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Abstract Integration of production planning and schedul-

ing is a class of problems commonly found in manufac-

turing industry. This class of problems associated with

precedence constraint has been previously modeled and

optimized by the authors, in which, it requires a multidi-

mensional optimization at the same time: what to make,

how many to make, where to make and the order to make.

It is a combinatorial, NP-hard problem, for which no

polynomial time algorithm is known to produce an optimal

result on a random graph. In this paper, the further devel-

opment of Genetic Algorithm (GA) for this integrated

optimization is presented. Because of the dynamic nature

of the problem, the size of its solution is variable. To deal

with this variability and find an optimal solution to the

problem, GA with new features in chromosome encoding,

crossover, mutation, selection as well as algorithm struc-

ture is developed herein. With the proposed structure, the

proposed GA is able to ‘‘learn’’ from its experience.

Robustness of the proposed GA is demonstrated by a

complex numerical example in which performance of the

proposed GA is compared with those of three commercial

optimization solvers.

Keywords Genetic algorithm � Optimization � Precedence
constraint � Integration of planning and scheduling �
Variable-length chromosome

Introduction

Integration of production planning and scheduling is a class of

problems commonly found inmanufacturing industry. One of

the important constraints in the integration of production

planning and scheduling is a so called precedence constraint.

This constraint has two classes, namely hard precedence

constraint and soft precedence constraint. Hard precedence

constraint is a constraint that makes the solution infeasible if

violated; while, soft precedence constraint imposes a penalty

only and the solution is still feasible. In this article, the pro-

duction planning and scheduling problems, associated with

both hard and soft precedence constraints, are considered.

The precedence-constrained production planning and

scheduling is a multidimensional optimization problem, in

which a number of sub-problems such as production

selection, product allocation, manufacturing sequence, etc.

are required to be simultaneously solved. From computa-

tional complexity theory point of view, the precedence-

constrained production planning and scheduling is a NP-

hard problem. It should be noted that NP is a technical term

in computational complexity theory in computer science

and mathematics, which stands for Non-deterministic

Polynomial-time. NP problems are the set of decision

problems that can be solved by non-deterministic polyno-

mial-time bounded Turing machines (Cadoli et al. 2000).

In addition, NP-hard is the class of decision problems

which are as hard as any NP problem (Shapiro and Del-

gado-Eckert 2012). NP-hard problems are algorithmically

solvable but computationally intractable (Shapiro and

Delgado-Eckert 2012). There is no exact method that can

find the global optimal solutions to NP-hard problems in

polynomial time, and fast approximate heuristics and meta-

heuristics are the popular approaches to search for high-

quality/practical solutions (He et al. 2012).
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In this article, an improved Genetic Algorithm (GA) is

developed to search for optimal solution to the precedence-

constrained production planning and scheduling problem.

Literature review

As mentioned before, there are a number of sub-problems

in the precedence-constrained production planning and

scheduling problem. The sub-problems are inter-connected

to each other. In other words, the precedence-constrained

production planning and scheduling is an integrated opti-

mization problem. There are three approaches to solve this

problem, namely hierarchical, iterative, and full-space

approaches (Maravelias and Sung 2009). In the first two

approaches, the integrated problem is decomposed into a

master sub-problem and a slave sub-problem. The master

sub-problem is used to determine production planning

while the slave sub-problem is for scheduling. The slave

sub-problem uses the output of the master sub-problem as

its input. In the full-space approach, the planning and

scheduling are fully integrated and they are simultaneously

solved. There is no doubt that the hierarchical and iterative

approaches can solve large-scale problems because the

search space of the problem is significantly reduced, due to

the decomposition; however, they have a very limit chance

to find global optimal solution. In contrast, as solving the

planning and scheduling simultaneously, the full-space

approach has the highest potential to obtain global optimal

solution.

Meta-heuristics are popular optimization algorithms,

often used to solve large-scale complex optimization

problems in various fields (Abtahi and Bijari 2016;

Javanmard and Koraeizadeh 2016; Moradgholi et al. 2016).

In the research of Shao et al. (2009), a genetic algorithm-

based method was used for optimization of two functions:

process planning and scheduling. However, these two

processes are not fully integrated. Therefore, the global

optimal solution to the problem could not be found. In

addition, an artificial intelligent search algorithm, named

symbiotic evolutionary algorithm, was developed by Kim

et al. (2003) for the integration of process planning and job

shop scheduling. Again, the way of constructing the entire

solutions proposed in that algorithm prevents the entire

solution from global optimization. Furthermore, Liu and

Fang (2012) proposed a heuristic based approach to deal

with the integration, in which the entire problem is divided

into a number of sub-problems and sub-constraint based

interval planning algorithm is developed for each sub-

problem. Nevertheless, the interaction between the plan-

ning and scheduling is very limited. Therefore, it is very

hard to obtain the global optimal solution to the integrated

problem.

Although, there have been a large number of methods

developed to dealwith the integration of production planning

and scheduling, methods based on full-space approach are

still very limited, especially for the integration of prece-

dence-constrained production planning and scheduling

problem. In the previous research works (Dao and Marian

2011a, b), to deal with the complex constraints, twomodified

GAs with variable chromosome sizes were developed to

solve this problem in one production line environment. Later

on, the precedence-constrained production planning and

scheduling problem, associated with multiple production

line environment, were solved by Dao and Marian

(2011c, 2013) with more advanced GAs. Nevertheless, the

global optimal solution to this problem has not been obtained

yet since the solution method is not fully integrated.

To overcome this limitation, a more robust GA is devel-

oped herein to improve the quality of the solutions to the

precedence-constrained production planning and scheduling

problem with multiple production lines. With a new chro-

mosome encoding, modified crossover/mutation/selection

operations as well as a modified algorithm structure, the

developed GA is capable of searching for the global optimal

solution to the problem, with very high success rate.

Problem statement

As mentioned before, the main purpose of this article is to

further develop a more robust GA for the precedence-

constrained production planning and scheduling problem

with multiple production lines. It is noted that the problem

under consideration was already described in the previous

publications (Dao and Marian 2011c, 2013) and it is

restated herein, as follows, for the readers’ convenience.

There is a manufacturing company which produces a

number of different products with a number of different

production lines. Manufacturing resources of the company

such as labor, material and working capital are limited.

Currently, there are a number of product orders with a

variety of products and delivery deadlines, to be fulfilled.

Manufacturing cost, fixed cost, labor, and product chan-

geover in different production lines are different. The

company is capable of producing any mix of types of

products and it plans to produce at least D different types of

products in the next period of time. In addition, penalty

cost due to late delivery and returned product are applied.

Question now is (1) determine the types of products to be

produced (planning), (2) determine the number of the

products in each selected type to be made (planning), (3)

determine the allocation of the selected products to pro-

duction lines (scheduling), and (4) determine the sequence

to produce the selected products in each production line

(scheduling); so that the company will have maximized
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profit and customer satisfaction index while all given

constraints are simultaneously satisfied.

Model formulation

The mixed integer formulation for this problem is devel-

oped as follows.

Assumptions

• The company can produce any mix of different

products.

• The company can work 24 h a day, 7 days a week.

• The proceedings from selling products will only be

available for next period of time, so they should be ignored

for the current planning horizon-current period of time.

Indices

Parameters

Decision variables

Objective function

Multi-objective function is used to take into account both

company profit and customer satisfaction index. The

objective function to be maximized is sum of the total

profit of the company and its customer satisfaction index

with given weight coefficient, which is calculated by

Eq. (1) where: F is fitness value; TI is total income; MC is

total manufacturing cost; OH is total overhead for running

the selected production lines; CD is total cost associated

with penalty due to products made after deadline; CR is

total cost due to returned products or not accepted by

customer because they are too late; SI is total points of

customer satisfaction index; a is weight coefficient.

F ¼ a½TI�MC� OH� CD� CR� þ ð1� aÞ SI: ð1Þ

The cost components in Eq. (1) are computed as

follows:

The total income that the company earns from the pro-

duct orders (TI):

TI ¼
Xp

k¼1

Qk:Sk ð2Þ

The total manufacturing cost of the product orders

(MC):

MC ¼
Xp

k¼1

Xl

i¼1

Qki:Eki ð3Þ

i = Production line index

j = Manufacturing sequence index

k = Product index

a = Weight coefficient

A = Number of points of customer satisfaction index lost each day

of delay when each product is made after its deadline

B = Number of points of customer satisfaction index obtained

when each product is made before its deadline

C = Total working capital available ($)

Dk = Deadline of product k (day of month)

Eki = Manufacturing expense of product k in the production line

i ($)

M = Total material available (kg)

MRk = Material requirement for product k (kg)

l = Number of different production lines

L = Total labor available (hours)

LRki = Labour requirement for product k in the production line

i (hours)

Oi = Other overhead for running production line i ($/hour)

p = Number of different product types available

PCi = Product changeover in the production line i (hours)

Uk = Penalty due to late delivery of product k (percentage of the

product price per day of delay)

V = Minimum number of product varieties required

Rk = Maximum number of delay days accepted with penalty for

product k; otherwise the customer does not accept the

product and it will be returned to the company

Sk = Selling price of product k ($)

Ci = Working capital allocated to production line i ($)

Mi = Material allocated to production line i (kg)

Li = Labor allocated to production line i (hours)

Pkij = Product k selected among the available ones and made in

production line i in sequence of j

Qk = Quantity of product k

Qki = Quantity of product k made in production line i

Hkij =

1 If product k is selected to be made in

production line i in sequence j

0 Otherwise

2

64

hi =

1 If products in sequence j and in sequence j� 1

in production line i are not the same

0 Otherwise

2
64

Sign1{x} =
x If x[ 0

0 If x� 0

�

Sign2{x} =
1 If x[ 0

0 If x� 0

�

Unique (x) = A function which is able to determine the number of

unique elements in the matrix x
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The total overhead for running the selected production

lines (OH):

OH ¼
Xp

k¼1

Xl

i¼1

X1

j¼1

ðhi:PCi þ LRkiÞHkijOi ð4Þ

The total cost associated with penalty due to products

made after deadline (CD):

CD ¼
Xp

k¼1

Xl

i¼1

X1

j¼1

Sign1 ðhi:PCi þ LRkiÞHkij � 24Dk

� �

24

� �
Uk:Sk

ð5Þ

The total cost due to returned products or not accepted

by customer because they are too late (CR):

CR ¼
Xp

k¼1

Xl

i¼1

X1

j¼1

Sign2 ðhi:PCi þ LRkiÞHkij � 24Dk � 24Rk

� �� �
Sk

ð6Þ

The total points of customer satisfaction index (SI):

SI ¼
Xp

k¼1

Xl

i¼1

X1

j¼1

B�
Sign1 ðhi:PCi þ LRkiÞHkij � 24Dk

� �

24

� 	
A

� �

ð7Þ

Subject to:

Quantity of product k:

Xl

i¼1

Qki ¼ Qk ð8Þ

The total working capital available:

Xl

i¼1

Ci ¼ C ð9Þ

The total material available:

Xl

i¼1

Mi ¼ M ð10Þ

The total labour available:

Xl

i¼1

Li ¼ L ð11Þ

The total material allocated to production line i:

Xp

k¼1

QkiMRk �Mi ð12Þ

The total labour allocated to production line i:

Xp

k¼1

X1

j¼1

ðhi:PCi þ LRkiÞHkij � Li ð13Þ

The total working capital allocated to production line i:

Xp

k¼1

Qki:Eki þ
Xp

k¼1

X1

j¼1

ðhi:PCi þ LRkiÞHkijOi �Ci ð14Þ

Minimum number of product varieties required:

p�Unique
Xp

k¼1

Xl

i¼1

X1

j¼1

Pkij

 !
� 1�V: ð15Þ

Optimization methodology

A modified GA with new features in chromosome encod-

ing, mutation, crossover, selection operation as well as GA

structure is proposed herein to optimize the multidimen-

sional integration problem of precedence-constrained pro-

duction planning and scheduling in multiple production

line environment as described above. This approach is fully

integrated implying that it leaves no boundary between the

planning and scheduling. Therefore, the proposed approach

can enhance the chance of achieving the globally optimal

solution for the problem.

In addition, a new GA structure modified from the tra-

ditional GA is proposed herein. With the proposed struc-

ture, the GA can ‘‘learn’’ from its experience. Because GA

is a search heuristic that mimics the process of natural

evolution, it cannot guarantee to find the best solution after

only one run (Marian et al. 2008a, b). Therefore, the pro-

posed GA is designed to run a number of times. Each run

has a certain number of generations, defined as a civiliza-

tion in this paper. Moreover, from the second civilization,

the GA does not start searching from the beginning. The

proposed GA is designed to be able to ‘‘remember’’ some

information, several good or best chromosomes for exam-

ples, from the previous civilization. As a result, the initial

population of the proposed GA, except the first civilization,

is not totally generated at random. A certain number of

chromosomes in the initial population are randomly gen-

erated as usual and the rest is transferred, modified or

repaired, if necessary, from the previous civilization. That

is why the proposed GA has the ability to ‘‘learn’’ from its

experience.

The proposed structure of the GA might cause a prob-

lem, i.e., premature convergence to local optimum because

the fitness values of the good chromosomes from the pre-

vious civilization are much superior to those generated at

random. As a result, those good chromosomes are con-

stantly selected for the next generations if the conventional

selection operator is used. To resolve this issue, a principle

is proposed herein according to which every chromosome

can be selected only once in one generation. After a

chromosome is selected for the next generation, it is

removed from the current pool of the candidates.
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The major components of the proposed GA are pre-

sented as follows:

Chromosome encoding

Each production line can be encoded as a string corre-

sponding to products allocated to each production line and

their manufacturing sequences. Accordingly, each chro-

mosome encoding a solution for the problem consists of

N strings corresponding to the N production lines. It should

be noted that the length of each string may be different

from each other because of the resource constraints. Each

chromosome has two parts: resource allocation and man-

ufacturing sequence as illustrated in the Table 1. Without

loss of generality and to make it convenient, the problem

with three production lines is considered for the rest of the

paper.

The chromosome in Table 1 represents a sample solu-

tion for the problem with three different production lines

and 50 different types of products. The first part of the

chromosome is the resource allocation as highlighted in the

yellow cells. The L column is the allocation of the com-

pany’s labour to three production lines. And the M and C

columns are the allocations of the material and working

capital to three production lines, respectively; and the

values in the yellow cells are in percentage. That is why

summation of each column is always equal to 100%.

The second part of the chromosome is the manufactur-

ing sequence as highlighted in the green cells. The values

in these cells represent the corresponding product types and

the locations of the cells represent the corresponding

manufacturing sequences. In the example, it is assumed

that there are 50 different types of products representing by

50 numbers from 1 to 50. Therefore, the values in the green

cells can be any number from 0 to 50 where ‘‘0’’ means that

no product is allocated to the corresponding location. As

the labour, material, and working capital allocated to pro-

duction lines are different, the length of each production

line can be different from each other as shown in the

Table 1. Moreover, even if the available resources allo-

cated to the production lines are exactly the same, the

lengths of the production lines could be different. That is

because the types of products and the producing sequences

of the products in each production line are not the same.

It can be clearly seen that it is not easy to randomly generate

a feasible chromosome as described above because it involves

a number of complex constraints. In order to generate a fea-

sible chromosome, the following steps are proposed.

Step 1 Randomly generate the resource part of the

chromosome.

Step 2 Determine the labour, material, and working

capital allocated to ith production line. Let them

be Li, Mi, and Ci, respectively.

Step 3 Generate the jth product to be made in the

production line i by selecting one product at

random and adding it to the production line as

sequential order. Let the current production

schedule in this production line be PLi(1?j), where

(1 ? j) is a series of numbers: 1, 2, 3, … j,

representing the sequential order of the selected

products made in ith production line.

Step 4 Calculate the cumulative summations of labour

(CLi), material (CMi), and working capital (CCi)

required in PLi(1?j).

Step 5 Check:

If CLi B Li and CMi B Mi and CCi B Ci then

j = j ? 1 and Go to Step 3

Else Go to Step 6.

Step 6 Determine the feasible schedule in ith production

line which is PLi(1?j-1).

Step 7 Calculate i = i ? 1 and Go to Step 2. Steps 2–7

are to be repeated until all of the production lines

are generated.

Step 8 Check if the number of different types of products

is greater than the minimum requirement V as

represented by Eq. (15) then Stop. Otherwise

repeat the Steps 1–8.

Evaluation

Quality of the solutions to the problem (quality of the

chromosomes) is determined based on the summation of

the total profit and the customer satisfaction index with a

weight coefficient as shown in Eq. (1). Chromosomes with

better qualities have more chance to be passed to the next

generations. Selection operation of the proposed GA will

be presented in ‘‘Selection operation’’.

Table 1 A typical chromosome with three production lines
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Crossover operation

In principle, crossover is a simple cut and swap operation.

Due to the nature of constraint and chromosome, a modi-

fied crossover operation is required. In this study, crossover

operation applying to both resource allocation and manu-

facturing sequence parts of a chromosome is proposed.

Crossover 1–crossover operation applying to resource

allocation part

The labour column, material column, and working

capital column in the resource allocation part of a

chromosome are constrained such that the summation of

numbers in each column is equal to 100. Therefore, the

principle of the Crossover 1, which is the swap of two

different groups of the columns in two different chro-

mosomes, is proposed herein. As complex constraints

involved, the offspring chromosomes must be repaired

after the swap operation to make sure that they are

feasible. The following steps are proposed for the

Crossover 1.

Step 1 Randomly select two parent chromosomes as

shown in two sub-tables in Table 2.

Step 2 Randomly select one cutting point in the resource

allocation part, the red lines highlighted in

Table 2, for example.

Step 3 Swap the two groups of the columns as shown in

the resource allocation parts of the chromosomes

in Table 3.

Step 4 Determine the new allocations of the labour,

material, and working capital to each production

line in the two offspring chromosomes.

Step 5 ? Trim the products at the end of each production

line schedule if the current resources required are

exceeded the new allocated resources determined

in Step 4.

? Add new random products at the end of each

production line schedule while satisfied the new

allocated resources determined in Step 4.

? Otherwise, leave the offspring chromosomes in

Step 3 as they are.

Step 6 Check the number of different types of products

selected in each chromosome in Step 5. If it

satisfies the requirement in Eq. (15) then Stop;

Otherwise, repeat Steps 1–6.

It should be noted that the repair strategy used in Step 5

is that the length of each production line is adjusted based

Table 2 Two parent chromosomes and one cutting point

Table 3 Two offspring chromosomes after crossover 1
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on the available resources. If available resources are not

enough, the products at the end of a production line will be

removed until the production line meets the resource lim-

itations. If available resources are enough, the production

line will be kept the same. If available resources are

redundant, some products will be generated randomly and

added at the end of the production line until almost all

available resources have been utilized. It is also noted that

it is quite hard to use all of the available resources due to

the discrete nature of the problem. Therefore, utilization of

almost all available resources is acceptable. Feasible off-

spring chromosomes, which satisfy all of the given con-

straints, would look like as shown in Table 3.

As the allocations of the resources are changed, the

lengths of the production lines in the offspring chromo-

somes can be different from those of their parent chro-

mosomes as illustrated in Tables 2 and 3.

Crossover 2–crossover operation applying

to manufacturing sequence part

As the lengths of different production lines are not the

same, the cutting point should be in a certain region. In

Table 4, the efficient region in the first and the second

chromosomes are from the 1st to 21st product and from the

1st to 15th product, respectively. To make the crossover

operation more effective, the region for Crossover 2 is

proposed to be from 1st to 15th product as shown in

Table 5. Therefore, the cutting point should be somewhere

in the highlighted regions in Table 5, the 8th product for

example. After the swap operation, the offspring chromo-

somes must be repaired to make sure that they are feasible.

The following steps are proposed for Crossover 2.

Step 1 Randomly select two parent chromosomes

Step 2 Determine the efficient regions in the selected

chromosomes as shown in Table 4

Step 3 Determine the region for Crossover 2 as shown in

Table 5

Step 4 Randomly select one cutting point in the region

for Crossover 2 as shown in Table 5

Step 5 Swap the two parts as shown in Table 6

Step 6 Determine the resources required in each

production line

Step 7 Repair the manufacturing sequence parts of the

offspring chromosomes to make them feasible

Step 8 Check the number of different types of products

selected in each chromosome in Step 7. If the

requirement is satisfied then Stop; Otherwise,

repeat Steps 1–8.

It is noted that, the repair strategy presented in

‘‘Crossover 1–crossover operation applying to resource

allocation part’’ is used again here in Step 7 to adjust the

lengths of the production lines to make the offspring

Table 4 Two parent chromosomes and their efficient regions for crossover 2

Table 5 Region for crossover 2 and the cutting point for crossover 2
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feasible. The feasible offspring chromosomes would look

like as shown in Table 6. Due to the changes in the pro-

duction lines, their lengths are changed accordingly as

illustrated in Tables 4 and 6.

Mutation operation

Once again, due to the nature of the chromosome, the

modified mutation operation is required. Two types of

mutations: mutation 1 and mutation 2 which apply to

resource allocation part and manufacturing sequence part

of a chromosome, respectively, are proposed herein.

Mutation 1–mutation operation applying to resource

allocation part

As mentioned in ‘‘Crossover 1–crossover operation

applying to resource allocation part’’, the summation of

each column in the resource allocation part must equal 100.

Therefore, the Mutation 1 proposed herein is the swapping

two random elements only in one random column in one

chromosome. As a result, the constraint above is always

satisfied. Similar to the Crossover 1, the offspring chro-

mosome must be repaired after the swap operation to make

sure it is feasible. The following steps are proposed for the

Mutation 1.

Step 1 Randomly select one chromosome

Step 2 Randomly select one column in the resource

allocation part of the selected chromosome,

column M for example as shown in Table 7

Step 3 Randomly select two elements in the selected

column as shown in Table 7

Step 4 Swap the two selected elements as shown in

Table 8

Step 5 Determine the new resource allocation in each

production line

Step 6 Repair the manufacturing part of the offspring

chromosome based on the new resource

allocations

Table 6 Two offspring chromosomes after crossover 2

Table 7 Parent chromosome and two random genes for mutation 1

Table 8 Offspring chromosome after mutation 1
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Step 7 Check the number of different types of products

selected in the chromosome in Step 6. If the

requirement is satisfied then Stop; Otherwise,

repeat Steps 1–7.

It is noted that once again the repair strategy presented

in ‘‘Crossover 1–crossover operation applying to resource

allocation part’’ is used in Step 6 to adjust the lengths of the

production lines to make the chromosome feasible. The

feasible offspring chromosome would look like as shown in

Table 8. Due to the changes in the resource allocations, the

lengths of the production lines are changed as illustrated in

Tables 7 and 8.

Mutation 2–mutation operation applying to manufacturing

sequence part

As the length of every production line is different, the

modified mutation operation is required. The principle

proposed herein is that all of the genes selected for

Mutation 2 must be in one production line and in some-

where between the first to the last product, so called value

region as highlighted in Table 9. It is noted that the value

regions in different production lines could be different as

shown in Table 9. The following steps are proposed for

implementation of Mutation 2.

Step 1 Randomly select one parent chromosome as

shown in Table 9

Step 2 Randomly select one production line in the

selected chromosome, e.g., the production line 1

Step 3 Randomly select two genes in the selected

production line within the value region as shown

in Table 10

Step 4 Swap the two selected genes as shown in

Table 11

Step 5 Determine the resources required in the selected

production line

Step 6 Repair the manufacturing sequence part of the

offspring chromosome based on the available

resources

Step 7 Check the number of different types of products

selected in the chromosome in Step 6. If the

requirement is satisfied then Stop; Otherwise,

repeat Steps 1–7.

It is noted that, the repair strategy presented in ‘‘Crossover

1–crossover operation applying to resource allocation part’’ is

also used in Step 6 to adjust the lengths of the production lines

Table 9 A parent chromosome for mutation 2

Table 10 Parent chromosome and two randomly selected genes for mutation 2

Table 11 Offspring chromosome after mutation 2
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to make the chromosome feasible. The feasible offspring

chromosomewould look like as shown inTable 11.Due to the

changes in the production line, the length of the production

line is changed as illustrated in Tables 9 and 11.

Selection operation

As mentioned before, the proposed GA has the novel

structure which can facilitate the ‘‘learning ability’’. With

this structure, some good chromosomes from the previous

civilization are recorded and used as the chromosomes in

the first generation of the current civilization. As a result,

those chromosomes overwhelm the others which might

cause the premature convergence to local optimum. To

avoid this problem, the modified Roulette Wheel selection

method is proposed via the following steps.

Step 1 Select the best chromosome in the population

pool for the next generation

Step 2 Delete the selected chromosome in Step 1 from

the population pool

Step 3 Determine the summation of fitness values in the

updated population pool

Step 4 Determine the selection probability of every

chromosome in the updated population pool

Step 5 Make a wheel according to these probabilities as

illustrated in Fig. 1a

Step 6 Spin the roulette wheel once and select one

chromosome for the next generation

Step 7 Delete the selected chromosome in Step 6 from

the updated population pool

Step 8 Update the population pool and Go to Step 3

Step 9 Repeat Steps 3–8 until the number of the selected

chromosome equals the population size

Figure 1 illustrates the changes in selection probabilities

of the chromosomes when the size of population pool is

changed. In Fig. 1a, there are 5 chromosomes to be chosen

for the next generation: A, B, C, D, and E. It can be seen that

the chromosome C is the best one with the selection proba-

bility of 39%. It is a good idea to select the best one first to

make sure it passes to the next generation as it has the highest

potential tomake a difference.After chromosomeChas been

selected and removed from the population pool, there are 4

chromosomes to be chosen from and their selection proba-

bilities are as shown in Fig. 1b. Now, this roulette wheel is

spun and one chromosome, say chromosome B, is selected

for the next generation. Figure 1c presents the selection

probabilities of 3 chromosomes after chromosome B is

selected and removed from the population pool. As a result,

the selection probability of chromosome A, for example, is

increased from 6 to 11 or 14%. Clearly, the selection prob-

abilities of the chromosomes are changing and the effect of

super chromosomes can be eased as each chromosome can be

selected only once, no matter how good it is.

The proposed selection approach has two advantages.

The first one is that it can prevent super chromosomes from

dominating population by maintaining too many copies in

the population which causes the premature convergence to

local optimum. The second one is that it is able to maintain

the diversity of population in probability fashion so that the

population pool can contain much more valuable infor-

mation for genetic search.

Structure of the proposed genetic algorithm

To improve the search capability, the structure of the

proposed GA is developed as shown in Fig. 2. It should be

noted that, in the Fig. 2, g is the number of generations in

each civilization; r is the number of good chromosomes

selected for the next civilization; and c is the number of

civilizations of the GA. In the first civilization, the initial

population is totally generated randomly. In the other

civilization, a part of the initial population is randomly

generated and the rest is adopted from the previous civi-

lization. With this structure, the proposed GA is capable of

‘‘learning’’ from its experience. From the second civiliza-

tion, the GA has little ‘‘intelligence’’ so that it does not

have to start the blind searching at the beginning while it

still has ability to explore the wide search space. In addi-

tion, parameters of the proposed GA: population size (p),

Fig. 1 Roulette wheel

representing the selection

probabilities of chromosomes
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rate of the crossover 1 (c1), rate of the crossover 2 (c2), rate

of the mutation 1 (m1), rate of the mutation 2 (m2), number

of generations in each civilization (g) and number of good

chromosomes selected for the next civilization (r) are tuned

by Taguchi Experimental Design.

Case study

To demonstrate the capability of the proposed GA, the case

study in references (Dao and Marian 2011c, 2013) is

adopted here and restated as follows.

Problem description

A manufacturing company having three different produc-

tion lines is able to produce 50 different products, say P1,

P2,…, P50, in the next month. Information about the

products is detailed in Table 12. Resources available for

the next month will be 800 h of labour, 1000 kg of mate-

rial, and $1700 K of working capital.

Additionally:

• Apart from the producing cost, overheads for running a

production line also costs $300/h to be paid from the

working capital.

• Any product changeover takes 0.5, 1 and 1.5 h in

production line 1, 2 and 3, respectively.

• Any product made after the deadline incurs a penalty of

5% of the initial price per day of delay.

• Any product made before its deadline contributes 10

points to the company’s customer satisfaction index.

• Any product made after the deadline for more than

10 days will not be accepted by the customer and it will

be returned to the company.

• Each day after the deadline of any product incurs a

penalty of 1 point of customer satisfaction index.

• The proceedings from selling products will only be

available for next month, so they should be ignored for

the current planning horizon-current month.

• The company can select any mix of products to produce

in the next month, as long as its selection contains at

least 20 different ones.

• The company can work 24 h/day, 7 days/week.

The problem is to do the planning and scheduling for

next month by (1) selecting what type of product to pro-

duce, (2) determining how many products in each selected

type to produce, (3) allocating the selected products to

which production line, and (4) selecting the manufacturing

sequences of the selected products in three production lines

to maximize the profit of the company as well as its

Fig. 2 Structure of the

proposed GA
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Table 12 Product information

Product Cost (K$) Labour (h) Price (K$) Material (kg) Deadline

(day of month)
Line 1 Line 2 Line 3 Line 1 Line 2 Line 3

P1 37 34 36 8 7 8 176 15 17

P2 39 45 44 5 9 12 110 16 16

P3 14 21 17 3 8 7 107 20 13

P4 19 21 18 3 6 6 125 4 10

P5 11 11 10 10 15 18 211 13 29

P6 25 32 39 8 12 17 176 1 21

P7 26 23 28 8 12 17 163 7 12

P8 30 36 36 5 6 11 132 8 25

P9 11 7 12 6 10 12 101 15 10

P10 10 6 9 9 14 15 197 11 12

P11 26 22 29 9 12 13 113 17 26

P12 28 32 26 4 7 9 175 9 5

P13 14 13 15 5 10 9 175 7 19

P14 12 19 12 2 5 10 178 15 29

P15 33 27 27 8 11 10 130 3 23

P16 25 29 35 9 12 14 133 14 26

P17 14 18 14 9 14 18 117 19 21

P18 15 9 11 9 13 15 172 4 25

P19 13 14 12 9 8 13 199 19 5

P20 16 12 7 4 7 9 159 4 14

P21 38 41 36 6 8 13 213 5 21

P22 26 21 20 2 5 4 147 3 20

P23 30 36 30 2 5 10 128 10 30

P24 12 11 12 6 8 11 102 13 5

P25 37 31 32 7 12 13 111 1 7

P26 20 22 25 5 9 12 129 19 12

P27 15 17 11 5 4 7 205 3 16

P28 40 46 46 5 4 4 148 15 19

P29 34 28 31 9 13 13 130 11 5

P30 25 25 27 8 8 13 208 12 25

P31 37 31 32 10 15 16 118 17 23

P32 13 20 15 4 3 7 215 3 9

P33 37 30 23 4 6 5 123 1 17

P34 36 43 39 10 12 14 154 12 8

P35 24 27 31 2 3 2 156 3 23

P36 14 8 5 4 4 3 148 3 25

P37 26 30 30 8 10 9 105 4 18

P38 35 40 45 2 5 9 153 7 29

P39 19 16 22 2 2 1 152 14 18

P40 27 28 32 4 8 12 158 14 15

P41 20 19 17 7 11 14 163 6 29

P42 20 19 16 4 4 8 149 11 27

P43 32 38 43 6 11 15 153 10 19

P44 22 20 14 4 3 3 215 7 22

P45 29 24 29 9 13 15 200 1 10

P46 26 26 30 8 7 10 153 13 16

P47 13 8 8 3 3 5 148 15 6
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customer satisfaction index while satisfying simultaneously

all constraints described above. It should be noted that the

weight coefficients of the two objective functions, total

profit and customer satisfaction index, were assumed to be

0.7 and 0.3, respectively.

Results and discussions

The case study problem as described abovewas solved by the

proposed GA. Taguchi Experimental Design based method

was used to select the parameters of the proposed GA.

Table 12 continued

Product Cost (K$) Labour (h) Price (K$) Material (kg) Deadline

(day of month)
Line 1 Line 2 Line 3 Line 1 Line 2 Line 3

P48 26 22 15 8 8 7 164 3 29

P49 13 10 4 2 7 11 157 18 12

P50 32 31 32 6 7 9 217 20 20

Table 13 Taguchi experimental design and experimental data

Experiment Parameters of the proposed GA Computing time (min) Fitness value achieved

p c1 c2 m1 m2 g r Run 1 Run 2 Run 3

1 50 20 20 10 10 500 5 60 16256.8 17921.1 15892.7

2 50 20 20 10 30 1000 25 60 17321.9 18404.1 17763.7

3 50 20 20 10 50 1500 45 60 17230.8 17789.8 17012.3

4 50 50 50 30 10 500 5 60 15509.2 15655.8 15759.2

5 50 50 50 30 30 1000 25 60 17996.8 15714.3 16554.0

6 50 50 50 30 50 1500 45 60 17297.2 16231.4 18604.3

7 50 80 80 50 10 500 5 60 15999.7 16709.0 15878.1

8 50 80 80 50 30 1000 25 60 16718.3 15006.6 16305.6

9 50 80 80 50 50 1500 45 60 16091.0 16303.0 15650.0

10 100 20 50 50 10 1000 45 60 14697.6 14442.1 15288.5

11 100 20 50 50 30 1500 5 60 15131.0 14198.6 15888.5

12 100 20 50 50 50 500 25 60 15710.0 15961.7 14971.8

13 100 50 80 10 10 1000 45 60 14870.3 15733.4 16727.7

14 100 50 80 10 30 1500 5 60 17240.7 16596.5 17809.4

15 100 50 80 10 50 500 25 60 17209.0 17887.3 16596.7

16 100 80 20 30 10 1000 45 60 15324.7 13644.4 15201.7

17 100 80 20 30 30 1500 5 60 14932.1 15401.3 14749.9

18 100 80 20 30 50 500 25 60 16204.8 16688.7 15400.6

19 150 20 80 30 10 1500 25 60 15498.7 15281.2 15569.6

20 150 20 80 30 30 500 45 60 15078.4 15843.8 15813.2

21 150 20 80 30 50 1000 5 60 16434.3 16356.7 16368.5

22 150 50 20 50 10 1500 25 60 12814.5 13172.4 12406.7

23 150 50 20 50 30 500 45 60 14993.3 15577.3 13479.8

24 150 50 20 50 50 1000 5 60 14168.4 15820.5 15188.4

25 150 80 50 10 10 1500 25 60 16085.0 15823.3 15663.4

26 150 80 50 10 30 500 45 60 16935.8 15528.8 16977.9

27 150 80 50 10 50 1000 5 60 16330.4 15702.0 17072.4
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Taguchi Orthogonal Array Design (L27–37) generated by

Minitab software and the related experimental data are

shown in Table 13. It is noted that tomake a fair comparison,

the proposed GA in any experiment was run for exactly the

same computing time. In addition, to obtain the consistent

experimental result, each experiment was repeated for three

times. ANOVA analysis carried out in Minitab has revealed

the effects of the seven parameters on the performance of the

proposed GA as shown in Table 14 and Fig. 3. Based on the

results inTable 14 and Fig. 3, the parameters of the proposed

GA were chosen as shown in Table 15.

Three commercial optimisation solvers: Pattern Search

(PS solver), Simulated Annealing (SA solver) and Genetic

Algorithm (GA solver) in Matlab were used herein as the

benchmarks to verify the effectiveness of the proposed GA.

The three solvers were used to solve exactly the same case

study problem and their performances are compared to one

of the proposed GA as shown in Table 16 and Fig. 4. It is

noted that the parameters of the solvers are set by default

and unit of the computing time in Table 16 is minute. It can

be seen from Table 16 that the computing time of the

proposed GA is 35.4, 87.7 and 43.0% smaller compared to

those of PS solver, SA solver and GA solver, respectively.

More importantly, the proposed GA also outperforms the

Fig. 3 Effects of the parameters on the performance of the proposed GA

Table 14 ANOVA analysis

Source DE Seq SS Adj SS Adj MS F P

p 2 22585904 22585904 11292952 21.05 0.000

c1 2 945064 945064 472532 0.88 0.419

c2 2 5397435 5397435 2698718 5.03 0.009

m1 2 35590172 35590172 17795086 33.17 0.000

m2 2 15856076 15856076 7928038 14.78 0.000

g 2 730998 730998 365499 0.68 0.509

r 2 153189 153189 76595 0.14 0.867

Error 66 35404549 35404549 536433

Total 80 116663388

Table 15 Parameter set of the proposed GA

p c2 c2 m1 m2 g r

50 20 80 10 50 500 5
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three commercial optimisation solvers in term of the

solution quality. On average, the proposed GA provides

27.3, 62.3 and 80.2% better solution compared to PS sol-

ver, SA solver and GA solver, respectively. In term of

consistency of the solution quality, the solvers as well as

the proposed GA are about the same indicated by the

standard deviation values shown in Table 16 and Fig. 4.

As can be seen from Table 16, the best solution to the

case study problem found by the proposed GA is the one

with the fitness value of 18033.7, which is 26.2% better

than the solution already published by Dao and Marian

(2011c, 2013). Detail of the best solution to the case study

problem ever achieved is shown in Table 17. In addition, a

typical evolution of the solution quality found by the pro-

posed GA is shown in Fig. 5. It can be seen from Fig. 5

that the solution can be convergent to the optimal one after

a few civilizations.

The experimental results revealed that the proposed

structure of GA is better than the conventional one; that is

because it allows the GA to ‘‘learn’’ for its experience.

From the second civilization, the GA does not have to start

the totally blind searching at the beginning because it has

adopted some best chromosomes for the previous civi-

lization. However, the question is how many chromosomes

should be migrated to the next civilization. If this number

is large, the exploration of the GA will be limited. As a

result, the probability of getting stuck in local optimums

will increase. Whereas, if the number is small, the evolu-

tion process will be slow and sometimes valuable chro-

mosomes will be lost. In this case study problem, the

Fig. 4 Comparison in terms of

the solution quality

Table 16 Performance comparison

Trial No. of obj. fun.

evaluations

PS solver SA solver GA solver Proposed GA

Fitness

value

Computing

time

Fitness

value

Computing

time

Fitness

value

Computing

time

Fitness

value

Computing

time

1 798900 13654.1 107.3 11835.0 541.9 10308.7 124.4 17111.8 70.4

2 798900 12286.9 102.3 10869.0 541.3 9712.1 114.5 17675.1 64.6

3 798900 14291.6 105.1 10446.8 545.6 9417.0 114.2 17092.1 69.3

4 798900 14225.3 104.8 10765.9 545.0 10214.4 118.5 16680.9 63.0

5 798900 14050.0 105.4 10345.2 579.5 9699.4 124.6 18027.6 68.3

6 798900 12894.0 103.6 10825.0 546.6 9714.2 119.3 17949.5 75.4

7 798900 13908.7 110.7 10345.4 562.7 9886.7 121.2 18033.7 68.3

8 798900 14017.1 103.9 10556.0 553.2 9259.8 121.6 17658.9 62.6

9 798900 13894.8 102.2 11103.9 559.5 9752.3 115.7 18009.3 65.4

10 798900 14364.8 103.1 10847.6 543.2 9220.2 114.6 16908.6 70.4

Average Std. deviation 13758.7 104.8 10794.0 551.8 9718.5 118.9 17514.7 67.8

665.5 2.6 443.4 12.2 361.1 4.0 518.1 3.9
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number found by Taguchi Experimental Design is 5

(r = 5) meaning that top 5 chromosomes from the previous

civilization should be migrated to the next one. However,

in other cases, 5 chromosomes might not be an optimal

number. And this number should be selected, case by case,

based on experimental information.

It can be seen from Table 16 that the optimization

process, done by both the commercial optimisation solvers

and the proposed GA, takes very long time and the con-

sistency of the solution quality is not very high. There are

two reasons for the problems. The first one is that the

search space of the problem is huge as it involves 59

variables (9 variables in the resource allocation part plus 50

variables in the manufacturing sequence part) and more

than 50!/(50–20)! possible combinations of the variables.

The second one is that a large number of calculations are

required to deal with a lot of complex constraints in the

chromosome generating, crossover, mutation, evaluation

processes. Super computers and parallel computing tech-

niques are some promising tools to reduce the computing

time and to achieve better solutions, especially when

solving large-scale problems.

Conclusion and future work

In this paper, a novel GA has been developed to deal with

multidimensional optimization for fully integration of

production planning and scheduling associated with

precedence constraints. As fully integration of the planning

and scheduling, the proposed approach has highest poten-

tial to search for global solution. In addition, with the

developed algorithm structure, variable-length chromo-

some, modified genetic operations, and algorithm param-

eters tuned by Taguchi Experimental Design, the proposed

GA can deal with the integrated optimisation problem very

effectively.

The robustness of the proposed GA has been validated

in the comprehensive case study problem in which the

proposed GA outperforms three commercial optimisation

solvers in both computing time and solution quality.

Moreover, the best solution to the case study problem

found by the proposed GA is 26.2% better compared to the

one which has been already published in the literature. In

addition, the proposed GA is very general and it can easily

accommodate much larger and more complex problems.

Further work should be conducted in the following

areas:

• Developing the GA for extended problem, e.g., adding

more constraints such as variety of materials used,

different product changeover for different pairs of

products, etc.
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• Incorporation of stochastic events into the model and

investigating their influence on the optimality.

• Developing the computing technique to shorten the

processing time.

• Further validating the effectiveness of the proposed GA

by comparing it with other approaches such as GAMS

or other optimization software.
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