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Analysis of M/G/1 queueing model with state
dependent arrival and vacation
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Abstract

This investigation deals with single server queueing system wherein the arrival of the units follow Poisson
process with varying arrival rates in different states and the service time of the units is arbitrary (general)
distributed. The server may take a vacation of a fixed duration or may continue to be available in the system
for next service. Using the probability argument, we construct the set of steady state equations by
introducing the supplementary variable corresponding to elapsed service time. Then, we obtain the
probability generating function of the units present in the system. Various performance indices, such as
expected number of units in the queue and in the system, average waiting time, etc., are obtained explicitly.
Some special cases are also deduced by setting the appropriate parameter values. The numerical illustrations
are provided to carry out the sensitivity analysis in order to explore the effect of different parameters on the
system performance measures.

Keywords: State dependent, Queue, Arbitrary service time, Vacation, Supplementary variable, Average queue
length
Background
In some daily life congestion problems, the service time
of the units may not follow exponential distribution.
Such situations can be noticed in the clinics performing
X-rays and blood test, etc. of patients and in bank at
cash counters and many other places. In queueing sys-
tems with arbitrary service time distribution, the number
of units in the system at time t and the length of time
for which the unit is in service (if any) are sufficient to
determine the future stochastic properties of these vari-
ables. Several researchers have contributed in the direc-
tion of general distributed service time queueing system.
To mention a few notable works of researchers in this
area, we refer Baba (1986), Doshi (1990) and Medhi
(1997) and references cited therein. The queueing system
under the special consideration with respect to idle
period (i.e., vacation) is not new. Levy and Yechiali
(1975) have considered such model under the assump-
tion that the server takes a sequence of vacations until it
finds at least one unit is waiting in the system. The
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analysis of M/G/1 queue by using the method of supple-
mentary variables has been done by Takagi (1991).
Kimura (1981) assumed general service time distribu-

tion function and used a diffusion approximation tech-
nique to determine the optimal policy. The queueing
model with setup and vacation was considered by
Choudhury (2000). Further, Choudhury (2002) studied a
queueing system with two different vacation times
under multiple vacation policy. Single server queueing
system with time homogeneous breakdowns and deter-
ministic repair times was analyzed by Madan (2003).
Wang (2004) worked on the M/G/1 queueing system
with second optional service and server breakdown. The
multiple vacations system was considered by Wu and
Takagi (2006). Choudhury (2008) discussed the queue
size distribution of a queue with a random set-up time
and Bernoulli vacation schedule under a restricted ad-
missibility policy.
Recently, Maraghi et al. (2009) have studied batch ar-

rival queueing system with random breakdowns and
Bernoulli schedule random vacations having general
vacation time. They have obtained steady state results
in terms of probability generating functions for the
number of customers in the queue. Choudhury and
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Kalita (2009) studied the steady state behavior of a
model with repeated attempts and Bernoulli vacation
schedule, which was a generalization of the classical
model. Banik (2010) analyzed a queueing system with a
single working vacation to obtain the performance mea-
sures using the embedded Markov chain. Thangraj and
Vanitha (2010) discussed the single server model with
two stages of heterogeneous service with different ser-
vice time distributions subject to random breakdowns
and compulsory service vacations with arbitrary vac-
ation periods.
The queueing system with server vacations can be

used to model a system wherein the server stops
working during a vacation. Such system has wide ap-
plicability in analyzing the performance of various real
life traffic situations of day-to-day as well as industrial
queues. In some systems, the arrival of the units
occurs according to a Poisson process or general dis-
tributed fashion with different arrival rates depending
on the server's status.
Madan (1999) discussed the steady state behavior of

an arbitrary service time queue with deterministic ser-
vice vacation. In his investigation, he has considered that
the customers arrive at the system with uniform arrival
rates. In many congestion scenarios, the arrival rates of
the customers are influenced by the status of the server.
The queueing models with variable arrival rates of the
units can be observed in health care systems. Besides
this, it is applicable in the banks, at the checkout coun-
ters in the supermarket, etc. In some industrial scenario,
the arrival rate of the units may also be dependent upon
the states of the system, especially in production and
manufacturing systems, wherein the management may
optimize the cost of inventory by controlling the arrival
rate of new units.
The present investigation is the extension of vacation

model for single server general distributed service time
studied by Madan (1999) and addresses the analysis of M/
G/1 queueing system with deterministic server vacation in
which the arrival rate of the units are state dependent. The
layout of the investigation is as follows: The model descrip-
tion, by stating the requisite assumptions and notations, is
given in the ‘Model description’ section. In ‘The steady
state equations’ section, we construct the set of steady state
equations by introducing the supplementary variable corre-
sponding to elapsed service time. In ‘The analysis’ section,
we obtain the probability generating function of the queue
size distribution in different states. Some system character-
istics of the model are presented in ‘Performance measures’
section. By selecting appropriate parameter values, some
special cases are deduced in ‘Special cases’ section. In ‘Nu-
merical illustration’ section, numerical illustration is pro-
vided to explore the effect of different parameters on the
performance measures. In the ‘Conclusions’ section, the
noble features and future scope of the present model are
highlighted.

Model description
Consider M/G/1 queueing system with deterministic ser-
ver vacations under the following assumptions:

� The server may decide to take a vacation of fixed
length d (>0) at the completion of each service
with probability p or may continue to be available
in the system for the next service with probability
1 − p.

� The units arrive in the system according to Poisson
fashion with state dependent rates.

� The service of the units is rendered according to the
general (arbitrary) distribution.

� The FCFS service discipline is followed to select the
customer for the service.

The notations used in the formulation of the model
are as follows:

λ1: mean arrival rate of the units in idle state
λ2(λ3): mean arrival rate of the units in busy (vacation)

state
B(v): distribution function of the service time
b(v): density function of service time
�b :ð Þ: Laplace transform of b(.)
x: elapsed service time
μ(x)dx: hazard rate of completion of the service of the

unit during the interval (x, x + dx) with elapsed
time x

Kr: probability of r arrivals during a vacation period
n: number of units in the queue, excluding the

unit, which is in service (≥0)
Wn(t,x): probability of n units in the system at time t

when the server is busy in rendering service to
the unit with elapsed service time lying
between x and x + dx

Vn(t): probability of n units in the queue at time t
when the server is on vacation

Q(t): probability that there are no units in the system
and the server is in idle state at time t

Pq(z): probability generating function of the queue
length whether the server is on vacation or
available in the system

P(z): probability generating function of the number
of units in the system
The hazard rate μ(x) is given by Equation 1:

μ xð Þ ¼ b xð Þ
1� B xð Þ ð1Þ
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where,

b vð Þ ¼ μ vð Þ exp: �
Zv

0

μ xð Þdx
2
4

3
5 ð2Þ

In steady state, we have Equation 3:

Wn xð Þ ¼ lim
t!1Wn t; xð Þ; Vn ¼ lim

t!1Vn tð Þ;

Q ¼ lim
t!1Q tð Þ

ð3Þ

and Equation 4

Kr ¼ e�λ3d λ3dð Þr
r!

; r ¼ 0; 1; 2 . . . ð4Þ

The steady state equations
In this section, we formulate the set of governing
equations of the system using the appropriate rates as
follows:

d
dx

Wn xð Þ þ λ2 þ μ xð Þð ÞWn xð Þ ¼ λ2Wn�1 xð Þ;
n≥1

ð5Þ

d
dx

W0 xð Þ þ λ2 þ μ xð Þð ÞW0 xð Þ ¼ 0 ð6Þ

λ1Q ¼ 1� pð Þ
Z1
0

W0 xð Þμ xð Þdxþ V0K0 ð7Þ

Vn ¼ p
Z1
0

Wn xð Þμ xð Þdx; n≥0 ð8Þ

The above equations are to be solved subject to the
following boundary conditions:

Wn 0ð Þ ¼ 1� pð Þ
Z1
0

Wnþ1 xð Þμ xð Þdxþ V0Knþ1

þ V1Kn þ . . .þ Vnþ1K0; n≥1 ð9Þ

W0 0ð Þ ¼ 1� pð Þ
Z1
0

W1 xð Þμ xð Þdxþ V0K1

þV1K0 þ λ1Q

ð10Þ
We define the following probability generating functions:

W x; zð Þ ¼
X
n¼0

1
Wn xð Þzn; W zð Þ ¼

X
n¼0

1
Wnz

n;

V zð Þ ¼
X1
n¼0

Vnz
n

ð11Þ

The analysis
In order to derive various performance indices, we ob-
tain the probability generating function of the number of
units in the system using the above set of equations as
follows: on multiplying Equations 5 and 6 by zn, sum-
ming over n and using Equation 11, we have Equation
12:

d
dx

W x; zð Þ þ λ2 � λ2z þ μ xð Þð ÞW x; zð Þ ¼ 0 ð12Þ

Similarly, multiplying Equation 8 by zn, summing over
n and using Equation 11, we have Equation 13:

V zð Þ ¼ p
Z1
0

W x; zð Þμ xð Þdx ð13Þ

Now, we obtain

X1
n¼0

Knz
n ¼

X1
n¼0

e�λ3d λ3dð Þn
n!

zn ¼ e�λ3d 1�zð Þ

Using Equations 9 to 11, we derive Equation 14:

zW 0; zð Þ ¼ 1� pð Þ
Z1
0

W x; zð Þμ xð Þdx

þV zð Þe�λ3d 1�zð Þ � K0V0 þ λ1Qz

� 1� pð Þ
Z1
0

W0 xð Þμ xð Þdx

ð14Þ

With the help of Equation 7, the above Equation can be
written as

W 0; zð Þ ¼

1� pð Þ
Z1
0

W x; zð Þμ xð Þdx

þV zð Þe�λ3d 1�zð Þ þ λ1Q z � 1ð Þ
z

ð15Þ

From Equation 12, we get Equation 16:

W x; zð Þ ¼ W 0; zð Þe
�λ2 1�zð Þx�

Rx
0

μ tð Þdt
ð16Þ
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Using Equation 16, we have Equation 17:

W zð Þ ¼ W 0; zð Þ 1� �b λ2 � λ2zð Þ
λ2 � λ2zð Þ

� �
ð17Þ

where

�b λ2 � λ2zð Þ ¼
Z1
0

e�λ2 1�zð Þxb xð Þdx:

Theorem 1 The probability generating function of the
queue length, whether the server is on vacation or
available in the system is

Pq zð Þ ¼
λ1
λ2

�b λ2 � λ2zð Þ � 1
� �þ pλ1 z � 1ð Þ�bðλ2 � λ2z

� �h i
1� λ1 1þpμð Þ

μ 1�λ3pdð Þþλ1pμþλ1�λ2

h i
z � �b λ2 � λ2zð Þ þ p�b λ2 � λ2zð Þ 1� e�λ3d 1�zð Þð Þ

ð18Þ

Proof: For proof, see Proof of Theorem 1a in the ‘Endnotes’
section.
Theorem 2 The probability generating function of the
number of units in the system is

P zð Þ ¼
1� λ1

λ2

� �
z þ �b λ2 � λ2zð Þ p 1� e�λ3 d 1�zð Þ� 	� 1þ zpλ1 z � 1ð Þ þ λ1

λ2
z


 �� �
z � �b λ2 � λ2zð Þ þ p�b λ2 � λ2zð Þ 1� e�λ3d 1�zð Þð Þ

� 1� λ1 1þ pμð Þ
μ 1� λ3pdð Þ þ λ1pμþ λ1 � λ2

� �

ð19Þ

Proof: For proof, see Proof of Theorem 2b in the ‘Endnotes’
section.

Performance measures
Now, we shall establish various performance measures
using the probability generating function of the queue
length as follows:
Theorem 3 The expected number of units in the queue is

Lq ¼

λ1λ2E v2ð Þ 1� λ3pd þ λ2pð Þ þ 2λ1λ2p
μ

1� λ2
μ

� �
þ 2λ1λ2λ3pd

μ2
þ p2λ1λ3

2d2 þ pλ32λ1d2

μ

� �

� 1� λ1 1þ μpð Þ
μ 1� λ3pdð Þ þ λ1 1þ μpð Þ � λ2

� �

2 1� λ2
μ � λ3pd

h i2
ð20Þ

Proof: The expected number of units in the queue
(Lq) is obtained using

Lq ¼ lim
z!1

d
dz

Pq zð Þ

For detailed proof, see Proof of Theorem 3c in the
‘Endnotes’ section.
The expected number of units in the system can be
obtained as

L ¼ Lq þ ρ ð21Þ

The expected waiting time in the queue is given by Lit-
tle's formula

Wq ¼ Lq
λeff

; λeff ¼ λ1Qþ λ2W 1ð Þ þ λ3V 1ð Þ ð22Þ

Special Cases
It is worthwhile to establish the performance measures
in some special cases by setting appropriate parameters
to tally our results with some existing results. When p =
0, Equation 20 gives

Lq ¼ λ1λ2E v2ð Þ½ �
2 1� λ2

μ

� 
2

μ� λ2
μþ λ1 � λ2

� �
ð23Þ

This provides the average queue length of M/G/1 model
with state dependent rates. For no server vacation model,
when units arrive according to Poisson fashion with homo-
geneous rate (λ) in all states by setting λ = λ1 = λ2 = λ3, we
have Equation 24:

Lq ¼ λ2E v2ð Þ
2 1� λ

μ

� 
 ð24Þ

Equation 24 provides the well-known result of M/G/1
queue (see Gross and Harris 2003).
In M/Ek/1 deterministic vacation queueing model, we

put

E v2
� 	 ¼ k þ 1

kμ2;

Equation 20 reduces to

Lq ¼
λ1λ2

k þ 1
kμ2

� �
1� λ3pd þ λ2pð Þ þ 2λ1λ2p

μ
1� λ2

μ

� �
þ 2λ1λ2λ3

μ2
pd þ p2λ1λ32d2 þ pλ32λ1d2

μ

2 1� λ2
μ
� λ3pd

� �2

2
6664

3
7775

� 1� λ1 1þ μpð Þ
μ 1� λ3pdð Þ þ λ1 1þ μpð Þ � λ2

� �

ð25Þ

In M/M/1 deterministic vacation queueing model, we set

E v2
� 	 ¼ 2

μ2



Table 2 Lq by varying μ and p for d = 3, λ1 = 2, λ2 = 1.5,
λ3 = 1

p
μ

0.025 0.030 0.035 0.040 0.045

k = 1 k = 5 k = 1 k = 5 k = 1 k = 5 k = 1 k = 5 k = 1 k = 5

2.1 3.24 2.22 3.64 2.54 4.10 2.91 4.65 3.36 5.31 3.90

2.2 2.61 1.79 2.90 2.03 3.23 2.31 3.62 2.63 4.08 3.01

2.3 2.16 1.49 2.39 1.68 2.65 1.90 2.95 2.15 3.29 2.44

2.4 1.84 1.27 2.02 1.43 2.23 1.61 2.47 1.81 2.74 2.04

2.5 1.59 1.10 1.74 1.24 1.92 1.39 2.11 1.56 2.34 1.75

μ, service rate; p, vacation probability; k, service phases.
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in Equation 20 so that

Lq ¼
2λ1λ2
μ2

1� λ3pd þ λ2pð Þ þ 2λ1λ2p
μ

1� λ2
μ

� �
þ 2λ1λ2λ3pd

μ2
þ p2λ1λ3

2d2 þ pλ32λ1d2

μ

2 1� λ2
μ
� λ3pd

� �2

2
6664

3
7775

� 1� λ1 1þ μpð Þ
μ 1� λ3pdð Þ þ λ1 1þ μpð Þ � λ2

� �

ð26Þ

Numerical Illustration
In this section, we present the numerical illustration to
evaluate the queue size distribution for the single server
deterministic vacation model using the analytical results
derived in previous section. The effects of variation of ser-
vice rate (μ), vacation time (d) and vacation probability (p)
on the queue length are displayed in Tables 1 and 2. The
service time assumed to be generally distributed, therefore,
second moment of service time E(v2) for different distribu-
tions are as follows:

� M/Ek/1 deterministic vacation model: E v2ð Þ ¼ kþ1
kμ2

� M/M/1 deterministic vacation model: E v2ð Þ ¼ 2
μ2

� M/D/1 deterministic vacation model: E v2ð Þ ¼ 1
μ2.

For computation purposes, we set default parameters
as λ1 = 1.0λ, λ2 = 0.9λ, λ3 = 0.7λ, p = 0.02 and d = 3.
From Tables 1 and 2, we observe that the queue length
(Lq) decreases with the increase in service time. It is also
noticed that the queue length decreases with the increase
in the number of service phases (k). As far as the effects of
parameters d and p are concerned, we see that the Lq
increases significantly with the increment of both d and p.
Figure 1a,b respectively reveals that the Lq increases

with the increase in arrival rate (λ). However, the effect
is more prevalent for higher values of λ. Figure 2a,b exhi-
bits the queue length Lq for M/M/1 and M/E5/1 models
by varying p. It is observed that the Lq increases with the
increase in λ as well as p; the increment is more signifi-
cant for larger values of λ and p. Figure 3a,b reveal that
the Lq decreases with the increase in the number of
phases ( k ).
Table 1 Lq by varying μ and d for p = 0.02, λ1 = 2, λ2 =
1.5, λ3 = 1

d
μ

2 3 4 5 6

k = 1 k = 5 k = 1 k = 5 k = 1 k = 5 k = 1 k = 5 k = 1 k = 5

2.1 2.46 1.58 2.90 1.94 3.52 2.47 4.37 3.22 5.56 4.26

2.2 2.01 1.29 2.35 1.58 2.83 1.99 3.47 2.57 4.35 3.36

2.3 1.68 1.08 1.96 1.32 2.34 1.66 2.86 2.13 3.55 2.76

2.4 1.43 0.93 1.67 1.13 1.99 1.41 2.42 1.81 2.99 2.33

2.5 1.24 0.80 1.44 0.98 1.72 1.23 2.09 1.57 2.57 2.01

μ, service rate; d, vacation time; k, service phases.
Results and discussion
Finally, we conclude that when arrival rate (service rate)
increases, the queue length increases (decreases); this situ-
ation matches with our expectation in various real life con-
gestion problems. The queue length decreases with the
increase in the number of service phases. The queue
length increases slightly with the increase in the vacation
time as well as vacation probability for low traffic condi-
tion, but as traffic increases, there is remarkable increase
in it. Therefore, in case of heavy traffic, the frequent vac-
ation of the server has adverse effect on the grade of ser-
vice and it should be avoided as much as possible.
Conclusions
For the real life congestion situations, where the ar-
rival of units depends on the status of the server, our
study may be very helpful in the design and develop-
ment phases of the concerned systems. The fields of
distributed computer system, wireless communica-
tions, production and manufacturing system, etc. have
the major sources of motivation for the growth and
creation of such queueing models.

Methods
In this investigation, we have studied the steady state be-
havior of a single server queueing model with vac-ation
and varying arrival rates. The supplementary variable
method is used to determine the probability generating
function of the queue size which is further employed to
evaluate other performance measures in explicit form.
The sensitivity analysis is carried out which demon-
strates the computational tractability and validity of the
analytical results.

Endnotes
aProof of Theorem 1 From Equations 2 and 16, we get

Equation 27

Z1
0

W x; zð Þμ xð Þdx ¼ W 0; zð Þ �b λ2 � λ2zð Þ ð27Þ



Figure 1 Lq for (a) M/M/1 and (b) M/E5/1 models on varying arrival rate λ and vacation time d.
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On using Equation 27 in Equation 15, we have

W 0; zð Þ ¼ V zð Þe�λ3d 1�zð Þ þ λ1Q z � 1ð Þ
z � �b λ2 � λ2zð Þ 1� pð Þ� � ð28Þ

On using Equation 28, Equation 17 gives,

W zð Þ ¼ 1� �b λ2 � λ2zð Þ
λ2 � λ2zð Þ

� �

� V zð Þe�λ3d 1�zð Þ þ λ1Q z � 1ð Þ
z � �b λ2 � λ2zð Þ 1� pð Þ� �

" # ð29Þ

With the help of Equation 27, Equation 13 becomes

V zð Þ ¼ p W 0; zð Þð Þ�b λ2 � λ2zð Þ ð30Þ
Figure 2 Lq for (a) M/M/1 and (b) M/E5/1 models on varying arrival ra
On using Equation 28, from Equation 30 we have

V zð Þ ¼ p
V zð Þe�λ3d 1�zð Þ þ λ1Q z � 1ð Þ

z � �b λ2 � λ2zð Þ 1� pð Þ� �
" #

� �b λ2 � λ2zð Þ
ð31Þ

On simplifying Equation 31, we have

V zð Þ ¼ p λ1Q z � 1ð Þð Þ�b λ2 � λ2zð Þ
z � �b λ2 � λ2zð Þ
þp�b λ2 � λ2zð Þ 1� e�λ3d 1�zð Þ� 	� � ð32Þ

From Equations 29 and 32, we get

W zð Þ ¼ λ1 �b λ2 � λ2zð Þ � 1
� �

Q

λ2 z � �b λ2 � λ2zð Þ þ p�b λ2 � λ2zð Þ 1� e�λ3d 1�zð Þ� 	� �h i
ð33Þ
te λ and optional vacation probability p.



Figure 3 (a) Lq on varying arrival rate λ, service phases k and (b) Lq on varying service rate μ and service phases k.
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Since �b 0ð Þ ¼ 1; ��b
′
0ð Þ ¼ 1

μ and
�b

00
0ð Þ ¼ E v2ð Þ, we have

V 1ð Þ ¼ lim
z!1

V zð Þ ¼ λ1μpQ
μ� λ2 � λ3μpd

ð34Þ

and

W 1ð Þ ¼ lim
z!1

W zð Þ ¼ λ1Q
μ� λ2 � λ3μpd

ð35Þ

The normalizing condition Qþ V 1ð Þ þW 1ð Þ ¼ 1
gives the unknown constant Q as

Q ¼ 1� λ1 1þ pμð Þ
μ 1� λ3pdð Þ þ λ1pμþ λ1 � λ2

;

λ2 < μ 1� λ3pdð Þ
ð36Þ

From Equation 36 we get

ρ ¼ 1� Q ¼ λ1 1þ pμð Þ
μ 1� λ3pdð Þ
þλ1pμþ λ1 � λ2

� � < 1 ð37Þ

On using Equation 36 in Equations 32 and 33, we have

V zð Þ ¼

λ1p�b λ2 � λ2zð Þ z � 1ð Þ� �
� 1� λ1 1þ pμð Þ

μ 1� λ3pdð Þ þ λ1pμþ λ1 � λ2

� �
z � �b λ2 � λ2zð Þ
þp�b λ2 � λ2zð Þ 1� e�λ3d 1�zð Þ� 	� �

ð38Þ

W zð Þ ¼

λ1 �b λ2 � λ2zð Þ � 1
� �

� 1� λ1 1þ pμð Þ
μ 1� λ3pdð Þ þ λ1pμþ λ1 � λ2

� �
λ2 z � �b λ2 � λ2zð Þ þ p�b λ2 � λ2zð Þ 1� e�λ3d 1�zð Þ� 	� �� �

ð39Þ
On adding Equations 38 and 39, we have

Pq zð Þ ¼ V zð Þ þW zð Þ ¼

λ1
λ2

�b λ2 � λ2zð Þ � 1
� �

þ pλ1 z � 1ð Þ�bðλ2 � λ2z
� �

2
4

3
5

� 1� λ1 1þ pμð Þ
μ 1� λ3pdð Þ þ λ1pμþ λ1 � λ2

� �
z � �b λ2 � λ2zð Þ
þp�b λ2 � λ2zð Þ 1� e�λ3d 1�zð Þ� 	� �

ð40Þ
bProof of Theorem 2 By using Equations 36 and 40, we get

P zð Þ ¼ Qþ zPq zð Þ

¼
1� λ1

λ2

� �
z þ �b λ2 � λ2zð Þ p 1� e�λ3d 1�zð Þ� 	� 1þ zpλ1 z � 1ð Þ þ λ1

λ2
z


 �� �
z � �b λ2 � λ2zð Þ þ p�b λ2 � λ2zð Þ 1� e�λ3d 1�zð Þð Þ

� 1� λ1 1þ pμð Þ
μ 1� λ3pdð Þ þ λ1pμþ λ1 � λ2

� �

ð41Þ
cProof of Theorem 3 From Equation 40, we have

Lq ¼ limz!1
d
dz

Pq zð Þ ¼ P′ 1ð Þ ¼ lim
z!1

D′ zð ÞN 00
zð Þ � N ′ zð ÞD00

zð Þ
2 D′ zð Þ½ �2

¼ D′ 1ð ÞN 00
1ð Þ � N ′ 1ð ÞD00

1ð Þ
2 D′ 1ð Þ½ �2

ð42Þ

where

N ′ 1ð Þ ¼ λ1 pþ 1
μ

� �� �
1� λ1 1þ μpð Þ

μ 1� λ3pdð Þ þ λ1 1þ μpð Þ � λ2

� �
;

N
00
1ð Þ ¼ 2pλ1λ2

μ
þ λ1λ2E v2

� 	� �
1� λ1 1þ μpð Þ

μ 1� λ3pdð Þ þ λ1 1þ μpð Þ � λ2

� �
;
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D′ 1ð Þ ¼ 1� λ2
μ
� λ3pd and

D
00
1ð Þ ¼ � λ2

2E v2
� 	þ 2λ2λ3pd

μ
þ pλ3

2d2

� �
:

On using above values, Equation 42 gives the result as
given in Equation 20.
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