneously by the set of the

CAs agents, where each CA starts the research from an

elite solution of its cluster searching to attain new more

dominant individual solutions separately in its assigned

cluster CLi; see Fig. 8. The used tabu search algorithm is

based on an intensification technique allowing to start the

research from an elite solution in a cluster CLi (a promising

part in the search space) to collect new scheduling

sequence minimizing the makespan. Let E the elite solution

of a cluster CLi; E0 2 NðEÞ is a neighbor of the elite

solution E, GLi is the global list of each CAi to receive new

found elite solutions by the remaining CAs, each CLi plays

the role of the tabu list with a dynamic length, and Cmax is

the makespan of the obtained solution. Therefore, the

search process of this local search starts from an elite

solution E using the move and insert method of Mastrolilli

and Gambardella (2000), where each cluster agent CAi

changes the position of an operation Oi;j from a machine m

to another machine n belonging to the same alternative

Fig. 5 Mutation operator example for the MA vector

Fig. 6 Mutation operator example for the OS vector

Fig. 7 Final population transformation by applying the clustering

operator

Fig. 8 Distribution of the cluster agents in the different clusters of the

search space
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machine set of this selected operation Oi;j; searching to

generate new scheduling combination E0 2 NðEÞ: After

that, verifying if the makespan value of this new generated

solution CmaxðE0Þ dominates CmaxðEÞ
(CmaxðE0Þ\CmaxðEÞ), and if it is the case CAi saves E

0 in
its tabu list (which is CLi) and sends it to all the other CAs

agents to be placed in their global lists GLs ðE0;CAiÞ; to
ensure that it will not be used again by them as a search

point. Else continues the neighborhood search from the

current solution E. The stopping condition is by attaining

the maximum allowed number of neighbors for a solution

E without improvement. We give how to proceed in

Algorithm 3.

By finishing this local search step, the CA agents ter-

minate the process by sending their last best solutions to

the SA agent, which considers the best one of them the

global solution for the FJSP, see Fig. 9.

Experimental results

Experimental setup

The proposed GATSþHM is implemented in java language

on a 2.10 GHz Intel Core 2 Duo processor and 3 Gb of RAM

memory, where we use the integrated development envi-

ronment (IDE) Eclipse to code the algorithm and the multi-

agent platform Jade (Bellifemine et al. 1999) to create the

different agents of our holonic model. To evaluate its effi-

ciency, numerical tests are made based on four sets of well-

known benchmark instances in the literature of the FJSP:

• Kacem data (Kacem et al. 2002b): The data set consists

of five problems considering a number of jobs ranging

from 4 to 15 with a number of operations for each job

ranging from 2 to 4, which will be processed on a

number of machines ranging from 5 to 10.

• Brandimarte data (Brandimarte 1993): The data set

consists of ten problems considering a number of jobs

ranging from 10 to 20 with a number of operations for

each job ranging from 5 to 15, which will be processed

on a number of machines ranging from 4 to 15.

• Hurink edata (Hurink et al. 1994): The data set consists

of 40 problems (la01–la40) inspired from the classical

job shop instances of Lawrence (1984), where three test

problems are generated: rdata, vdata, and edata which

are used in this paper.

• Barnes data (Barnes and Chambers 1996): The data set

consists of 21 problems considering a number of jobs

ranging from 10 to 15 with a number of operations for

each job ranging from 10 to 15, which will be processed

on a number of machines ranging from 11 to 18.

Due to the non-deterministic natureof the proposedalgorithm,

we run it five independent times for each one of the four

instances Kacem et al. (2002b), Brandimarte (1993), Hurink

et al. (1994), and Barnes and Chambers (1996) to obtain

significant results. The computational results are presented by

five metrics such as the best makespan (Best), the average of

makespan (Avg Cmax), the average of CPU time in seconds

(Avg CPU), and the standard deviation of makespan (Dev%),

which is calculated byEq. 9.Mko is themakespan obtained by

our algorithm and Mkc is the makespan of an algorithm that

we chose to compare to

Dev ¼ ½ðMkc �MkoÞ=Mkc� � 100%: ð9Þ

The used parameter settings for our algorithm are adjusted

experimentally and presented as follows:

• Crossover probability 1.0.

• Mutation probability 0.5.

• Maximum number of iterations 1000.

Fig. 9 Second step of the global process by the cluster agents
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• The population size ranged from 15 to 400 depending

on the complexity of the problem.

• The fixed threshold Distfix represents 50% of the

maximal dissimilarity distance Distmax.

Experimental comparisons

To show the efficiency of our GATSþHM algorithm, we

compare its obtained results from the four previously cited

data sets with other well-known algorithms in the literature

of the FJSP.

The chosen algorithms are:

• The TS of Brandimarte (1993), N1-1000 of Hurink

et al. (1994) (with its literature lower bound LB), and

the ALþCGA of Kacem et al. (2002b) obtained the

first results in the literature for their proposed instances.

• The LEGA of Ho et al. (2007), the BBO of Rahmati

and Zandieh (2012), and the Heuristic of Ziaee (2014)

are standard heuristic and metaheuristic methods.

• The TS3 of Bozejko et al. (2010a) is the paper from

which we inspired the computation method of the

dissimilarity distance.

• The MOPSOþLS of Moslehi and Mahnam (2011) and

the Hybrid NSGA-II of Zhang et al. (2014) are two

recent hybrid metaheuristic algorithms.

• The MATSLOþ of Ennigrou and Ghédira (2008) and

the MATSPSO of Henchiri and Ennigrou (2013) are

two new hybrid metaheuristic algorithms distributed in

a multiagent model.

The different comparative results are displayed in Tables 2,

3, 4, 5, 6, and 7, where the first column takes the name of

each instance, the second column gives the size each

instance, with n the number of jobs and m the number of

Table 2 Results of the Kacem

instances (part 1)
Instance Problem n� m ALþCGA LEGA MOPSOþLS BBO

Best Dev (%) Best Dev (%) Best Dev (%) Best Dev (%)

Case 1 4 � 5 16 13.250 11 0 16 31.25 11 0

Case 2 8 � 8 15 6.666 N/A – 14 0 14 0

Case 3 10 � 7 15 26.666 11 0 15 26.666 N/A –

Case 4 10 � 10 7 0 7 0 7 0 7 0

Case 5 15 � 10 23 52.173 12 8.333 11 0 12 8.333

Table 3 Results of the Kacem

instances (part 2)
Hybrid NSGA-II Heuristic GATSþHM

Best Dev (%) Best Dev (%) Best Avg Cmax Avg CPU (in s)

11 0 11 0 11 11.00 0.05

15 6.666 15 6.666 14 14.20 0.36

N/A – 13 15.384 11 11.40 0.72

7 0 7 0 7 7.60 1.51

11 0 12 8.333 11 11.60 29.71

Table 4 Results of the

Brandimarte instances (part 1)
Instance Problem n� m TS LEGA MATSLOþ TS3

Best Dev (%) Best Dev (%) Best Dev (%) Best Dev (%)

MK01 10 � 6 42 4.761 40 0 40 0 40 0

MK02 10 � 6 32 15.625 29 6.896 32 15.625 29 6.896

MK03 15 � 8 211 3.317 N/A – 207 1.449 204 0

MK04 15 � 8 81 20.987 67 4.477 67 4.477 65 1.538

MK05 15 � 4 186 6.989 176 1.704 188 7.978 173 0

MK06 10 � 15 86 24.418 67 2.985 85 23.529 68 4.411

MK07 20 � 5 157 8.280 147 2.040 154 6.493 144 0

MK08 20 � 10 523 0 523 0 523 0 523 0

MK09 20 � 10 369 15.718 320 2.812 437 28.832 326 4.601

MK10 20 � 15 296 25 229 3.056 380 41.578 227 2.202
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Table 5 Results of the

Brandimarte instances (part 2)
BBO MATSPSO Heuristic GATSþHM

Best Dev (%) Best Dev (%) Best Dev (%) Best Avg Cmax Avg CPU (s)

40 0 39 -2.564 42 4.761 40 40.80 0.93

28 3.571 27 0 28 3.571 27 27.80 1.18

204 0 207 1.449 204 0 204 204.00 1.55

64 0 65 1.538 75 14.666 64 65.60 4.36

173 0 174 0.574 179 3.351 173 174.80 8.02

66 1.515 72 9.722 69 5.797 65 67.00 110.01

144 0 154 6.493 149 3.355 144 144.00 19.73

523 0 523 0 555 5.765 523 523.00 11.50

310 -0.322 340 8.529 342 9.064 311 311.80 79.68

230 3.478 299 25.752 242 8.264 222 224.80 185.64

Table 6 Results of the Hurink edata instances

Instance Problem n� m LB N1-1000 MATSLOþ GATSþHM

Best Dev (%) Best Dev (%) Best Dev (%) Best Avg Cmax Avg CPU (in s)

la01 10 � 5 609 0 611 0.327 609 0 609 609.00 24.64

la02 10 � 5 655 0 655 0 655 0 655 655.00 4.65

la03 10 � 5 550 -3.091 573 1.047 575 1.391 567 567.40 10.67

la04 10 � 5 568 0 578 1.730 579 1.900 568 569.60 22.13

la05 10 � 5 503 0 503 0 503 0 503 503.00 10.22

la16 10 � 10 892 0 924 3.463 896 0.446 892 909.60 73.14

la17 10 � 10 707 0 757 6.605 708 0.141 707 709.60 116.58

la18 10 � 10 842 -0.119 864 2.431 845 0.237 843 848.60 34.98

la19 10 � 10 796 -1.005 850 5.412 813 1.107 804 813.40 36.88

la20 10 � 10 857 0 919 6.746 863 0.695 857 859.80 70.36

Table 7 Results of the Barnes data instances

Instance Problem n� m BBO GATSþHM

Pop Best Avg Cmax Dev (%) Avg CPU (in s) Pop Best Avg Cmax Avg CPU (in s)

mt10c1 10 � 11 350 946 947.00 2.008 401 300 927 930.00 84.26

mt10cc 10 � 12 350 946 946.00 3.065 405 300 917 918.60 78.40

mt10x 10 � 11 350 955 961.00 3.350 416 300 923 931.40 82.56

mt10xx 10 � 12 350 939 945.00 2.236 480 300 918 924.40 81.73

mt10xxx 10 � 13 350 954 954.50 3.773 497 300 918 921.00 95.22

mt10xy 10 � 12 350 951 951.00 4.521 458 300 908 910.00 93.48

mt10xyz 10 � 13 350 858 858.00 -1.165 495 300 868 871.80 72.03

setb4c9 15 � 11 350 959 959.00 3.336 762 250 927 936.60 104.10

setb4cc 15 � 12 350 944 950.00 0.635 770 300 938 946.80 150.34

setb4x 15 � 11 350 942 951.00 -0.212 749 200 944 956.20 61.05

setb4xx 15 � 12 350 967 967.00 2.585 761 300 942 953.60 145.74

setb4xxx 15 � 13 350 991 991.00 4.238 797 300 949 958.60 133.19

setb4xy 15 � 12 350 978 982.00 4.805 778 250 931 941.80 118.25

setb4xyz 15 � 13 350 930 930.50 0.430 651 200 926 929.80 62.04
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machines ðn� mÞ; and the remaining columns detail the

experimental results of the different chosen approaches in

terms of the best Cmax (Best) and the standard deviation

(Dev %). The bold values in the tables signify the best

obtained results and the N/A means that the result is not

available.

Analysis of the comparative results

By analyzing Tables 2 and 3, it can be seen that our

algorithm GATSþHM is the best one which solves the

fives instances of Kacem. In fact, the GATSþHM outper-

forms the ALþCGA in four out of five instances; the

Heuristic in three out of five instances; and the LEGA, the

MOPSOþLS, BBO, and the Hybrid NSGA-II in two out of

five instances. In addition, by solving this first data set, our

GATSþHM attains the same results obtained by the chosen

approaches such as in the case 1 for LEGA, BBO, Hybrid

NSGA-II, and Heuristic; in the case 2 for MOPSOþLS and

BBO; in the case 3 for LEGA; in the case 4 for all the

algorithms; and in the case 5 for MOPSOþLS and Hybrid

NSGA-II.

From Tables 4 and 5, the comparison results show that

the GATSþHM obtains eight out of ten best results for the

Brandimarte instances. Indeed, our algorithm outperforms

the TS in nine out of ten instances. Moreover, our

GATSþHM outperforms the LEGA and the MATSLOþ in

eight out of ten instances. In addition, our hybrid approach

outperforms the TS3 in five out of ten instances. For the

comparison with the BBO, the GATSþHM obtains the best

solutions for the MK02, MK06, and MK10 instances, but it

gets slightly worse result for the MK09 instance. Further-

more, the MATSPSO attained the best result for the MK01

instance, but our algorithm obtains a set of solutions better

than it for the remaining instances. In addition, our algo-

rithm outperforms the Heuristic in all the Brandimarte

instances. By solving this second data set, our GATSþHM

attains the same results obtained by some approaches such

as in the MK01 for LEGA, MATSLOþ and TS3; in the

MK02 for MATSPSO; in the MK03 for TS3, BBO and

Heuristic; in the MK04 for BBO; in the MK05 for TS3 and

BBO; in the MK07 for BBO and TS3; and in the MK08 for

all the algorithms only it is not the case for the Heuristic.

From Table 6, the obtained results show that the

GATSþHM obtains seven out of ten best results for the

Hurink edata instances (la01–la05) and (la16–la20).

Indeed, our approach outperforms the N1-1000 in eight out

of ten instances. Moreover, our GATSþHM outperforms

the MATSLOþ in seven out of ten instances. For the

comparison with the literature lower bound LB, the

GATSþHM attains the same results for the la01, la02,

la04, la05, la16, la17, and la20 instances, but it gets slightly

worse result for the la03, la18, and la19 instances.

Furthermore, by solving this third data set, our GATSþHM

attains the same results obtained by the chosen approaches

such as in the la01 for the MATSLOþ; in the la02 for the

N1-1000 and the MATSLOþ; and in the la05 for the N1-

1000 and the MATSLOþ:

From Table 7, the results for the Barnes instances

demonstrate that our GATSþHM dominates the BBO

algorithm in different criteria such as the Cmax; the Avg

Cmax; the Avg CPU, the deviation, and the population size.

In fact, for the Cmax criterion, our GATSþHM outperforms

the BBO in 12 out of 14 instances, see Fig. 10, with

deviations varying from 0.430 to 4.805%. In addition, we

attain average values for the Cmax solutions dominating the

BBO in 12 times. In addition, as shown in Fig. 11, the used

population sizes for our algorithm are less than the BBO in

all the 14 instances, which influenced on the CPU execu-

tion time for each solution, see Fig. 12.

By analyzing the computational time in seconds and the

comparison results of our algorithm in terms of makespan,

we can distinguish the efficiency of the new proposed

GATSþHM relatively to the literature of the FJSP. This

efficiency is explained by the flexible selection of the

promising parts of the search space by the clustering

operator after the genetic algorithm process and by

applying the intensification technique of the tabu search

allowing to start from an elite solution to attain new more

dominant solutions.

Conclusion

In this paper, we present a new metaheuristic hybridization

algorithm-based clustered holonic multiagent model, called

GATSþHM, for the flexible job shop scheduling problem

(FJSP). In this approach, a neighborhood-based genetic

Fig. 10 Cmax comparison of GATSþHM and BBO for the Barnes

data (Barnes and Chambers 1996)
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algorithm is adapted by a scheduler agent (SA) for a global

exploration of the search space. Then, a local search

technique is applied by a set of cluster agents (CAs) to

guide the research in promising regions of the search space

and to improve the quality of the final population. To

measure its performance, numerical tests are made using

four well-known data sets in the literature of the FJSP. The

experimental results show that the proposed approach is

efficient in comparison with others approaches. In the

future works, we will search to treat other extensions of the

FJSP, such as by integrating new transportation times in the

shop process, where each operation must be transported by

a moving robot to continue its treatment on its next

machine. In addition, this problem can be improved by

considering a non-unit transport capacity for the moving

robots, where the problem becomes a flexible job shop

scheduling problem with transportation times and non-unit

transport capacity robots. Therefore, we will plan to make

improvements to our approach to adapt it to this new

transformation of the problem, and study its effects on the

makespan.
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