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Abstract In this paper, a novel methodology is proposed

to solve a cooperative multi-depot vehicle routing problem.

We establish a mathematical model for multi-owner VRP

in which each owner (i.e. player) manages single or mul-

tiple depots. The basic idea consists of offering an option

that owners cooperatively manage the VRP to save their

costs. We present cooperative game theory techniques for

cost saving allocations which are obtained from various

coalitions of owners. The methodology is illustrated with a

numerical example in which different coalitions of the

players are evaluated along with the results of cooperation

and cost saving allocation methods.

Keywords Multi depot vehicle routing problem �
Cooperation � Coalition � Cooperative game theory �
Cost saving allocation

Introduction

Vehicle routing problem (VRP) is faced each day by

thousands of companies and organizations which are

engaged in delivery and collection of goods or people

(Crevier et al. 2007). Basic components of the VRP are

road networks, customers, depots and vehicles. The VRPs

can be categorized, depending on the objectives and con-

straints occurring in many transportation logistics and

distribution systems.

A basic version of the VRP is the capacitated VRP

(CVRP) in which each vehicle has a known capacity and

two other versions of CVRP are symmetric and asym-

metric. Lots of new constraints are added on the route

construction and made practical applications of the VRP

(Toth and Vigo 2002). For example, Split-Delivery VRP

(SDVRP) is a relaxation of the VRP in which the same

customer can be served by different vehicles if it reduces

the overall costs. It saves the total distance traveled as well

as the number of required vehicles by allowing split

deliveries (Jin et al. 2008). Hasani-Goodarzi and Tavak-

koli-Moghaddam (2012) studied a split vehicle routing

problem (SVRP) with capacity constraint for the multi-

product cross-docks to determine the best vehicle routes

and the optimal number of the utilized vehicles. By

developing the CVRP, a VRP with Time Windows

(VRPTW) can be obtained for which the service to each

customer must start within a certain time window and the

vehicle must remain at the customer’s location throughout

the service. Delivery of food or newspaper is a simple

example for the VRPTW. Another extension of the CVRP

is VRP with Backhauls (VRPB) in which the customers

may demand or return some goods. The customers are

divided into two groups: line haul and back haul customers.

Each line haul customer requires a given quantity to be
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delivered while a given quantity of products must be

picked up from back haul customers. The next VRP model

is the VRP with Pickup and Delivery (VRPPD). The

vehicles have the responsibility for delivering the goods to

customers and picking the goods up at the customer loca-

tions. Another well-known generalization of the VRP is

Multi-Depot VRP (MDVRP). In the MDVRP, there are

several depots instead of just one depot and every customer

is visited by a vehicle based at one of the several existing

depots, while every vehicle route must start and end at the

same depot. By presentation of the initial VRP and basic

models introduced above, many researchers studied algo-

rithms and models for different versions of the VRP.

With starting of economic depression and consequently

adverse effects on global trade, the transportation markets

particularly container sea transportation companies have

been exposed to recession. The container sea transportation

agents believe that these companies are able to integrate

their resources to provide more services and get rid of this

economic crisis (Sterzik et al. 2012). In this way, by

expanding the VRP in transportation of containers (Vidović

et al. 2011) the companies can cooperate with each other.

One way for such a collaboration is when the companies

are in the same port use the vehicles of each other; or the

companies located in different ports use the capacity of

vessels of each other. Therefore, the CoMDVRP can be

used for this kind of problem that enables companies

reduce the costs.

Logistic costs and especially transportation costs often

constitute a large part of the operational costs in compa-

nies. One solution to reduce these costs is cooperation

among the logistic companies. The cooperative game the-

ory (CGT) can be adopted for modeling the cooperation

among the companies. Cooperative games are concerned

with distribution of the cooperation benefits when the

players cooperate. Most applications of the CGT are in

scheduling, cost saving, negotiation and bargaining (Barron

2013). A cooperative game actually considers that the

players may choose to cooperate by forming some coali-

tions. In the coalitions, the players might be lucky to

receive greater benefits than they could gain individually

on their own. Then, the players should allocate the benefits

among each other. Now the key question is how the total

extra benefits (or cost saving) should be fairly distributed

among them. We adopt some well-known CGT methods

such as Shapley value, s value, and least core to address

this question.

The outline of this paper is as follows. The related lit-

erature is reviewed in ‘‘Literature review’’ section. ‘‘Pr-

erequisites and assumptions of MDVRP’’ section defines

the prerequisites and assumptions of the proposed model.

The model formulation of the MDVRP is discussed in

‘‘Model formulation for MDVRP (non-cooperation

situation)’’ section. Then, in ‘‘Formulation of vehicle

routing problem for coalition of players’’ section the

mathematical method of the CoMDVRP is introduced.

Afterwards, cooperative techniques for cost saving allo-

cation are described in ‘‘Cooperative techniques for cost

saving allocation’’ section. A numerical example is also

shown in ‘‘Numerical Example for Cost saving methods in

cooperative VRP’’ section and finally, some concluding

remarks are made in ‘‘Conclusion and further research’’

section.

Literature review

Multi-depot vehicle routing problem

A basic version of the vehicle routing problem that is

defined under capacity and route length restrictions is

called capacitated VRP (CVRP). In this problem, each

vehicle has a capacity that is known, so loading the vehicle

more than its capacity is not allowed.

Variant model of VRP obtained by generalization of the

classical VRP (Cordeau et al. 2007). An extension of VRP

is MDVRP that is studied in this paper. MDVRP deals with

routing of several vehicles from different depots. Mathe-

matical programming models of the MDVRP have been

developed by several researches. Crevier et al. (2007)

presented an extension of the MDVRP that vehicles may

use the intermediate depots along their route to become

full. Ray et al. (2014) worked out a new integer linear

programming model, called multi-depot split-delivery

vehicle routing problem (MDSDVRP) which allows

establishing depot locations and routes for serving the

customer demands within the same objective function.

Aras et al. (2011) proposed two mixed-integer linear pro-

gramming formulations for the selective MDVRP that are

extensions of the classical MDVRP in which each visit to a

broker is associated with a gross profit and a purchase price

to be paid to take the cores back. Wasner and Zapfel (2004)

investigated the necessity of developing a VRP with con-

sidering the number and locations of hubs and depots and

their assigned service areas. Karakati and Podgorelec

(2014) optimized an extension of the classical VRP by

adding multiple depots. Kang et al. (2000) designed a least

costly schedule for MDVRP to minimize transportation

costs.

Ho et al. (2008) introduced the MDVRP as an NP-hard

problem and developed two hybrid genetic algorithms

(HGAs) for solving it. Contardo and Martinelli (2014)

formulated the MDVRP using a vehicle-flow and a set-

partitioning formulation presented a new exact method for

the MDVRP under capacity and route length constraints.

Ray et al. (2014) stated a multi-depot logistics delivery
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problem including the depot selection and shared com-

modity delivery. They mentioned that the MDSDVRP is

suitable for multi-depot, multi-vehicle and split delivery

problem. Liu et al. (2010) proposed a mathematical pro-

gramming model of the multi-depot CVRP with the

objective of minimizing movements of empty vehicles.

They focused on full truckloads in transportation. Surekha

et al. (2011) presented a formulation and solution for

MDVRP using Genetic Algorithms. Salhi et al. (2014)

proposed an MILP formulation for the MDVRP with

heterogeneous vehicle fleet and designed a variable

neighborhood search (VNS) algorithm for the problem.

Prescott-Gagnon et al. (2014) developed different heuris-

tics for MDVRP in an oil delivery industry. Montoya et al.

(2014) presented a complete review on scientific literature

of MDVRP. They comprehensively analyzed the single-

objective and multi-objective MDVRPs and their solution

algorithms. In this paper, we establish a mathematical

programming model for the MDVRP when the depot

owners cooperate with each other.

Cooperative game theory

The cooperative game theory is defined as ‘‘A theory which

is concerned primarily with coalitions of groups of players

who coordinate their actions to reach more benefits.’’

(Branzei et al. 2008). Several researchers have adopted

CGT for modeling cooperation of logistic companies.

Lozano et al. (2013) introduced a mathematical program-

ming model to measure the benefits of merging the trans-

portation demands from different companies. The joint

transportation costs of the companies are reduced because

of using larger vehicles and increased number of the con-

nected trips. They illustrated the model with an example in

which different cooperative game solution concepts are

used. Frisk et al. (2010) studied the collaboration between

logistic companies in the forest industries. They investi-

gated a number of sharing mechanisms including Shapley

value, nucleolus, separable and non-separable costs, sha-

dow prices and volume weights. Hafezalkotob and Makui

(2015) introduced a stochastic mathematical programming

model for a multiple-owner graph problem. They used

methods based on the CGT to show that the collaboration

among independent owners of a logistic network can

maintain a reliable maximum flow. McCain (2008) focused

on the cooperative games in collaborating organizations

and analyzed how these games expand the organization and

increase its profit.

The methods of CGT may be adopted for allocating the

cost saving to cooperating companies. Using CGT, Charles

and Hansen (2008) suggested a theoretical cost saving

framework for global cost minimization and cost saving

assignment in an enterprise network. They showed that the

proposed cost allocations obtained via the activity based

costing technique is rational and stable. Vanovermeire and

Sorensen (2014) dealt with the cooperation among shippers

and stated that the cooperation between shippers is a proper

way to increase the performance. They pointed out that the

cooperation reduces the costs of distribution and delivery

but this reduction will depend on the flexibility of the

companies for delivery of goods. They used the Nucleolus

and the Shapley value methods for this purpose. Lehoux

et al. (2009) have worked on a variety of cooperation

techniques in logistic networks including the Shapley

value; Nucleolus and shadow prices. Engevall et al. (1998)

investigated cost allocation methods for a traveling sales-

man game according concept of traveling salesman

problem.

The current paper is closely related to those of Wang

and Kopfer (2015), and Lozano et al. (2013). Wang and

Kopfer (2015) considered horizontal coalitions among

freight forwarders to enhance operational efficiency. The

proposed collaborative transportation planning enable

forwarders to fulfill customers’ needs with lower costs.

However, they studied neither VRP nor CGT methods.

Lozano et al. (2013) investigated the cost savings of

different logistic companies that may be achieved when

they merge their transportation requirements using the

CGT. In a MDVRP, we consider that the depots are

managed by a set of owners. The owners of each depot

are regarded as players, who like to coordinate with other

players (owners) to reduce their transportation costs. The

minimum transportation cost is obtained in different

coalitions by solving the CoMDVRP for the coalitions.

We calculate the cost saving and synergy of each coali-

tion and then we use methods of CGT for cost saving

allocation. In summary, we investigate how the coordi-

nation among the players (owners of depots) in the

MDVRP gives them this opportunity to minimize the total

transportation cost and how they can fairly share the cost

saving of cooperation among themselves using the CGT

techniques.

Research gap

To the best of authors’ knowledge, no research was found

that considers the cooperative VRP among different play-

ers. Therefore, there are two main contributions in this

study with regard to MDVRP. First, we develop a coop-

erative approach for MDVRP. We study how the cooper-

ation among the multiple owners of depots gives them the

opportunity to reduce the costs of transportation. The cost

savings indicate effectiveness (synergy) of owners’ coop-

eration. The cost saving of cooperation is quantified by a

new mathematical programming model for coalitions of

owners. Second, we propose several methods of CGT to
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address the problem of allocating coalition cost saving to

the cooperating owners.

Prerequisites and assumptions of MDVRP

In a classical VRP, there is only one depot. However,

MDVRP is a problem for specifying the routes in which a

set of customers are served by several vehicles from mul-

tiple depots. As shown in Fig. 1, in a non-cooperative

MDVRP, each depot should serve its own customers.

However, in cooperative situation, depots can serve the

customers of partners. The cooperation among the depots

reduces the route length of the vehicles. Consequently the

total transportation cost may decrease as a result of the

cooperation. The problem of each coalition can be ana-

lyzed by the CoMDVRP.

Assumptions

In a MDVRP, the number and location of the depots are

predetermined. The location of each customer is known

and the demands are deterministic. The demand of each

customer should be fulfilled. Each player owns one depot

only with only one vehicle The vehicles are not necessarily

identical and each vehicle starts and finishes at the same

depot, while each route begins and ends at the same depot.

The capacity restrictions for the vehicles are considered.

The total demand on each route is smaller than or equal to

the capacity of the vehicle assigned to that route. Each

customer is served by exactly one vehicle. Most remark-

able is that the players are rational. Note that the aim of

routing is to minimize the number of routes without des-

ecrating the capacity constraints.

Notations

Before description of the objective functions and model,

the sets, indices, parameters and decision variables are

explained.

Sets

I The set of all depots;

J The set of all customers;

K The set of all vehicles;

P The set of all players (i.e. the owners of depots).

Indices

i The index of depots;

j The index of customers;

k The index of routs;

p The index of players (i.e. owners of depots).

Parameters

N The number of customers;

Cij The travel cost spent to go from point i to j, i,

j 2 I [ J;

Vi The maximum throughput at depot i;

dj The demand of customer j;

Qk The capacity of vehicle (route) k.

Decision variables

xijk :
1; if i immediately preceeds j on route k 8i 2 I; j 2 J

0; otherwise

�

zij :
1; if customer j is served by depot i

0; otherwise

�

Ulk the auxiliary variable for sub-tour elimination con-

straint in route k and l 2 J.Fig. 1 Framework of CoMDVRP
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Model formulation for MDVRP (non-cooperation
situation)

This section presents a linear model for the MDVRP with

the mentioned notations. Each player (owner) p 2 P min-

imizes total transportation cost of all their vehicles.

Min TCðfpgÞ ¼
X
i2I[J

X
j2I[J

X
k2K

Cijxijk ð1Þ

Subject to:

X
k2K

X
i2I[J

xijk ¼ 1; 8j 2 J ð2Þ

X
j2J

dj
X
i2I[J

xijk �Qk; 8k 2 K ð3Þ

Ulk � Ujk þ Nxijk �N � 1; 8 l; j 2 J; k 2 K ð4Þ
X
i2I[J

xijk �
X
i2I[J

xjik ¼ 0; 8 k 2 K; i 2 I [ J ð5Þ

X
i2I

X
j2J

xijk � 1; 8 k 2 K; ð6Þ

X
j2J

dizij �Vi; 8i 2 I ð7Þ

�zij þ
Xn
i¼1

ðxiuk þ xujkÞ� 1; 8i 2 I; j 2 J; k 2 K ð8Þ

xijk 2 0; 1gf ; 8i 2 I; j 2 J; k 2 K ð9Þ

zij 2 0; 1g; 8 i 2 I; j 2 Jf ð10Þ

Ulk � 0; 8 l 2 J; k 2 K ð11Þ

The objective function (1) is to minimize sum of the total

transportation cost for the vehicles. Constraint set (2)

guarantees that each customer will be visited exactly once,

while constraint set (3) states the capacity for a set of

vehicles. Constraint set (4) is the sub-tour elimination

condition, where the flow conservation is expressed by

Constraint set (5). Constraint set (6) means that each route

can be served at most once. Constraint set (7) ensures the

capacity of the depots and constraint set (8) specifies that a

customer can be assigned to a depot only if there is a route

from that depot going through that customer. Constraint

sets (9) and (10) represent the binary requirements on the

decision variables. The auxiliary variables Ulk taking pos-

itive values are declared in Constraint set (11).

Formulation of vehicle routing problem
for coalition of players

A new method is proposed here that minimizes sum of the

total transportation cost for the vehicles of a coalition. We

assume that there are multiple players (owners of depots)

that manage some depots. The players cooperate using the

vehicles of each other (coalition members) with the aim of

minimizing their transportation cost. Thus, by solving the

CoMDVRP for a coalition of players, the assignment of

customers to depots of the coalition are planned such that

the total transportation cost of the coalition is minimized.

Coalition m (from of 2N - 1 possible coalitions which N is

the number of player) is denoted by Sm(( P). All sets,

indices and parameters in CoMDVRP are defined in the

coalitional modes.

Notations

Sets

I Sm½ � The set of all depots for coalition Sm;

J Sm½ � The set of all customers for coalition Sm;

K Sm½ � The set of all vehicles for coalition Sm.

Indices

i The depot index;

j The customer index;

k The route index;

m The coalition index.

Parameters

N Sm½ � The number of customers in coalition Sm;

Cij½Sm� The travel cost spent to go from point i toj under

coalition Sm situation i, j 2 I [ J;

Vi The maximum throughput at depot i;

dj The demand of customer j;

Qk½Sm� The maximum capacity of vehicle (route) k.

Decision variables

xijk½Sm� :
1; if i immediately preceeds j on route k in coalition Sm;

0; otherwise ;

(
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zij Sm½ � :
1; if customer j is served by depot i in coalition Sm;

0; otherwise ;

(

Ulk Sm½ � the auxiliary variable for sub-tour elimination con-

straint in route k for coalition Sm and l 2 J½sm�.

Model formulation for CoMDVRP

This section presents a model for the CoMDVRP consid-

ering interactions among owners as follows:

Min TCðSmÞ ¼
X

i2I Sm½ �[J Sm½ �

X
j2I Sm½ �[J Sm½ �

X
k2K Sm½ �

Cij Sm½ �xijk Sm½ � ð12Þ

Subject to

X
k2K Sm½ �

X
i2I Sm½ �[J Sm½ �

xijk Sm½ � ¼ 1; 8 j 2 J Sm½ � ð13Þ

X
j2J Sm½ �

dj

X
i2I Sm½ �[J Sm½ �

xijk Sm½ �
�Qk Sm½ �

; 8 k 2 K Sm½ � ð14Þ

Ulk Sm½ �
� Ujk Sm½ �

þ N Sm½ �xijk Sm½ � �N � 1; 8 l; j 2 J Sm½ �; k

2 K Sm½ �

ð15Þ
X

i2I Sm½ �[J Sm½ �

xijk Sm½ � �
X

i2I Sm½ �[J Sm½ �

xjik Sm½ � ¼ 0;

8 k 2 K Sm½ �; i 2 I Sm½ � [ J Sm½ �

ð16Þ

X
i2I Sm½ �

X
j2J Sm½ �

xijk Sm½ � � 1; 8 k 2 K Sm½ � ð17Þ

X
j2J Sm½ �

dizij Sm½ � �Vi; 8 i 2 I Sm½ � ð18Þ

� zij Sm½ � þ
X

u2I Sm½ �[J Sm½ �

ðxiuk Sm½ � þ xujk Sm½ �Þ � 1;

8 i 2 I Sm½ �; j 2 J Sm½ �; k 2 K Sm½ �

ð19Þ

X
k2K

X
j2J

xijk Sm½ � ¼ 1; 8 i 2 I ð20Þ

xijk Sm½ � þ xj0i0k Sm½ � � 1; 8i 2 I½Sm�; i 6¼ i
0
; j 2 J½Sm�; k 2 K½Sm�

ð21Þ
xijk Sm½ � 2 0; 1gf ; 8 i 2 I Sm½ �; j 2 J Sm½ �; k 2 K Sm½ � ð22Þ

zij Sm½ � 2 0; 1f g; 8 i 2 I Sm½ �; j 2 J Sm½ � ð23Þ

Uj0k Sm½ � � 0; 8 j0 2 J Sm½ �; k 2 K Sm½ � ð24Þ

The constraints of this model are developed from the pre-

vious model, and two new constraints are added as well.

The main objective of Function (12) is to minimize sum of

the total transportation cost for the vehicles of coalition Sm.

Constraint set (13) guarantees that in any coalitions each

customer will be visited exactly once by the existing

vehicles. Constraint set (14) states the capacity for a set of

vehicles of coalition Sm. Constraint set (15) is the new sub-

tour elimination constraint set and the flow conservation is

expressed in Constraint (16). Constraint set (17) means that

each route can be used at most once in a coalition, while

Constraint set (18) ensures capacity for the depots of

coalition. Constraint set (19) specifies that a customer can

be assigned to a depot only if there is a route from that

depot going through that customer. Constraint set (20)

restricts assignment of each customer to exactly one

vehicle route and Constraint set (21) ensures that the route

starts from a depot does not end to another depot. Con-

straint sets (22) and (23) denote the binary requirements on

the decision variables. The auxiliary variables Ujk taking

positive values are declared in constraint set (24).

The above model computes the total cost by determining

the best route according to coalition Sm. For solving the

problem, firstly, each player is considered independently

that is a common MDVRP. Then, the model is solved again

considering the coalitions of two players, three players and

so on. When the optimal objective function for any coali-

tional scenario is smaller than sum of the individual opti-

mal objective function, the players have the incentive to

coordinate with each other. It means that the following

equation should be established in a coalitional form:

TCðSmÞ�
X
p2Sm

TCðfpgÞ: ð25Þ

The cost savings of coalition Sm is denoted by CS({Sm})

and is obtained from the following equation:

CSðSmÞ ¼
X
p2Sm

TCðfpgÞ � TCðSmÞ: ð26Þ

Cost saving CS({Sm}) represents the difference between

sum of the individual objective function and that of the

objective function of coalition Sm.

These cost savings can be either higher or lower,

depending on the synergy between owners in different

coalition. This synergy can be determined with the below

function:

SynergyðSmÞ ¼
CSðSmÞP

p2Sm
TCðfpgÞ : ð27Þ

Now, two numerical examples (symmetric and asymmetric

examples) will be addressed to test the cooperative VRP. In

both numerical examples, four companies were considered

which serve some specific customers. The companies

which are in fact the players are owners of depots and are

illustrated by P = {1, 2, 3, 4}. Each player owns one

depot with only one vehicle. The customers of each depot
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(i.e. players) are illustrated by D1 = {c1, c2, c3, c4, c5},

D2 = {c6, c7, c8, c9, c10}, D3 = {c11, c12, c13, c14, c15},-

D4 = {c16, c17, c18, c19, c20} for symmetric example and

D1 = {c1, c2, c3, c4, c5}, D2 = {c6, c7, c8, c9}, D3 -

= {c10, c11, c12, c13}, D4 = {c14, c15, c16} for asymmetric

example, respectively. Maximum throughputs at depots are

V1 = V2 = V3 = V4 = 200 for symmetric and for asym-

metric are V1 = 220, V2 = 200, V3 = 210, and V4 = 195.

Meanwhile, each company has one vehicle which in

symmetric example has the same capacity Qk = 220 and in

asymmetric example capacity of vehicles are Q1 = 240,

Q2 = 200, Q3 = 210, and Q4 = 195. Figure 2 depicts the

framework of these examples. Each depot and their cus-

tomers are shown in the same color. The travel costs spent

to go from point i to j and the demand of each customer are

shown in Tables 1 and 2, and the demand of each customer

are shown in Tables 3 and 4.

The model of CoMDVRP (12)–(24) is first solved for

each possible coalition of players Sm:{1},{2},{3},{4},{1,

2},{1, 3},{1, 4},{2, 3},{2, 4},{3, 4}{1, 2, 3},{1, 2, 4},{1,

3, 4},{2, 3, 4}, and {1, 2, 3, 4} by Gams software

(Rosenthal 1988). Table 5 and Table 6 present the best

route of the CoMDVRP for each of two examples. More-

over, Fig. 3 illustrates the optimal solution of the examples

after the grand coalition (i.e. S15 = {1, 2, 3, 4}) and

demonstrates that each customer is allocated to which

depots. It also shows the best route among the depots and

customers in grand coalition. The main idea is that the total

transportation costs can be decreased if the players coop-

erate with each other. Table 7 summarizes values of the

objective function for each coalition obtained from the

CoMDVRP. This table also lists the cost saving for each

possible coalition obtained from Eq. (26) and synergy

obtained from Eq. (27).

Now, for a fair distribution of the cost saving among the

players, the techniques of CGT are utilized. In the next

section, some economic concepts are described for the cost

saving allocation.

Cooperative techniques for cost saving allocation

The cooperative techniques are used to fairly assign the

cost saving to each member of the coalition such that all

the players (owners) might receive more than they could

individually get on their own. The fair allocation is rec-

ognized according to the amount that is added by each

member to a coalition. Thus, depending on the amount that

each player adds to a coalition they receive a percent of

cost saving. A number of sharing mechanisms of cost

saving are suggested based on the economic models

including Shapley value, Core, the s value and ECSM.

Fig. 2 Examples of coalition between 4 companies
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The number of players (owners in CoMDVRP) is

denoted by n and the set of all the players is denoted by P

such that P = {1, 2,…, n}. A cooperative game is con-

sidered in which the players choose to cooperate in the

coalitions if they are profitable. A coalition is any subset

S ( P, and hence there are 2N - 1 possible coalitions. For

an N-person cooperative game among owners of

CoMDVRP, a characteristic function CS(S)is considered.

For owners set p, CS(P) represents the possible cost saving

when all owners cooperate (i.e., the characteristic function

of grand coalition). The game has a super-additive property

if:

CS(S)�
X
p2S

CSð pf gÞ ð28Þ

A cost allocation vector y~¼ ðy1; y2; . . .; ynÞ assigns a

quantity yp to each player p in P and we know thatP
p2Pyp B CS(P). A vector y~¼ ðy1; y2; . . .; ynÞ is an

imputation for cost saving assignment if it satisfies the

individual rationality condition yp C CS({p}) for all

p 2 P, and efficient condition
P

p2Pyp = CS(P), respec-

tively (Barron 2013). Actually, an imputation shows that

how CS(P)should be distributed among the owners of VRP

system such that no one will reject the allocated assign-

ment. The set of all feasible imputations for the cooperative

game is defined as

Y ¼ y~¼ ðy1; y2; . . .; ynÞ yp �CSð pf gÞ;
X
p2P

yk

����� ¼ CSðPÞ
( )

:

ð29Þ

The main challenge of CGT is to fairly assign the payoff

CS(P) among the players (Barron 2013). According to

different interpretations of the fairness, previous research-

ers have suggested various methods. In the following sec-

tions, we propose some of them for cost saving allocation

problem in the cooperative VRP, however, the readers may

Table 2 Travel costs (Cij) spent to go from point i to j for asymmetric

D1 D2 D3 D4 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

D1 0.00 0.00 0.00 0.00 0.71 3.00 2.69 1.80 1.12 1.80 3.81 3.16 2.50 1.12 3.20 5.15 4.03 4.24 4.61 4.12

D2 0.00 0.00 0.00 0.00 2.06 3.35 2.55 1.00 0.71 2.92 2.50 1.80 1.00 1.41 1.41 4.61 3.54 3.35 4.53 4.72

D3 0.00 0.00 0.00 0.00 2.50 1.80 0.71 1.00 2.55 2.55 2.06 1.80 2.24 1.41 1.00 2.69 1.58 1.80 2.55 3.20

D4 0.00 0.00 0.00 0.00 3.35 1.12 1.00 2.55 4.00 2.83 3.20 3.20 3.81 2.55 2.12 1.80 1.00 2.06 1.00 2.06

C1 0.71 2.06 2.50 3.35 0.00 2.55 2.50 2.06 1.80 1.12 4.12 3.54 3.04 1.12 3.35 3.35 3.91 4.30 4.27 3.54

C2 3.00 3.35 1.80 1.12 2.55 0.00 1.12 2.50 3.64 1.80 4.27 4.03 3.50 2.06 2.69 2.92 2.06 3.00 1.80 1.41

C3 2.69 2.55 0.71 1.00 2.50 1.12 0.00 1.58 3.00 2.24 2.69 3.61 2.92 1.58 1.58 2.92 1.41 2.06 2.00 2.50

C4 1.80 1.00 1.00 2.55 2.06 2.06 1.58 0.00 1.58 2.55 2.06 1.50 1.41 1.00 1.41 3.64 2.55 2.50 3.54 3.91

C5 1.12 0.71 2.55 4.00 1.80 1.80 3.00 1.58 0.00 2.83 3.20 2.50 1.58 1.58 2.92 5.22 4.12 4.03 5.00 4.92

C6 1.80 2.92 2.55 2.83 1.12 1.12 2.24 2.55 2.83 0.00 4.50 4.03 3.81 1.58 3.54 4.30 3.61 4.27 3.61 2.50

C7 3.81 2.50 2.06 3.20 4.12 4.27 2.69 2.06 3.20 4.50 0.00 0.71 1.80 3.04 1.12 3.16 2.50 1.58 3.91 5.15

C8 3.16 1.80 1.80 3.20 3.54 3.54 3.61 1.50 2.50 4.03 0.71 0.00 1.12 2.50 1.12 3.54 2.69 2.00 4.03 5.00

C9 2.50 1.00 2.24 3.81 3.04 3.04 2.92 1.41 1.58 3.81 1.80 1.12 0.00 2.24 2.00 4.50 3.54 3.04 4.74 5.32

C10 1.12 1.41 1.41 2.55 1.12 1.12 1.58 1.00 1.58 1.58 3.04 2.50 2.24 0.00 2.24 4.03 2.92 3.20 3.54 3.35

C11 3.20 1.41 1.00 2.12 3.35 3.35 1.58 1.41 2.92 3.54 1.12 1.12 2.00 2.24 0.00 2.50 1.58 1.12 2.92 4.03

C12 5.15 4.61 2.69 1.80 3.35 5.00 2.92 3.64 5.22 4.30 3.16 3.54 4.50 4.03 2.50 0.00 1.12 1.58 1.50 3.54

C13 4.03 3.54 1.58 1.00 3.91 3.91 1.41 2.55 4.12 3.61 2.50 2.69 3.54 2.92 1.58 1.12 0.00 1.12 1.41 3.04

C14 4.24 3.35 1.80 2.06 4.30 4.30 2.06 2.50 4.03 4.27 1.58 2.00 3.04 3.20 1.12 1.58 1.12 0.00 2.50 4.12

C15 4.61 4.53 2.55 1.00 4.27 4.27 2.00 3.54 5.00 3.61 3.91 4.03 4.74 3.54 2.92 1.50 1.41 2.50 0.00 2.06

C16 4.12 4.72 3.20 2.06 3.54 3.54 2.50 3.91 4.92 2.50 5.15 5.00 5.32 3.35 4.03 3.54 3.04 4.12 2.06 0.00

Table 3 Demand of each customer for symmetric

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

45 35 30 50 40 35 50 30 40 45

d11 d12 d13 d14 d15 d16 d17 d18 d19 d20

50 40 30 35 45 35 50 30 40 45

Table 4 Demand of each customer for asymmetric

d1 d2 d3 d4 d5 d6 d7 d8

40 35 40 60 45 50 45 65

d9 d10 d11 d12 d13 d14 d15 d16

40 55 70 35 50 85 50 60
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refer to Barron (2013), Branzei et al. (2008), and Gilles

(2010) for more information.

Shapley value

The Shapley value is one of the solution methods for dis-

tribution of cost saving among the players (owners) that

was put forward by Shapley in 1952 (Shapley 1952).

Shapley value is a weighted average which considers

contributions of the marginal cost saving given by the

members in each possible coalition. An allocation y~¼
ðy1; y2; . . .; ynÞ is called Shapley value if:

yi¼
X
S�
Qi

ð Sj j�1Þ!ð Pj j� Sj jÞ!
Pj j! CSðSÞ�CSðS� pf gÞ½ �; ð30Þ

where Pi is the set of all coalitions S , Pthat contain

player p, and |S| represents the number of members in

coalition S, and |N| = n. CS(S) - CS(S - {p}) gives the

amount by which the cost saving of coalition S - {p}

Table 5 Best route for each vehicle in different coalitions for symmetric example

Coalition Route 1 Route 2 Route 3 Route 4

S1 = {1} D1–c1–c2–c3–c4–c5–D1 – – –

S2 = {2} – D2–c10–c9–c8–c7–c6–D2 – –

S3 = {3} – – D3–c15–c14–c13–c11–c12–D3 –

S4 = {4} – – – D4–c20–c19–c18–c17–c16–D4

S5 = {1, 2} D1–c6–c1–c7–c5–c8–D1 D2–c2–c10–c9–c3–c4–D2 – –

S6 = {1, 3} D1–c13–c1–c12–c2–c11–D1 – D3–c3–c15–c14–c5–c4–D3 –

S7 = {1, 4} D1–c19–c1–c18–c2–c17–D1 – – D4–c5–c20–c4–c3–c16–D4

S8 = {2, 3} – D2–c12–c11–c15–c14–c8–D2 D3–c9–c10–c7–c13–c6–D3 –

S9 = {2, 4} – D2–c18–c10–c9–c16–c17–D2 – D4–c8–c20–c6–c19–c7–D4

S10 = {3, 4} – – D3–c16–c15–c17–c18–c12–D3 D4–c14–c20–c13–c19–c11–D4

S11 = {1, 2, 3} D1–c6–c13–c7–c1–c12–D1 D2–c2–c10–c9–c3–c11–D2 D3–c15–c4–c8–c5–c14–D3 –

S12 = {1, 2, 4} D1–c19–c7–c1–c18–c11–D1 D2–c10–c9–c17–c3–c16–D2 – D4–c5–c8–c4–c20–c6–D4

S13 = {1, 3, 4} D1–c1–c12–c2–c18–c9–D1 – D3–c16–c3–c17–c15–c5–D3 D4–c14–c4–c20–c13–c19–D4

S14 = {2, 3, 4} – D2–c12–c18–c11–c10–c16–D2 D3–c9–c17–c15–c14–c8–D3 D4–c20–c7–c13–c6–c19–D4

S15 = {1, 2, 3, 4} D1–c19–c13–c6–c20–c17–D1 D2–c2–c18–c12–c1–c7–D2 D3–c16–c3–c9–c10–c11–D3 D4–c5–c8–c14–c15–c4–D4

Table 6 Best route for each vehicle in different coalitions for asymmetric example

Coalition Route 1 Route 2 Route 3 Route 4

S1 = {1} D1–c1–c5–c4–c3–c2–D1 – – –

S2 = {2} – D2–c9–c8–c7–c6–D2 – –

S3 = {3} – – D3–c10–c11–c13–c12–D3 –

S4 = {4} – – – D4–c14–c15–c16–D4

S5 = {1, 2} D1–c1–c6–c5–c9–c7–D1 D2–c8–c4–c3–c2–D2 – –

S6 = {1, 3} D1–c1–c10–c3–c13–c12–D1 – D3–c11–c4–c5–c2–D3 –

S7 = {1, 4} D1–c1–c5–c4–c3–c2–D1 – – D4–c16–c15–c14–D4

S8 = {2, 3} – D2–c11–c7–c13–c12–D2 D3–c8–c9–c10–c6–D3 –

S9 = {2, 4} – D2–c9–c8–c7–c6–D2 – D4–c14–c15–c16–D4

S10 = {3, 4} – – D3–c10–c11–c14–D3 D4–c13–c12–c15–c16–D4

S11 = {1, 2, 3} D1–c1–c10–c6–c2–c3–D1 D2–c5–c11–c13–c12–D2 D3–c4–c9–c8–c7–D3 –

S12 = {1, 2, 4} D1–c5–c1–c6–c2–c15–D1 D2–c9–c4–c3–c16–D2 – D4–c14–c7–c8–D4

S13 = {1, 3, 4} D1–c1–c10–c3–c14–D1 – D3–c11–c4–c5–c2–D3 D4–c13–c12–c15–c16–D4

S14 = {2, 3, 4} – D2–c11–c7–c14–D2 D3–c8–c9–c10–c6–D3 D4–c13–c12–c15–c16–D4

S15 = {1, 2, 3, 4} D1–c1–c11–c8–c7–D1 D2–c5–c9–c4–c10–D2 D3–c3–c13–c12–c14–D3 D4–c15–c16–c6–c2–D4
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increases when player p joins it. Therefore,

CS(S) - CS(S - {p}) represents the marginal cost saving

of participant p with respect to coalition S. The formula of

Shapley value denotes summation over all coalitions that

contain player p.

Core

Another very important concept in CGT is the core (Gillies

1953). For the cost saving allocation problem, the core of a

game presents a set of imputations as follows:

Fig. 3 Results of grand coalition in numerical examples

Table 7 Transportation cost

and cost saving for each

possible coalition

Coalition Symmetric example Asymmetric example

TC(Sm) CS(Sm) Synergy(Sm) TC(Sm) CS(Sm) Synergy(Sm)

S1 = {1} 15.684 0 0 6.79 0 0

S2 = {2} 15.398 0 0 7.33 0 0

S3 = {3} 14.472 0 0 6.35 0 0

S4 = {4} 15.684 0 0 6.62 0 0

S5 = {1, 2} 20.166 10.916 0.351 14.04 0.08 0.01

S6 = {1, 3} 18.601 11.555 0.383 11.73 1.41 0.11

S7 = {1, 4} 19.240 12.128 0.387 13.41 0 0

S8 = {2, 3} 19.896 9.974 0.334 12.89 0.79 0.06

S9 = {2, 4} 18.601 12.481 0.401 13.95 0 0

S10 = {3, 4} 20.402 9.754 0.258 10.45 2.52 0.10

S11 = {1, 2, 3} 25.877 19.677 0.432 16.22 4.25 0.21

S12 = {1, 2, 4} 26.009 20.757 0.444 17.8 2.94 0.14

S13 = {1, 3, 4} 26.349 19.491 0.425 16.94 2.82 0.14

S14 = {2, 3, 4} 26.349 19.205 0.421 16.53 3.77 0.19

S15 = {1, 2, 3, 4} 30.831 30.407 0.496 22.09 5 0.18
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coreð0Þ ¼ y!2 Y eðS; y!Þ� 0; 8S � P
��� �

¼ y!2 Y vðSÞ �
X
p2P

yp � 0; 8S � P

�����
( )

ð31Þ

The game is called stable if the core is non-empty. The

core is the set of allocations so that each coalition receives

at least the cost saving associated with that coalition. The e-
core, for -?\ e\? ? is defined as follows:

coreðeÞ ¼ f y!2 Y j e ðS; y!Þ � e; 8S � P; S 6¼ P; S 6¼ ;g
ð32Þ

However, the core has two drawbacks: it can be not unique

and it can be empty. A relatively simple way to handle both

limitations is through least core (or minimax) core meth-

ods. Actually, the least core method shrinks the core space

simultaneously from each side of boundary until a single

point (imputation) is achieved. A linear model of the

minimax core is introduced as follows:

mine ð33Þ

Subject to:

eðS; y*Þ� e; 8S � P ð34ÞX
p2P

yp ¼ vðPÞ ð35Þ

yp � 0; 8p ð36Þ

s value

An extension of the Shapley value is based on the idea that

if there are a priori unions. The s value is defined as the

efficient imputation s, (i.e. ðs~2 YÞ) such that s~¼ mþ
aðM � mÞ for some a, where M and m denote the utopia

payoffs and the minimum rights vectors, respectively. m

and M are defined as follows:

mp ¼ max
Sm:p02Sm

CS Smð Þ �
X

p02Smnfpg
Mp0

8<
:

9=
; ð37Þ

Mp ¼ CSðPÞ � CSðPn pf gÞ ð38Þ

The s value is only defined for quasi balanced games. A

class of the quasi balanced games contains all games that

have a non-empty core (Casas-Méndez et al. 2003). s value

method defines imputation s~¼ ðs1; s2; . . .; snÞ such that:

sk ¼ mk þ aðMk � mkÞ; ð39Þ

in which a 2 [0, 1] is uniquely determined byP
p2Psp = CS(P).

Equal cost saving method

Equal cost saving method (ECSM) is motivated to provide

a stable and uniform allocation for the players. Actually,

this method minimizes the maximum differences in the

pairwise relative cost saving of the owners in a coalition.

The formulation of ECSM is as follows

Min z ð40Þ

Subject to:

z� yp � yp0
�� ��; 8ðp; p0Þ 2 P; ð41ÞX

p2S
yp �CSðSÞ; for all S � P; S 6¼ P; ð42Þ

X
p2P

yp ¼ CSðPÞ: ð43Þ

Constraint set (41) measures the maximum difference

between the relatives of each two players. Thus, variable

z represents the largest difference that should be minimized

in the objective function. Constraint sets (42) and (43)

ensure stability of the imputation.

Numerical example for cost saving methods
in cooperative VRP

As mentioned earlier, it is important how the total cost or

cost saving should be fairly distributed among the players.

CGT provides an appropriate framework to study the

problems of joint cost saving allocation. For the previous

numerical example, allocation of the cost saving according

to different CGT methods are shown in Table 8. The

Shapley value, and s value have been computed using

TUGlab (Mirás Calvo and Sánchez Rodrı guez 2006).

Moreover the minimax core problem (33)–(36) and ECSM

problem (40)–(43) have been computed by Lingo 11.

Table 9 lists the corresponding satisfaction values for

each coalition. Consider imputation y~¼ ðy1; y2; . . .; ynÞ,
satisfaction of a coalition Sm from the imputation y! is

computed by FsðCS; y!Þ ¼
P
p2Sm

yp � CSðSmÞ .FsðCS; y!Þ

represents the extra shares of allocated cost savings that

members of a coalition can obtain with respect to the cost

saving of the coalition.

Table 9 shows the satisfaction value for each coalition

in absolute terms and also the satisfaction value in relative

terms as a percentage of the satisfaction that are obtained

from the imputations, i.e. FsðCS; y!Þ
�

TCðSmÞ. Furthermore,
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Table 8 Allocation of cost

saving to VRP owners based on

different CGT methods

Coalition Symmetric example Asymmetric example

Shapley s value Maxmin core ECSM Shapley s value Maxmin core ECSM

S1 = {1} 7.9934 8.1576 7.8135 7.6017 0.9900 0.7372 1.0300 0.7500

S2 = {2} 7.6934 7.9149 8.0685 7.6017 1.2033 1.6872 1.1500 1.7300

S3 = {3} 6.9234 6.6056 7.1105 7.6017 1.8050 1.9428 2.0900 1.7700

S4 = {4} 7.7967 7.7289 7.4145 7.6017 1.0017 0.6328 0.7300 0.7500

Table 9 Coalition satisfactions from different CGT methods

Coalition Symmetric example Asymmetric example

Shapley s value Maximin core ECSM Shapley s value Maximin core ECSM

S1 = {1} 7.9934

(0.51 %)

8.1576

(0.52 %)

7.8135

(0.49 %)

7.6017

(0.48 %)

0.9900

(0.15 %)

0.7372

(0.11 %)

1.0300

(0.15 %)

0.7500

(0.11 %)

S2 = {2} 7.6934

(0.5 %)

7.9149

(0.51 %)

8.0685

(0.52 %)

7.6017

(0.49 %)

1.2033

(0.16 %)

1.6872

(0.23 %)

1.1500

(0.15 %)

1.7300

(0.23 %)

S3 = {3} 6.9234

(0.48 %)

6.6056

(0.46 %)

7.1105

(0.49 %)

7.6017

(0.52 %)

1.8050

(0.28 %)

1.9428

(0.31 %)

2.0900

(0.33 %)

1.7700

(0.28 %)

S4 = {4} 7.7967

(0.5 %)

7.7289

(0.49 %)

7.4145

(0.47 %)

7.6017

(0.48 %)

1.0017

(0.15 %)

0.6328

(0.10 %)

0.73

(0.11 %)

0.7500

(0.11 %)

S5 = {1, 2} 4.7708

(0.24 %)

5.1565

(0.26 %)

4.966

(0.24 %)

4.2874

(0.21 %)

2.1133

(0.15 %)

2.3444

(0.16 %)

2.1000

(0.19 %)

2.4000

(0.17 %)

S6 = {1, 3} 3.3618

(0.18 %)

3.2082

(0.17 %)

3.369

(0.18 %)

3.6484

(0.2 %)

1.385

(0.12 %)

1.2700

(0.11 %)

1.7100

(0.15 %)

1.1100

(0.09 %)

S7 = {1, 4} 3.6621

(0.19 %)

3.7585

(0.19 %)

3.100

(0.16 %)

3.6484

(0.19 %)

1.9917

(0.15 %)

1.3700

(0.10 %)

1.7600

(0.14 %)

0.0900

(0.01 %)

S8 = {2, 3} 4.6428

(0.23 %)

4.5465

(0.23 %)

5.205

(0.26 %)

5.2294

(0.26 %)

2.2183

(0.17 %)

2.8400

(0.22 %)

2.4500

(0.19 %)

2.7100

(0.21 %)

S9 = {2, 4} 3.0091

(0.16 %)

3.1628

(0.17 %)

3.002

(0.16 %)

2.7224

(0.15 %)

2.2050

(0.16 %)

2.3200

(0.17 %)

1.8800

(0.13 %)

2. 4800

(0.18 %)

S10 = {3, 4} 4.9661

(0.24 %)

4.5805

(0.23 %)

4.771

(0.23 %)

5.4494

(0.27 %)

0.2867

(0.03 %)

0.0556

(0.01 %)

0.3

(0.02 %)

0

(0 %)

S11 = {1, 2, 3} 2.9332

(0.11 %)

3.0011

(0.12 %)

3.316

(0.13 %)

3.1281

(0.12 %)

-0.2517

(-0.01 %)

0.1172

(0.01 %)

0.0200

(0.001 %)

0

(0 %)

S12 = {1, 2, 4} 2.7265

(0.1 %)

3.0444

(0.12 %)

2.539

(0.09 %)

2.0481

(0.08 %)

0.255

(0.1 %)

0.1172

(0.01 %)

-0.0300

(-0.001 %)

0.2900

(0.02 %)

S13 = {1, 3, 4} 3.2225

(0.12 %)

3.0011

(0.12 %)

2.847

(0.11 %)

3.3141

(0.13 %)

0.9767

(0.06 %)

0.4928

(0.03 %)

1.0300

(0.06 %)

0.4500

(0.03 %)

S14 = {2, 3, 4} 3.2085

(0.12 %)

3.0444

(0.12 %)

3.3880

(0.13 %)

3.6001

(0.14 %)

0.2400

(0.01 %)

0.4928

(0.03 %)

0.2

(-0.001 %)

0.4800

(0.03 %)

Min FS(CS, y)

(Min FS(CS, y)/

TC(Sm))

2.7265

(0.1 %)

3.0011

(0.12 %)

2.5395

(0.09 %)

2.0481

(0.08 %)

-0.2517

(-0.01 %)

0.0556

(0.01 %)

-0.0300

(0 %)

0

(0 %)

Max FS(CS, y)

(Max FS(CS, y)/

TC(Sm))

7.9934

(0.51 %)

8.1576

(0.52 %)

8.0685

(0.52 %)

7.6017

(0.52 %)

2.2183

(0.28 %)

2.84

(0.31 %)

2.4500

(0.32 %)

2.7100

(0.28 %)

Sum FS(CS, y)

(Sum FS(CS, y)/

TC(Sm))

66.9103

(369.32 %)

66.911

(369.32 %)

66.911

(369.40 %)

67.4826

(372.5 %)

16.42

(1.59 %)

16.42

(1.58 %)

16.4200

(1.60 %)

15.0100

(1.47 %)
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minimum, maximum and the overall satisfaction of the

coalitions are indicated in this table.

Figure 4 illustrates the core of the four players game in

barycentric coordinates which are computed by TUGlab.

Note that only the cost savings allocated to the players 1, 2

and 3 are shown in this figure. The amount allocated to the

fourth player is implicit and can be computed from the

efficiency condition for each point.

To investigate the similarity between the four methods

of CGT, we suggest correlation between the cost saving

allocations. For two imputations y~¼ ðy1; y2; . . .; ynÞ and

y0 ¼ ðy01; y02; . . .; y0nÞ, correlation measure is defined as

follows

qðyp!; y0p
!
Þ ¼

P
k

yp � yp
� �

y0p � y0p

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k

yp � yp
� �2P

k

y0p � y0p

	 
2
s : ð44Þ

Table 10 illustrates the correlation measures for each

pair of CGT methods. From the table we know that the

solutions of Shapley value, s value, maximin core, and

ECSM are close in the symmetric example. However, in

asymmetric example, the solutions of different CGT

methods result in different solutions.

The following observation and managerial insights are

derived from the numerical examples:

1. Due to synergy effects of the owners, the cost saving of

coalition in a VRP can be considerable. For instance,

there are 49.6 and 18 % cost saving in the grand

coalition of symmetric and asymmetric examples that

could be regarded as a good motivation for the

cooperation among the companies.

2. Each player has a different role in the coalition. For

instance, in symmetric example, if owner 1 joins the

coalition {2, 3}, the cost savings would be 19.677, and

Fig. 4 Core of Co-MDVRP for examples with four players

Table 10 Similarity between solutions of CGT methods, measured by correlation

Coalition Symmetric example Asymmetric example

Shapley value s value Maxmin core ECSM Shapley value s value Maxmin core ECSM

Shapley value – 0.9797 0.9848 – – 0.8559 0.7977 0.7846

s value – – 0.9443 – – – 0.7384 0.9895

Maxmin core – – – – – – – 0.6443
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if he joins the coalition {2, 4}, then the cost savings

would be 20.757, and 19.491 if he joints the coalition

{3, 4}.

3. The results from various mechanisms of the CGT are

somewhat different. Therefore, these characteristics

must be considered in the contracts between companies

and as a result, the cost saving assigned to each player

can be thoroughly specified.

Conclusion and further research

This paper proposed a new vehicle routing problem for

minimizing the transportation costs when there are multiple

players (i.e. owners). Considering a multi-depot VRP, the

cooperation among owners of the depots was suggested by

sharing their vehicles. The transportation costs of collabo-

ration among different owners were evaluated. It was shown

that the transportation costs were decreased that could lead

to considerable cost savings. Hence, for a fair allocation of

the cost savings among the owners, a set of methods based

on the CGT theory including Shapley value, s value, least

core, and equal cost saving method were proposed. Two

symmetric and asymmetric examples were provided to

evaluate the proposed concept. Based on the results obtained

from the cost saving allocation, the owners can decide about

joining the coalitions that bring them more profit.

There are several directions and suggestions for future

research works. First of all, it was assumed that in the

MDVRP, the vehicles are similar. Changing this assump-

tion in the proposed MDVRP, can offer a new CoMDVRP.

Furthermore, other vehicle routing problems such as time

windows and etc. can be used to present a cooperative

model. Finally, this study assumes that the cost parameters

of the owners are common knowledge; however, it is

unlikely that the owners would be privy to real cost

parameters. This situation would lead to a collaborative

game model under asymmetric information that is inter-

esting but challenging.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

Aras N, Aksen D, Tekin MT (2011) Selective multi-depot vehicle

routing problem with pricing. Transp Res Part C Emerg Technol

19(5):866–884

Barron EN (2013) Game theory: an introduction, vol 2. Wiley,

NewYork

Branzei R, Dimitrov D, Tijs S (2008) Models in cooperative game

theory, vol 556. Springer Science & Business Media, NewYork

Casas-Méndez B, Garcıa-Jurado I, Van den Nouweland A, Vázquez-

Brage M (2003) An extension of the s value to games with

coalition structures. Eur J Oper Res 148(3):494–513

Charles SL, Hansen DR (2008) An evaluation of activity-based

costing and functional-based costing: a game-theoretic approach.

Int J Prod Econ 113(1):282–296

Contardo C, Martinelli R (2014) A new exact algorithm for the multi-

depot vehicle routing problem under capacity and route length

constraints. Discret Optim 12:129–146

Cordeau JF, Laporte G, Savelsbergh MWP, Vigo D (2007) Chapter 6

vehicle routing. Handb Oper Res Manag Sci 14:367–428

Crevier B, Cordeau JF, Laporte G (2007) The multi-depot vehicle

routing problem with inter-depot routes. Eur J Oper Res

176(2):756–773

Frisk M, Göthe-Lundgren M, Jörnsten K, Rönnqvist M (2010) Cost

allocation in collaborative forest transportation. Eur J Oper Res

205(2):448–458

Gilles RP (2010) The cooperative game theory of networks and

Hierarchies. Springer Science & Business Media, NewYork

Gillies DB (1953) Some theorems on n-person games. Ph.D. Thesis,

Princeton University Press, Princeton

Hafezalkotob A, Makui A (2015) Cooperative maximum-flow

problem under uncertainty in logistic networks. Appl Math

Comput 250:593–604

Hasani-Goodarzi A, Tavakkoli-Moghaddam R (2012) Capacitated

vehicle routing problem for multi-product cross-docking with

split deliveries and pickups. Proc Soc Behav Sci 62:1360–1365

Ho W, Ho GT, Ji P, Lau HC (2008) A hybrid genetic algorithm for the

multi-depot vehicle routing problem. Eng Appl Artif Intell

21(4):548–557

Jin M, Kai L, Burak E (2008) A column generation algorithm for the

vehicle routing problem with split delivery. Oper Res Lett

36(2):265–270

Kang KH, Lee YH, Lee BK. An exact algorithm for multi depot and

multi period vehicle scheduling problem. Department of Indus-

trial and Information Engineering, Yonsei University, 134

Shinchon-Dong, Seodaemoon-Gu, SEOUL 120-749 Korea

Karakati CS, Podgorelec V (2014) A survey of genetic algorithms for

solving multi depot vehicle routing problem. Appl Soft Comput J

Lehoux N, Audy JF, Sophie DA, Rönnqvist M (2009) Issues and
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