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Abstract Tri-level optimization problems are optimization

problems with three nested hierarchical structures, where in

most cases conflicting objectives are set at each level of

hierarchy. Such problems are common in management,

engineering designs and in decision making situations in

general, and are known to be strongly NP-hard. Existing

solution methods lack universality in solving these types of

problems. In this paper, we investigate a tri-level pro-

gramming problem with quadratic fractional objective

functions at each of the three levels. A solution algorithm

has been proposed by applying fuzzy goal programming

approach and by reformulating the fractional constraints to

equivalent but non-fractional non-linear constraints. Based

on the transformed formulation, an iterative procedure is

developed that can yield a satisfactory solution to the tri-

level problem. The numerical results on various illustrative

examples demonstrated that the proposed algorithm is very

much promising and it can also be used to solve larger-

sized as well as n-level problems of similar structure.

Keywords Tri-level programming � Quadratic fractional

programming � Fuzzy goal programming � Membership

functions � Deviational variables

Introduction

Multi-level programming problem deals with an opti-

mization problem with multiple decision makers who are

organized in hierarchical levels. In this setting, at least one

decision maker is located at each of the hierarchical deci-

sion making levels and each controls an independent

decision vector for optimizing his/her own objective. In

hierarchical (or multi-level) optimization, the constraint

domain at each of the upper levels is implicitly determined

by a series of optimization problems which must be solved

in a predetermined sequence. In the real world, we often

encounter situations where there are two or more decision

makers in an organization with a hierarchical structure, and

they make decisions in turn or at the same time so as to

optimize their objective functions (Abo-Sinna and Baky

2006; Azad et al. 2006; Bialas and Karwan 1984; Sakawa

et al. 2011).

When there are exactly three decision makers arran-

ged in hierarchical order trying to optimize their own

criteria functions, the resulting problem is called a tri-

level programming problem. Mathematically, a tri-level

programming problem with only one decision maker at

each level can be formulated as (Woldemariam and

Kassa 2015)
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min
x12X1

F1ðx1; x2; x3Þ

s.t. ðx1; x2; x3Þ 2 S1; where ½x2; x3� solves
min
x22X2

F2ðx1; x2; x3Þ

s.t. ðx1; x2; x3Þ 2 S2; where ½x3� solves
min
x32X3

F3ðx1; x2; x3Þ

s.t. ðx1; x2; x3Þ 2 S3;

ð1Þ

where Xi � Rni ;
P3

i¼1 ni ¼ n: The set S ¼ S1 \ S2 \ S3 is

called the relaxed constraint set that every decision maker

should select its decision variables from. We assume that S

is non-empty and bounded. Moreover, we assume that each

Fi : R
ni ! R represents the objective function of the i-th

level decision maker, i ¼ 1; 2; 3:

Depending on the type of functions involved in the

objectives and constraints of the problem, tri-level pro-

gramming problems can be classified as linear and non-

linear (Lee and Shih 2001). Among the non-linear tri-level

programming problems, if some of the functions involved

are ratio of two functions, we shall call them fractional tri-

level programming problems.

In general, due to the nested structure of the optimiza-

tion problems in each level, tri-level programming prob-

lems are complex in their nature. Several solution

approaches for quadratic and quadratic fractional bi-level

programming problems have been deeply investigated

using various approaches so far (for instance see Bialas and

Karwan 1982; Biswas and Bose 2011; Candler and

Townsley 1982; Pal and Moitra 2003 and the references

therein). Some of these approaches are classical or can fall

in the category of extreme point search, transformation

approach, descent or heuristic types. But the use of many of

the approaches often lead to the NP-hard algorithm and

might create ambiguity to choose an optimal solution if the

lower problem is nonconvex, in particular. Due to the

hierarchical nature of the problem and conflicting demands

by the lower level decision makers, decision deadlock arise

quite frequently in the process. To overcome such prob-

lems, a fuzzy programming approach to hierarchical deci-

sion problems has been introduced for bi-level problems by

Lai (1996) and extended by Shih et al. (1983) and Shih and

Lee (2000) using the concept of tolerance membership

functions and multiple objective decision making. The

main difficulty with a conventional fuzzy programming

approach is that re-evaluation of the problem again and

again by re-defining the elicited membership values of the

objectives is involved to reach a satisfactory decision. To

avoid such a computational burden, goal satisficing method

in goal programming (Ignizio 1976) for minimizing the

regrets of the DMs in case of a bi-level programming

problem has been studied by Moitra and Pal (2002).

The main idea in fuzzy programming approach is to use

the basic fuzziness and vague nature of such large hierar-

chical systems to make the complexity tractable. In

Mohamed (1997), fuzzy goal programming technique is

introduced to overcome the possibility of rejecting the

solution again and again by decision makers at each level.

This approach was also extended to solve multiobjective

linear fractional programming problems (Pal et al. 2003),

bi-level quadratic programming problems (Pal and Moitra

2003) and linear multi-level programming problems with

single objective function in each of the levels (Pramanik

and Roy 2007). Moreover, Osman et al. (2004) extended

the fuzzy approach of Abo-Sinna (2001) for solving non-

linear bi-level and tri-level multiobjective decision making

under fuzziness by defining a membership function of each

objective function and control variable of each decision

maker to formulate a single level programming problem

which is simpler to solve than the original problem. In this

approach, the conventional single level programming has

been formulated using the weighted sum technique with the

weight is equal to reciprocal of the distance between the

maximum and minimum value of each decision makers.

However, there is a possibility that their fuzzy approach

offers undesirable solution because of inconsistency among

the fuzzy goals of the non-linear objective functions and

linear fuzzy goals of the decision variables. So, small

change of the decision variable may produce large change

in the corresponding objective function and this may result

in unstable solution (Ehrgott and Gandibleux 2002). In

addition, if the number of levels increases the complexity

of the problem increases. Thus, tri-level programming

problem is more complex than a bi-level programming

problem.

Using an inverse function transformation approach,

Mishra and Ghosh (2006) proposed an interactive method

to solve quadratic fractional bi-level problems. However,

this method is computationally demanding as it involves

additional steps at each iterations. Moreover, Lachhwani

and Poonia (2012) proposed fuzzy goal programming

approach for multi-level linear fractional programming

problem by constructing a tolerance membership functions

for the fuzzily described numerator and denominator part

of the objective functions of all levels. To apply this

method, decision makers need to change their tolerance

value at each iterative step and this might cause a delay in

arriving at a satisfactory solution, especially for large

problems. Modifying this algorithm, Lachhwani and Nehra

(2015) came up with an algorithm (and its MATLAB

implementation) that can possibly solve linear fractional

multi-level programming problems. In some other litera-

ture (such as Biswas and Bose 2011; Dalman 2016; Emam

et al. 2015) a linearization technique, which is proposed in

Ignizio (1976), is employed to transform the fractional
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membership functions to an approximate linear function

one. Since this transformation contains only local behavior

of the functions, there is a possibility that the algorithm

may produce non-satisfactory solutions for the system.

In this paper, we especially focus on tri-level quadratic

fractional programming problems with linear constraints.

In such problems, we propose a new fuzzy approach to

obtain a satisfactory (or near-optimal) solution by intro-

ducing a transformation that changes fractional quadratic

fuzzy membership constraints into an equivalent non-

fractional quadratic forms. The main advantage of the

proposed approach is that the transformation will reduce

the computational burden in the algorithm as compared to

the previously proposed algorithms. Moreover, the current

algorithm is shown to be convergent to a near-optimal

solution of the problem. Therefore, one can continue exe-

cuting the steps of the algorithm to find an approximate

solution which is very close to the actual solution of the

problem rather than stopping the procedure at a satisfactory

solution.

The paper is organized as follows. In Sect. 2, fuzzy goal

programming procedure is described. Section 3 presents

solution concept of tri-level non-linear programming

problem using fuzzy goal programming approach and the

proposed algorithm is described. Illustrative examples are

given in Sect. 4, while conclusive remarks are presented in

Sect. 5.

The use of fuzzy goal programming

In multi-level programming procedure, even if the leader is

assumed to take the first action, s/he has no direct influence

on the decision of the others to get an optimal outcome as

originally sought. This is because, in most of the cases, the

objective functions of the decision makers at each level

may conflict each other and the decision makers at all

levels may not necessarily be cooperative to the leader.

Therefore, to arrive at the optimal decision one has to

check the response of others to choose her/his best decision

vector. In this regard, one possible approach of taking the

distribution of power in the hierarchies into account could

be using fuzzy goal programming technique.

Goal programming is an optimization technique

designed to handle decision making situations where a

number of conditions characterized as goals are to be met

as closely as possible. Mathematically, goal programming

can be formulated as (Jones and Tamiz 2010)

min k ¼ hðd�; dþÞ

subject to

fqðxÞ þ d�q � dþq ¼ bq; q ¼ 1; . . .;Q

x 2 S ð2Þ

d�q � dþq ¼ 0; q ¼ 1; 2; . . .;Q

d�q ; d
þ
q � 0; q ¼ 1; 2; . . .;Q

where h represents the achievement function which mea-

sures lack of achievement, dþq is the positive deviational

variable, d�q is the negative deviational variable and fqðxÞ is
the achieved value of the decision maker.

Definition 1 (Zimmermann 2001) Let f be a real-valued

function whose domain is a set X and f is assumed to be

bounded from below by infðf Þ and from above by supðf Þ:
The minimizing set is a fuzzy set M in X such that:

8x 2 X; lMðxÞ ¼
supðf Þ � f ðxÞ
supðf Þ � infðf Þ

Definition 2 (Zimmermann 2001) Let f be a real-valued

function and ~CðxÞ be a fuzzy constraint (solution space).

If f(x) is bounded on ~C; then the minimizing set over a

fuzzy constraint ~MCðf Þ; is defined by its membership

function

l gMCðf Þ
ðxÞ ¼

0; if f ðxÞ� sup ~Cðf Þ;
sup ~Cðf Þ � f ðxÞ

sup ~Cðf Þ � inf ~Cðf Þ
; if inf ~Cðf Þ\f ðxÞ\ sup ~Cðf Þ;

1; if f ðxÞ� inf ~Cðf Þ:

8
>><

>>:

ð3Þ

Fuzzy goal programming utilizes fuzzy set theory to

deal with a level of imprecision in the goal programming

model. This imprecision is normally related to the goal

target values but could also be related to other aspects of

the goal programme such as the priority structure. There

are various possibilities for measuring the fuzziness around

the target goals, each of which leads to a different fuzzy

membership function. These functions model the drop in

dissatisfaction from a state of total satisfaction (where the

membership function takes the value 1) to a state of total

dissatisfaction (where the membership function takes the

value 0). There are many possible definitions of fuzzy

membership functions; the algebraic structure of the most

common linear fuzzy membership functions are outlined

below (Jones and Tamiz 2010).

• Algebraically positive deviations (right sided) penal-

ized by the linear function:

l½fqðxÞ� ¼
1; if fqðxÞ� bq

1� fqðxÞ � bq

pmax

; if bq � fqðxÞ� bq þ pmax

0; if fqðxÞ� bq þ pmax

8
>><

>>:

ð4Þ

• Algebraically negative deviations (left sided) penalized

by the linear function:
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l½fqðxÞ� ¼

1; if fqðxÞ� bq

1� bq � fqðxÞ
pmax

; if bq � pmax � fqðxÞ� bq

0; if fqðxÞ� bq � pmax

8
>><

>>:

ð5Þ

where pmax is the maximum difference between the

target level bq and the criterion in which the decision

maker want to achieve.

Fuzzy goal programming approach to tri-level
quadratic fractional programming problems

Consider a non-linear tri-level programming problem

containing minimization type objective functions at each

level. Suppose that DMi denotes the decision maker at the

ith-level ði ¼ 1; 2; 3Þ and DM1; DM2 and DM3 control the

decision vectors x 2 X � Rn1 ; y 2 Y � Rn2 ; and z 2 Z �
Rn3 ; respectively, where n ¼ n1 þ n2 þ n3; x ¼
ðx1; x2; x3; . . .; xn1Þ; y ¼ ðy1; y2; y3; . . .; yn2Þ; z ¼ ðz1; z2; z3;
. . .; zn3Þ and ðx; y; zÞ 2 Rn: Let F1;F2 and F3 be the non-

linear objective functions of the first, second and third

decision makers, respectively, controlling vector of deci-

sion variables x, y and z.

Mathematically, the quadratic fractional tri-level pro-

gramming problem of minimization type can be formulated

as, find X ¼ ðx; y; zÞ so as to solve

min
x

F1ðx; y; zÞ where ½y; z� solves

min
y

F2ðx; y; zÞ where z solves

min
z

F3ðx; y; zÞ

s.t.: ðx; y; zÞ 2 S � Rn;

ð6Þ

where

• S ¼ fX ¼ ðx; y; zÞ 2 RnjA1xþ A2y þ A3zf� ; � ; ¼g
b; x; y; z� 0g is the constraint set, and is assumed to be

a non-empty, compact subset of Rn:

• Fið �XÞ ¼ fi1ð �XÞ
fi2ð �XÞ ¼

ai1þCi1
�Xþ1

2
�XTDi1

�X

ai2þCi2
�Xþ1

2
�XTDi2

�X
; for all i ¼ 1; 2; 3:

• fi2ð �XÞ ¼ ai2 þ Ci2
�X þ 1

2
�XTDi2

�X ði ¼ 1; 2; 3Þ is positive

for all �X ¼ ðx; y; zÞ 2 S;

• Cij and b ði ¼ 1; 2; 3; j ¼ 1; 2Þ are constant vectors,

• Dijði ¼ 1; 2; 3; j ¼ 1; 2Þ are constant symmetric

matrices.

Now we need to solve problem (6) using fuzzy goal

programming approach and find a satisfactory solution

for all the decision makers in the hierarchy. In real life,

different decision makers may or may not have con-

flicting objectives, and therefore they may or may not

cooperate each other. Thus, we assume that if the

objective functions of the decision makers (DMs) are

conflicting to each other then they will be motivated to

cooperate and if there is no conflict between each

objective functions of the DMs then it is not necessary

for them to cooperate.

Construction of membership functions

Assume that

Fb
i ¼ min

ðx;y;zÞ2S
Fiðx; y; zÞ ¼ Fi x

bi ; ybi ; zbi
� �

and

F1
i ¼ max

ðx;y;zÞ2S
Fiðx; y; zÞ for i ¼ 1; 2; 3:

Then ðxb1 ; yb1 ; zb1Þ; ðxb2 ; yb2 ; zb2Þ; and ðxb3 ; yb3 ; zb3Þ are

absolutely acceptable optimal solutions to decision

maker 1, 2 and 3, respectively; but the individual solu-

tion of one decision maker may not be satisfactory for

the other decision makers. Therefore, the fuzzy goal

concept can be expressed as: Fið �XÞ 	 Fb
i ; i ¼ 1; 2; 3;

where the relational symbol 	 reads as ‘‘essentially less

than or equal to’’.

Now the corresponding membership function of the ith

decision maker is algebraically formulated as

li½Fið �XÞ� ¼

1; if Fið �XÞ\Fb
i

F1
i � Fið �XÞ
F1
i � Fb

i

; if Fb
i �Fið �XÞ�F1

i ;

0; if Fið �XÞ[F1
i

8
>><

>>:
ð7Þ

for i ¼ 1; 2; 3:

Formulation of the fuzzy goal programming

approach for quadratic fractional tri-level

programming problem

In the formulation of fuzzy goal programming problem, we

use the concepts of membership functions at each level,

and develop a new conventional programming problem for

solving the tri-level non-linear programming problem.

The main goal for each of the decision makers in the

hierarchy is to achieve a value which is not very far from

their own ideal solution. That is equivalent to saying that

they minimize the deviation d�i such that li½FiðXÞ� þ d�i ¼
1 for all i ¼ 1; 2; 3; and for all X 2 S:

Note that, since it is assumed that 0� li½FiðXÞ� � 1 for

all X 2 S and for all i ¼ 1; 2; 3; we omitted the positive

deviational parameter, i.e., dþi ¼ 0 for all i ¼ 1; 2; 3:

The goal, that each decision maker to arrive at a solution

near to its own aspiration value, is common for each of the

decision makers in the hierarchy and can be checked by

each one of them for its fulfillment at any order. Therefore,

258 J Ind Eng Int (2018) 14:255–264
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we can transform the tri-level programming problem in to a

single objective and one-level optimization problem using

a weighted sum technique. In this regard, considering the

achievement of the goals at the same priority level, we

consider the following single level fuzzy goal program-

ming problem with only one objective:

min
x;y;z;d�

k ¼
X3

i¼1

w1
i d

�
i

subject to:

l1i ½Fiðx; y; zÞ� þ d�i ¼ 1; i ¼ 1; 2; 3

ðx; y; zÞ 2 S; d�i � 0; i ¼ 1; 2; 3;

ð8Þ

where the weights w1
i represent the relative importance of

achieving the aspired levels of the respective fuzzy goals, in

our case, we set w1
i ¼ F1

i � Fb
i ; i ¼ 1; 2; 3 at the initial stage.

Problem (8) is a single objective problem with three

more non-linear constraints corresponding to the satisfac-

tion of the aspiration levels of the decision makers at each

of the three levels. Because of the construction of the

membership functions, the newly added constraints contain

quadratic fractional functions. To make the solution pro-

cedure of the newly constructed conventional program (8)

more efficient, we shall reformulate the following problem

and show the equivalence between the two. For the con-

struction of the new problem without a fractional formu-

lation, we recall that FiðXÞ ¼ fi1ðXÞ
fi2ðXÞ ;X 2 S; where the

numerator fi1ðXÞ and denominator fi2ðXÞ functions are

quadratic with fi2ðXÞ[ 0; 8X 2 S: Then we can formulate

a single-level quadratic fuzzy goal programming problem,

min
x;y;z;d�

k ¼
X3

i¼1

w1
i d

�
i

subject to:

f1iðx; y; zÞti � ðF1
i � Fb

i Þd�i ¼ Fb
i ; i ¼ 1; 2; 3

f2iðx; y; zÞti ¼ 1; i ¼ 1; 2; 3;

ðx; y; zÞ 2 S; d�i � 0; ti � 0; i ¼ 1; 2; 3;

ð9Þ

Now we prove the equivalence between the conventional

problems with fractional structure (8) and the quadratic

programming problem with complementarity form (9) in

the following theorem.

Theorem 1 �X ¼ �X
 is an optimal solution for (8) if and

only if it is an optimal solution for (9); and the values of

achievement functions of both problems at the optimal

points are equal.

Proof Let �X ¼ �X
 be an optimal solution of problem (8).

Then from the constraint of the same problem it follows

that

l1i ½Fið �X
Þ� þ d�

i ¼ 1

is satisfied for all i ¼ 1; 2; 3. When simplified, this equation

becomes

Fið �X
Þ þ ðF1
i � Fb

i Þd�

i ¼ Fb

i :

But for quadratic fractional problems, since Fið �X
Þ ¼ fi1ð �X
Þ
fi2ð �X
Þ,

we can set fi1ð �X
Þt
i ¼
fi1ð �X
Þ
fi2ð �X
Þ, which yields t
i ¼ 1

fi2ð �X
Þ or

t
i fi2ð �X
Þ ¼ 1, i ¼ 1; 2; 3.

Since the denominator functions are assumed to be

always positive, i.e. fi2ðXÞ[ 0; 8X 2 S, the above argu-

ment also hold for the converse case as well.

Moreover, since the weight of problem (8) and (9) are

the same and

d�

i ¼ 1� l1i ðFið �X
ÞÞ

¼ Fb
i � fi1ð �X
Þt
i
F1
i � Fb

i

i ¼ 1; 2; 3;

the objective function of problem (8) is the same as the

objective function of problem (9). h

Therefore, solving the quadratic fuzzy goal program-

ming problem with complementarity (9) is the same as

solving the fractional type problem (8). Now, the single

level problem we formulated in (8) may not be equivalent

with the original tri-level programming problem. However,

the optimal solution we obtained from problem (8) is a

candidate solution of the original tri-level programming

problem, given in equation (6). Through updating the

weights for the deviational variables we may obtain new

candidate solutions and we shall show that these candidate

solutions are as good as or better than the previous ones.

So, iteratively we will obtain a set of candidate solutions

and from those candidate solutions we shall choose a sat-

isfactory solution using the criteria developed.

To update the weights of the deviational variables, in the

case when the current solution is not satisfactory, we apply

the following procedure.

Assume that the solution obtained from problem (9) is

ðx1; y1; z1Þ. Then, if the first and second level DMs are

satisfied with this solution, then we consider this solution

as a satisfactory solution for all the DMs. Otherwise, we

need to find a mechanism to update the current solution. To

this end, suppose that the first level DM is not satisfied with

the solution ðx1; y1; z1Þ. Since Fb
1 �F1ðx1; y1; z1Þ�F1

1 and

F1ðx1; y1; z1Þ is not the best value, restrict the optimal value

of the first level DM on the interval ½Fb
1 ;F

2
1 � where

F2
1 ¼ F1ðx1; y1; z1Þ. Then define a new membership func-

tion on this interval. Similarly, the second level DM also

updates its membership function, because its solution is

dependent on the decision of the first level DM.
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Consequently, the following new problem is formulated in

the second iteration:

min
x;y;z;d�

k ¼
X3

i¼1

w2
i d

�
i

subject to:

f1iðx; y; zÞti � ðF2
i � Fb

i Þd�i ¼ Fb
i ; i ¼ 1; 2;

f13ðx; y; zÞt3 � ðF1
3 � Fb

3Þd�3 ¼ Fb
3 ;

f2iðx; y; zÞti ¼ 1; i ¼ 1; 2; 3;

ðx; y; zÞ 2 S; d�i � 0; i ¼ 1; 2; 3;

ð10Þ

where w2
i ¼ F2

i � Fb
i ; i ¼ 1; 2, w3 ¼ F1

3 � Fb
3, and

F2
i ¼ Fiðx1; y1; z1Þ ¼

fi1ðx1; y1; z1Þ
fi2ðx1; y1; z1Þ

i ¼ 1; 2:

By solving this problem, we obtain a new solution, say

ðx2; y2; z2Þ and then check whether the first level and sec-

ond level DMs are satisfied with this solution. If not,

continue to the next iteration by setting F3
i ¼ Fiðx2; y2; y3Þ

for all i ¼ 1; 2; 3. Continuing the above procedure we may

arrive at the kth iteration (k� 2), where the problem to be

solved becomes

min
x;y;z;d�

k ¼
X3

i¼1

wk
i d

�
i

subject to:

f1iðx; y; zÞti � ðFk
i � Fb

i Þd�i ¼ Fb
i ; i ¼ 1; 2;

f13ðx; y; zÞt3 � ðF1
3 � Fb

3Þd�3 ¼ Fb
3 ;

f2iðx; y; zÞti ¼ 1; i ¼ 1; 2; 3;

ðx; y; zÞ 2 S; d�i � 0; i ¼ 1; 2; 3;

ð11Þ

where wk
i ¼ Fk

i � Fb
i ; i ¼ 1; 2, w3 ¼ F1

3 � Fb
3, and

Fk
i ¼ Fiðxk�1; yk�1; zk�1Þ ¼

fi1ðxk�1; yk�1; zk�1Þ
fi2ðxk�1; yk�1; zk�1Þ

i ¼ 1; 2;

with k ¼ 2; 3; 4; . . .:
From the above formulation of the problem at the k-th

iteration, we can observe that as the number of iterations

increases, the weight wk
i decreases proportionally. Conse-

quently, the possible value of deviational variables that we

take in each iteration controls the solution based on the

corresponding weight.

Define the membership function for the interval ½Fb
i ;F

k
i �

by

lki ½FiðXÞ� ¼

1; if FiðXÞ\Fb
i

Fk
i � FiðXÞ
F1
i � Fb

i

; if Fb
i �FiðXÞ�Fk

i ;

0; if FiðXÞ[Fk
i

8
>><

>>:
ð12Þ

for i ¼ 1; 2; 3. Then, from the construction of the above

iterative procedure, the following results can be

formulated.

Theorem 2 If ½Fb
i ;F

kþ1
i � � ½Fb

i ;F
k
i �; then

lkþ1
i ½FiðXÞ� � lki ½FiðXÞ�; for any X ¼ ðx; y; zÞ 2 S and k ¼

1; 2; 3; . . .; i ¼ 1; 2; 3:

Proof Assume that lki ½Fiðx; y; zÞ� ¼ Fk
i �Fiðx;y;zÞ
Fk
i
�Fb

i

and

½Fb
i ;F

kþ1
i � � ½Fb

i ;F
k
i � for each i ¼ 1; 2; 3 and k ¼

1; 2; 3; . . .: Then, it follows that Fkþ1
i �Fk

i for each i and k.

Now, let wkþ1
i ¼ Fkþ1

i � Fb
i and wk

i ¼ Fk
i � Fb

i . Then,

we have that

lki ½FiðXÞ� � lkþ1
i ½FiðXÞ� ¼

Fk
i � FiðXÞ
Fk
i � Fb

i

� Fkþ1
i � FiðXÞ
Fkþ1
i � Fb

i

¼ ðFk
i � FiðXÞÞðwkþ1

i Þ � ðFkþ1
i � FiðXÞÞðwk

i Þ
wkwkþ1

i

¼ Fk
i w

kþ1
i � Fkþ1

i wk
i þ FiðXÞðwk

i � wkþ1
i Þ

wk
i w

kþ1
i

� Fk
i w

kþ1
i � Fkþ1

i wk
i þ Fb

i ðwk
i � wkþ1

i Þ
wk
i w

kþ1
i

;

½as Fb
i �FiðXÞ; 8X 2 S:�

¼ wkþ1ðFk
i � Fb

i Þ þ wk
i ðFb

i � Fkþ1
i Þ

wk
i w

kþ1
i

¼ wkþ1wk � wk
i w

kþ1
i

wk
i w

kþ1
i

¼ 0:

This implies that lki ½FiðXÞ� � lkþ1
i ½FiðXÞ�� 0. Therefore,

we can conclude that lki ½FiðXÞ� � lkþ1
i ½FiðXÞ� for all X 2 S,

i ¼ 1; 2; 3, and k ¼ 1; 2; 3; . . .: h

Theorem 3 lki ½Fiðxk; yk; zkÞ� � lki ½Fiðxkþ1; ykþ1; zkþ1Þ� if

and only if Fiðxk; yk; zkÞ�Fiðxkþ1; ykþ1; zkþ1Þ; for i ¼
1; 2; 3 and k ¼ 1; 2; 3; . . .:

[Hence, the deviational parameters d�i do not increase

at consecutive iterations.]

Proof From the definition of membership functions

lki ½Fiðx; y; zÞ� ¼
Fk
i � Fiðx; y; zÞ
Fk
i � Fb

i

; i ¼ 1; 2; 3

where Fk
i ¼ Fiðxk�1; yk�1; zk�1Þ; i ¼ 1; 2; 3. For k ¼ 1 and

ðx0; y0; z0Þ ¼ argmaxðx;y;zÞ2SFiðx; y; zÞ, the statement holds

trivially.

Now, assume that lki ½Fiðxk; yk; zkÞ� �
lki ½Fiðxkþ1; ykþ1; zkþ1Þ�. Then,
Fk
i � Fiðxk; yk; zkÞ

Fk
i � Fb

i

� Fk
i � Fiðxkþ1; ykþ1; zkþ1Þ

Fk
i � Fb

i

:

After proper simplification, we obtain that

Fiðxk; yk; zkÞ�Fiðxkþ1; ykþ1; zkþ1Þ, as Fk
i � Fb

i [ 0 for all i.
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For the converse, suppose that Fiðxk; yk; zkÞ�
Fiðxkþ1; ykþ1; zkþ1Þ. Then,
� Fiðxk; yk; zkÞ� � Fiðxkþ1; ykþ1; zkþ1Þ
and hence Fk

i � Fiðxk; yk; zkÞ�Fk
i � Fiðxkþ1; ykþ1; zkþ1Þ:

Since Fk
i [Fb

i , for all k ¼ 1; 2; 3; . . .; i ¼ 1; 2; 3, we have

that (see Fig. 1).

Fk
i � Fiðxk; yk; zkÞ

Fk
i � Fb

i

� Fk
i � Fiðxkþ1; ykþ1; zkþ1Þ

Fk
i � Fb

i

Therefore, lki ½Fiðxk; yk; zkÞ� � lki ½Fiðxkþ1; ykþ1; zkþ1Þ�. h

From the construction of the above iterative procedure,

since Fkþ1
i �Fk

i for i ¼ 1; 2; 3 and for all k, the solution

obtained in the ðk þ 1Þth iteration is as good as or better

than the solution obtained in the kth iteration.

The above iterative procedure should be stopped if

Fiðxk; yk; zkÞ ¼ Fb
i for all i ¼ 1; 2; 3, in which case the

aspired ideal solution is achieved, or when the iteration

produces no significant change in the value of the objective

functions. To implement the second criteria, we assume

that a tolerance value �[ 0 is given by the planners. Then,

if
P3

i¼1 jFiðxkþ1; ykþ1; zkþ1Þ � Fiðxk; yk; zkÞj� �, we shall

say that the iteration does not produce a solution which has

a significant change in the process. Therefore, this can be

used as a stopping criteria.

The solution algorithm to solve quadratic fractional tri-

level programming problems (6) is summarized as:

The proposed algorithm is designed to efficiently search a

satisfactory solution for a quadratic fractional tri-level pro-

gramming problem having a common constraint set S, which

is assumed to be a closed and bounded (compact) set.

However, the procedure can be extended to solve multi-level

problems with any number of levels provided that the

objectives at each stage are quadratic fractional functions.

Moreover, if all the objectives are linear fractional functions,

the procedure converts it to a linear optimization problem

with complementarity at each iteration.

Illustrative examples

To demonstrate the feasibility of the proposed algorithm,

we considered the following fractional tri-level program-

ming problems and applied the transformation so that it can

Fig. 1 The relationship between each membership function for any

consecutive iterations
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be used in the algorithm. In the implementation, we set the

value of the tolerance to be e ¼ 10�6 for all the examples.

Example 1

min
x

F1ðx; y; zÞ ¼
ðx� 3Þ2 þ y2 þ z2

ðx� 2Þ2 þ y2 þ z2 þ 1

min
y

F2ðx; y; zÞ ¼
ðx� 2Þ2 þ ðyþ 1Þ2 þ ðz� 1Þ2

ðx� 1Þ2 þ ðyþ 2Þ2 þ z2

min
z

F3ðx; y; zÞ ¼
ðx� 3Þ2 þ ðy� 1Þ2 þ ðzþ 1Þ2

ðx� 2Þ2 þ ðyþ 2Þ2 þ ðzþ 1Þ2

subject to

2xþ yþ z� 8; xþ 2yþ z� 6; and x; y; z� 0:

The minimum and maximum values of each of the three

problems with respect to all the variables are found to be,

ðFb
1 ;F

b
2 ;F

b
3Þ ¼ ð4:8� 10�7; 0:1569; 0:0839Þ and

ðF1
1 ;F

1
2 ;F

1
3Þ ¼ ð2; 1:2; 1:2222Þ, respectively. Using these

values, the transformed fuzzy goal programming problem

is found to be

min
x;y;z;d�

k ¼
X3

i¼1

wk
i d

�
i

subject to

½ðx� 3Þ2 þ y2 þ z2�t1 � wk
1d

�
1 ¼ Fb

1

½ðx� 2Þ2 þ ðyþ 1Þ2 þ ðz� 1Þ2�t2 � wk
2d

�
2 ¼ Fb

2

½ðx� 3Þ2 þ ðy� 1Þ2 þ ðzþ 1Þ2�t3 � wk
3d

�
3 ¼ Fb

3

½ðx� 2Þ2 þ y2 þ z2 þ 1�t1 ¼ 1

½ðx� 1Þ2 þ ðyþ 2Þ2 þ z2�t2 ¼ 1

½ðx� 2Þ2 þ ðyþ 2Þ2 þ ðzþ 1Þ2�t3 ¼ 1

2xþ yþ z� 8; xþ 2yþ z� 6; and

x; y; z; d�; t� 0

Then using the above algorithm, we obtained after exactly

two iterations, a satisfactory solution for the problem to be

x
 ¼ 3:0384; y
 ¼ 0:2790; z
 ¼ 0:0001

with the corresponding near-optimal values

F1ðx
; y
; z
Þ ¼ 0:0368; F2ðx
; y
; z
Þ ¼ 0:3973;
F3ðx
; y
; z
Þ ¼ 0:2092

of first, second and third level decision makers,

respectively.

Example 2

min
x

f1ðx; y; zÞ ¼
ðx� 3Þ2 þ ðy� 2Þ2 þ ðz� 1Þ2

xþ 3yþ ðzþ 1Þ2

min
y

f2ðx; y; zÞ ¼
ðx� 1Þ2 þ ðy� 1Þ2 þ ðz� 1Þ2

ðxþ 2Þ2 þ ðy� 2Þ2 þ ðz� 3Þ2

min
z

f3ðx; y; zÞ ¼
5x2 þ y2 þ z

ðxþ 2Þ2 þ 4y

subject to

yþ 2z� 10; 0� x� 5; 0� z� 4; 0� y:

Solving this problem using the procedure described

above, a satisfactory solution ðx
; y
; z
Þ ¼ ð1:407947;
1:946424; 0:765045Þ, with the corresponding near-optimal

values ðf 
1 ; f 
2 ; f 
3 Þ ¼ ð0:250198; 0:067261; 0:745636Þ, is

obtained (again after only two iterations).

Example 3 The third example is a linear fractional tri-

level problem taken from Lachhwani and Poonia (2012).

Even though this problem is not quadratic, the purpose of

including this example is to check the output of the current

algorithm as compared to the previously obtained results.

min
x1;x2

f1ðx; y; zÞ ¼
�7x1 � 3x2 þ 4y� 2z

x1 þ x2 þ yþ 1

min
y

f2ðx; y; zÞ ¼
�x2 � 3yþ 4z

x1 þ x2 þ yþ 2

min
z

f3ðx; y; zÞ ¼
�2x1 � x2 � y� z

x1 þ x2 þ yþ 3

subject to

x1 þ x2 þ yþ z� 5

x1 þ x2 � y� z� 2

x1 þ x2 þ y� 1

x1 � x2 þ yþ 2z� 4

x1 þ 2yþ 2z� 3

z� 2

x1; x2; y; z� 0:

After implementing the proposed algorithm on this

problem, we obtained a satisfactory solution X
 ¼
ðx
1; x
2; y
; z
Þ ¼ ð2:3333; 0; 0; 0:3333Þ with the corre-

sponding functional values of ðf1; f2; f3Þ ¼ ð�5:0999;

0:3077;�0:9375Þ. For this Example 3, iterative steps

262 J Ind Eng Int (2018) 14:255–264

123



were required to arrive at the stopping criteria. In this

case, the value of the membership functions at the solu-

tion point is calculated to check how close the solution is

to the aspired goal. Therefore, for DM1 we have

l1ðX
Þ ¼ 0:9999, for DM2 l2ðX
Þ ¼ 0:460298 and for

DM2 l3ðX
Þ ¼ 0:9999.

However, the result reported in Lachhwani and Poonia

(2012) is ðf1; f2; f3Þ ¼ ð�3:42738;�1:642437;�0:751564Þ
with satisfactory solution X
 ¼ ð1; 0; 0; 1Þ. So, the solution
using the current procedure made significant improvements

in the values of the first and third decision makers (DM1

and DM3) while the value of the second level decision

maker (DM2) has increased proportionally. Therefore, one

has to weigh the significance of the criteria at each of the

levels to consider the entire solution.

Example 4 The fourth example is a quadratic fractional

tri-level problem with 11 variables.

subject to

2x1 þ x2 � 3x3 þ 5x4 þ 3y1 � 4y2 þ y3þ 3z1 þ z2 � 9z3 þ z4 � 25

x1 � 2x2 þ 4x3 þ 3x4 � y1 þ 2y3 þ z1 � 2z2 þ 3z3 � 62

x2 � 5x3 þ 2x4 þ 3y1 � y2 þ y3 � 6z1 þ z2 � 2z4 � 15

x1 þ x4 � y2 þ y3 þ z2 � 3z3 þ 12z4 � 40

x1 þ x2 þ x3 þ x4 � 7

y1 þ y2 þ y3 � 8

z1 þ z2 þ z3 þ z4 � 12

x; y; z� 0:

After the problem is transformed and solved, we obtain

the solution ðx
; y
; z
Þ ¼ ð0; 0:6346; 0; 0; 0; 3:8316; 0;
0; 5:7761; 0; 1:3965Þwith the corresponding minimal

functional values ðf 
1 ; f 
2 ; f 
3 Þ ¼ ð0:1521; 0:8346; 0:1963Þ.
Here as well, the algorithm arrived at the satisfactory

solution after only two iterations. At this satisfactory

solution, the deviational parameters are found to be

d� ¼ ð0:0144; 0:0152; 0:0079Þ.

Conclusions

This study developed a transformation based algorithm to

solve a tri-level quadratic fractional programming problems

using fuzzy goal programming approach. First, a membership

function was constructed to develop a fuzzy model for a

general tri-level problem. Using the membership function

and a weighted fuzzy goal programming approach, the

original tri-level problem was reformulated into a conven-

tional one-level optimization problem. Since the transformed

one-level problem contains fractional functions, it was fur-

ther transformed into an equivalent quadratic problem with

complementarity form. This final optimization problem was

solved using any available optimization algorithm to get a

candidate solution for the original tri-level problem. Second,

a method was developed to tighten the upper bounds which

were used for the construction of the membership functions

and to define weights for each deviational parameters.

Applying this modification of the upper bounds at each

iteration, a convergent iterative procedure was formulated.

Finally, numerical examples are given to illustrate the per-

formance of the proposed method. The computational results

show that the current algorithm provides a practical way to

solve tri-level quadratic fractional programming problems by

arriving at a satisfactory solution after very few steps (not

more than three steps in all the examples above). One of the

most important features of the proposed approach is that the

transformation will reduce the computational burden in the

algorithm as compared to the previously proposed similar

algorithms in the literature. In addition, the proposed algo-

rithm is shown to be convergent to a nearly optimal solution

of the problem. Moreover, this same algorithm can be used

also to solve any m-level quadratic fractional programming

problem, as the arguments do not depend on the number of

levels of the hierarchy in the problem.

min
x

f1ðx; y; zÞ ¼
ðx1 � 1Þ2 þ x22 þ 4ðx1 þ x3Þ2 þ ðx4 þ 2Þ2 þ y21 þ ðy2 � 2Þ2 þ y1y3 þ z1z2 þ z23 þ 5ðz4 � 2Þ2

ðx1 þ 3Þ2 þ ðx2 þ 1Þ2 þ x23 þ x24y
2
1 þ ðy2 � 1Þ2 þ y23 þ z21 þ ðz2 þ 1Þ2 þ z23 þ z24 þ 2

min
y

f2ðx; y; zÞ ¼
2ðx1 þ 1Þ2 þ 3x2x3 þ x24 þ ðy1 þ 2Þ2 þ y22 þ ðy3 þ 1Þ2 þ z21 þ z22 þ 4z3z4

x21 þ x22 þ ðx3 � 1Þ2 þ x24 þ ðy1 � 1Þ2 þ y22 þ y23 þ z21 þ ðz2 þ 1Þ2 þ z23 þ z24 þ 1

min
z

f3ðx; y; zÞ ¼
x21 þ x22 þ 5x3x4 þ 2y1y2 þ ðy3 � 1Þ2 þ ðz1 þ 2Þ2 þ ðz2 � 3Þ2 þ z23 þ 6z24

x21 þ ðx2 þ 1Þ2 þ x23 þ 3x24 þ y21 þ 5y22 þ ðy3 þ 1Þ2 þ z21 þ z22 þ ðz3 þ 3Þ2 þ z24 þ 5
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The procedures and computations involved in the pro-

posed method are very simple and can be used to solve

large-scale problems of the same structure within a rea-

sonable time using available optimization resources for

large-scale problems. Moreover, it can be seen from the

construction of the algorithm that the method can also be

used to solve linear fractional as well as quadratic tri-level

problems.
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