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Abstract This paper aims at proposing a quadratic assign-

ment-based mathematical model to deal with the stochastic

dynamic facility layout problem. In this problem, product

demands are assumed to be dependent normally distributed

random variables with known probability density function

and covariance that change from period to period at random.

To solve the proposed model, a novel hybrid intelligent

algorithm is proposed by combining the simulated annealing

and clonal selection algorithms. The proposedmodel and the

hybrid algorithm are verified and validated using design of

experiment and benchmark methods. The results show that

the hybrid algorithm has an outstanding performance from

both solution quality and computational time points of view.

Besides, the proposed model can be used in both of the

stochastic and deterministic situations.

Keywords Clonal selection � Simulated annealing �
Stochastic dynamic � Facility layout problem

Introduction

Nowadays, manufacturing industries make inexorable

attempt to achieve the competitive benefit of the design of an

optimal layout of facilities. Due to the fact that the facility

layout problem (FLP) significantly affects the high manu-

facturing cost involved in intelligent manufacturing systems,

it can be viewed as a crucial issue in the design of modern

production systems. Facility layout is the problem of

determining the relative locations of facilities on the shop

floor. The optimal arrangement of these facilities leads to

minimising the total manufacturing cost and maximising the

productivity. The Material Handling Cost (MHC) forms

20–50% of the total manufacturing costs and it can be

reduced by at least 10–30% by designing an optimal layout

(Tompkins et al. 2003). According to the nature of product

demands and time planning horizon, the FLP can be classi-

fied into four problems as follows: (1) static facility layout

problem (SFLP) with deterministic and constant flow of

materials over a single time period, (2) dynamic (multi-pe-

riod) facility layout problem (DFLP) with different deter-

ministic flow of materials in each period, (3) stochastic static

facility layout problem (SSFLP) with stochastic flow of

materials over a single time period, and (4) stochastic

dynamic facility layout problem (SDFLP) where product

demands are random variables so that their parameters

change from period to period. In the SFLP and SSFLP an

optimal layout of facilities is designed so that the total MHC

is minimised. On the other hand, for each period of the DFLP

and SDFLP an optimal facility layout is designed so that the

total material handling and rearrangement costs is min-

imised. The SDFLP is the most complicated form of the FLP

so that the other forms can be regarded as the special case of

the problem. In general, the FLP with discrete representation

and equal-sized facilities, which are assigned to the same

number of locations, can be formulated as the Quadratic

Assignment Problem (QAP). In discrete representation, the

shop floor is divided into a number of equal-sized locations.

Koopmans and Beckman (1957) proposed the first QAP

model for the FLP. In this paper, the SDFLP is formulated

using a QAP-based mathematical model. Designing the

optimal layout of facilities is a crucial competitive advantage

of production industries. To find the optimal solution of the

FLP formulated by a QAP-based mathematical model, the
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resolution approaches such as exact methods, heuristic

algorithms, and intelligent approaches can be used. Since the

QAP is a Non-deterministic Polynomial (NP)-complete

problem (Sahni and Gonzalez 1976; Vinoba and Indhumathi

2015), it is very difficult to solve the problem using exact and

heuristic methods, especially in large sizes. Thus, it is

essential to use intelligent approaches as promising tools for

solving the SDFLP formulated by the QAP in a reasonable

computational time. Regarding the use of intelligent

approaches for solving the DFLP, the following previous

researches can be mentioned : Pourvaziri and Naderi (2014)

developed a hybrid multi-population Genetic Algorithm

(GA) to cope with the DFLP. Azadeh et al. (2014) solved a

DFLP having equal-sized facilities using Data Envelopment

Analysis (DEA) and diversification strategy of Tabu Search

(TS) algorithm. Fazlelahi et al. (2015) suggested a model to

design a robust facility layout in dynamic environment uti-

lizing a permutation-based GA. Hasani et al. (2015) proposed

a hybrid intelligent approach for solving the DFLP. Der-

akhshan Asl and Kuan (2015) dealt with static and dynamic

FLPs having unequal-sized facilities using a modified Par-

ticle Swarm Optimisation (PSO) approach. Bashiri and

Karimi (2012) solved a QAP model using some heuristic and

meta-heuristic algorithms including SA, TS and PSO

approaches. Intelligent approaches are able to find a sub-

optimal (near to optimal) solution for the problem at hand.

Therefore, there is an urgent need for improving the quality

of the obtained solution. Hybrid resolution approaches are

common methods to enhance the solution quality of the

optimisation problems. Simulated Annealing (SA) is a

promising method to solve the FLP especially in volatile

environments because it has some advantages such as low

computational time, free of local optima, easy for imple-

mentation, and convergent property (Moslemipour et al.

2012). Kulturel-Konak and Konak (2015) proposed a simu-

lated annealing meta-heuristic approach to solve a cyclic FLP

as a especial case of DFLP where product mix and volume

are changed seasonally. Experimental studies on SA

demonstrate that selecting a good initial solution for this

algorithm leads to improvement in both the obtained solution

quality and execution time. Abtahi and Bijari (2017) pro-

posed a hybrid intelligent approach using imperialistic

competition, harmony search and SA algorithms.

The first novelty of this paper is proposing a new QAP-

based mathematical model for designing an optimal facility

layout in each period of the multi-period time planning

horizon of the SDFLP. In this model, product demands are

assumed to be dependent normally distributed random

variables with known Probability Density Function (PDF)

and covariance that changes fromperiod to period at random.

Product demands have also been considered as normally

distributed or at least random variables in layout design

problems in a number of previous studies (Forghani et al.

2013; Nematian 2014; Vafaeinezhad et al. 2016; Vitayasak

et al. 2016; Zhao and Wallace 2014, 2015). The second

novelty of this paper is suggesting a new hybrid algorithm

named CS-SA for solving the SDFLP by combining the

Clonal Selection (CS), and SA algorithms. In this algorithm,

a population of randomly generated initial solutions is

improved using the CS algorithm. By doing so, the perfor-

mance of the SA algorithm is likely to be improved fromboth

solution quality and computational time points of view.

Literature review

Hitchings (1970) considered dynamic behaviour of the FLP

for the first time. Palekar et al. (1992) designed the SDFLP

using quadratic integer programming model. They con-

sidered three degrees of uncertainties named optimistic,

most likely, and pessimistic for product demands by

assigning probability of happenings to these degrees.

Montreuil and Laforge (1992) addressed the SDFLP using

a scenario tree of probable futures. In their method, a

number of alternative layouts were built for future.

Krishnan et al. (2008) proposed three mathematical models

for designing a facility layout in an uncertain environment

by considering multiple product demand scenarios.

Tavakkoli-Moghaddam et al. (2007) suggested a novel

formulation using the QAP to concurrent design of the

optimal machine and cell layouts in a single time period

planning horizon of a cellular manufacturing system

(CMS) by considering the stochastic independent product

demands with known normal PDF. Moslemipour and Lee

(2012) proposed a new QAP-based mathematical model for

designing an optimal machine layout for each period of the

SDFLP, in which the product demands are independent

normally distributed random variables with known PDF

that changes from period to period at random. In this paper,

in addition to the aforementioned assumptions, time value

of money and dependency of product demands are also

considered so that the expectation, variance and covariance

of demands are randomly changed from period to period.

Shafigh et al. (2015) proposed a novel mathematical model

for designing dynamic distributed layouts.

Clonal selection algorithm

CS algorithm belongs to Artificial Immune System (AIS)

approaches. The biological immune system protects the

human body against foreign invaders such as viruses and

bacteria called antigens. The molecules named antibodies,

which recognise the presence of an antigen, are rapidly

increased by cloning during the clonal selection process.

The affinity of the new cloned antibodies is improved by

mutations, which in turn, leads to neutralisation and
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elimination of the antigen. The probability of selecting

antibodies for mutation is proportional to their affinity to

the antigen. After mutation, the receptor editing process is

started by eliminating some percentage of the ineffective

antibodies and introducing the same percentage of the new

ones. The simulation of the natural immune system leads to

development of a new intelligent algorithm named AIS.

The AIS starts with a randomly generated population of

individuals (antibodies) as the possible solutions. At each

iteration of this algorithm, first, the affinity of each anti-

body is calculated using the objective function of the

problem. Next, a number of antibodies with the best

affinity value are selected and cloned. Then, each clone is

mutated and the improved antibodies are preserved for the

next generation. Finally, using the receptor editing process,

a pre-specified number of antibodies with low affinity

values are replaced with the new ones, which are generated

at random. Ulutas and Islier (2009) proposed a CS algo-

rithm for solving the DFLP. Satheesh Kumar et al. (2009)

proposed an AIS algorithm to solve the unidirectional loop

layout problem by minimising the total congestion of all

parts and minimising the maximum congestion amongst a

partfamily. Ulutas and Kulturel-Konak (2012) suggested a

CS algorithm to deal with a FLP having unequal-sized

facilities and flexible bay arrangement. Ulutas and Kul-

turel-Konak (2013) suggested an improved CS algorithm

for designing the FLP with unequal-sized facilities. They

proposed a novel encoding method and a guideline for

optimising the parameters of the CS algorithm. Ulutas and

Islier (2015) proposed a CS algorithm for solving a real

DFLP named footwear industry.

In this paper, the CS algorithm is utilised to improve the

quality of randomly generated initial solutions. The initial

solutions are applied to SA algorithm described in the fol-

lowing section. Doing so, a hybrid algorithm named CS-SA

is constructed so that it has an outstanding performance from

both solution quality and computational time points of view

with respect to the SA having just a single initial solution.

Simulated annealing algorithm

SA algorithm is a simulation of physical annealing process of

solids in statistical mechanics, which starts with a known or

randomly generated initial solution and a high initial value of

temperature. It is formed by two loops namely, the inner loop

to search for a neighbouring solution, and the outer loop for

decrease the temperature to reduce the probability of

accepting the non-improving neighbouring solutions in the

inner loop. The quality of the solution obtained by SA

depends upon various factors such as initial temperature,

initial solution, and the exchange approach for generating

neighbouring solutions in the inner loop. Due to the fact that

SA is a single search algorithm, the quality of its final

solution is affected by the initial solution (Ashtiani et al.

2007; Chen and Jing 2005). Using hybrid algorithms, the

disadvantage of some algorithms are compensated by the

advantage of some other ones. Ram et al. (1996) proposed

two distributed algorithm namely, Clustering Algorithm

(CA) and Genetic Clustering Algorithm (GSA), which gen-

erate a good initial solution and a good population of initial

solutions for SA algorithm, respectively. They applied the

two algorithms to the Job Shop Scheduling (JSS) problem

and the Travelling Salesman Problem (TSP) and concluded

that the performance of SA was improved from both com-

putational time and solution quality standpoints. Ashtiani

et al. (2007) developed multiple initial solutions for SA

approach to solve the DFLP. Dong et al. (2009) used SA

algorithm to solve the DFLP by considering the possibility of

removing/adding facilities in different periods. Rezazadeh

et al. (2009) and Tajbakhsh et al. (2009) combined SA

algorithm with PSO method to solve the FLP. Sahin et al.

(2010) used SA algorithm to deal with the DFLP by

regarding budget constraint. Madhusudanan-Pillai et al.

(2011) solved their proposed robust layout design model

using SA in DFLP. Moslemipour and Lee (2012) utilised SA

algorithm to solve their developed model in the SDFLP. Lee

et al. (2012) proposed a novel hybrid Ant Clony (AC)/SA

approach having outstanding performance to solve the

SDFLP. Moslemipour et al. (2012) reviewed intelligent

approaches for solving layout problems comprehensively.

Khosravian-Ghadikolaei and Shahanaghi (2013) proposed a

solution approach based on SA algorithm for solving the

multi-floor DFLP. Shirazi et al. (2014) developed a multi-

objective SA-based algorithm to deal with a group layout. Li

et al. (2015) suggested an improved SA algorithm for

designing the SDFLP. Palubeckis (2015) dealt with the single

row facility layout problem by proposing a fast SA algorithm

having better performance than the iterated TS algorithm.

Palubeckis (2016) also proposed a multi-start SA approach to

design the single row facility layout. Kulturel-Konak and

Konak (2015) developed a large-scale hybrid SA algorithm

for solving the cyclic FLP as a special case of the DFLP,

which is formulated by a Mixed Integer Programming (MIP)

model. In the cyclic FLP, the production cycle replicate itself

by going to the first time period after the last one owing to the

seasonal feature of products. Matai (2015) developed an

improved SA algorithm for solving the FLP. Tayal and Singh

(2016) used a hybrid meta-heuristic approach, which is based

on Firefly and Chaotic SA algorithms for solving the multi-

objective SDFLP by considering stochastic demands. Tayal

and Singh (2017) proposed an integrated resolution approach

by combining the SA algorithm with the DEA and TOPSIS

as practical decision-making methods for solving a multi-

objective SDFLP. They considered some quantitative and

qualitative objectives, such as total MHC, flow distance,

closeness ratio and maintenance issues.
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The proposed model

The QAP is a nonlinear Combinatorial Optimisation

Problem (COP). This problem aims to find the optimum

appointing of several items to the same number of known

positions so that a quadratic objective function is min-

imised. In general, the FLP having discrete representation

and equal-sized facilities assigned to the same number of

known locations is usually formulated by the QAP model.

In discrete representation, the shop floor is divided into a

number of equal-sized facility locations. In this section, the

SDFLP is formulated by a new QAP-based mathematical

model to design the dynamic machine layout. The param-

eters and indexes used in the models are shown in Table 1.

The assumptions are as follows:

1. Equal-sized facilities (machines) are assigned to the

same number of known locations.

2. The discrete representation of the SDFLP is considered.

3. For simplicity, it is assumed that demands of a

particular part in different time periods are indepen-

dent of each other (i.e. Cov Dtk;Dt0kð Þ ¼ 0). Shumsky

and Zhang (2009), for instance, has already made this

assumption.

4. Demands of products are assumed to be dependent (i.e.

CovðDtk;Dtk0 Þ 6¼ 0) normally distributed random vari-

ables with known expected value, variance, and covari-

ance that change from period to period at random.

5. The parts are moved in batches between facilities.

6. Time value of money is considered.

7. There is no constraint for dimensions and shapes of the

shop floor.

8. The data on number of facilities, number of periods,

machine sequence, present value of part movement cost,

transfer batch size, distance between facility locations,

money interest rate for each period (e.g., year), present

value of facility rearrangement cost, the expected value,

variance, and covariance of part demands in each period

are known as inputs of the model.

9. Machines can be laid out in any configuration such as

rectangular and U-shaped configurations as shown in

Fig. 1, where L1,…, L12 are the known machine

locations.

Designing a dynamic facility layout is a method to cope

with fluctuations and uncertainties in product demands in

the SDFLP. In the dynamic layout design method, an

optimal layout is designed for each period so that the total

cost including the MHC and the relocation cost is min-

imised. Using this approach, the layout of facilities can be

changed from period to period in accordance with changes

in product demands. Therefore, although this method has

the advantage of having optimal layout for each period, it

suffers from the disadvantage of having the facility rear-

rangement cost. Actually, in the dynamic approach, con-

sidering each period as a stage, the multi-period problem

can be considered as a multi-stage dynamic system with

optimal behaviour from stage to stage. In this section, the

SDFLP is formulated using the dynamic approach so that

an optimal machine layout is obtained for each period.

According to the assumption of assigning the equal-sized

machines to the same number of known locations, the QAP

model of the DFLP proposed by Balakrishnan et al. (1992)

is used for formulating the SDFLP. This model is given in

equations from (1)–(5).

Table 1 Notations of the proposed models

Notation Description

K Total quantity of parts

M Total quantity of machines/locations of machine

T Total quantity of periods

k Part index (k = 1, 2,…, K)

t Period indicator (t = 1, 2,…, T)

i, j Machine indices (i, j = 1, 2,…, M); i = j

l, q Machine location indices (l, q = 1, 2,…, M); l = q

Nki Process number for the process performed on part k by

machine i

ftijk Materials flow linking machines i and j in period t created

by part k

fijk Materials flow linking machines i and j created by part k

ftij Materials flow linking machines i and j in period t created

by all parts

fij Materials flow linking machines i and j created by all parts

Dtk Part k demand during period t

Bk Part k batch volume

Ctk Cost of movements for part k in period t

Ck Present value of the movement cost per batch for part k

Ir Interest rate

atilq Cost of shifting machine i from location l to location q in

period t

a0ilq Present value of cost of shifting machine i from location

l to location q

dlq Distance from machine location l to machine location q

xtil Decision variable for dynamic machine layout problem

C (p) Total cost of layout p

Zp Value of the standard normal variable Z by considering

confidence level p

E () Expectation

Var () Variance

Cov () Covariance

U (p, p) Maximum value (upper bound) of C(p) with the

confidence level p

OFVdm The objective function of the dynamic machine layout

design model
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Minimize
XT

t¼1

XM

i¼1

XM

j¼1

XM

l¼1

XM

q¼1

ftijdlqxtilxtjq

þ
XT

t¼2

XM

i¼1

XM

l¼1

XM

q¼1

atilqytilq

ð1Þ

Subject to:

XM

i¼1

xtil¼ 1; 8t,l ð2Þ

XM

l¼1

xtil¼ 1; 8t,i ð3Þ

xtil ¼
1 if facility i is assigned to location l in period t

1 otherwise

�
ð4Þ

ytilq ¼ x t�1ð Þil�xtiq ð5Þ

where, ftij denotes the total materials current in period t from

facility i to facility j and vice versa. The distance between

facility locations l and q is represented by dlq. The fixed cost

of shifting facility i from location l to location q in period t is

denoted by atilq. The objective function given in Eq. (1) is

the sum of two terms, including the total MHC and the total

rearrangement cost. The constraints (2) and (3) ensure

assigning each facility in each period to exactly one location

and vice versa. Equation (4) represents the decision vari-

ables that are the solutions to the problem so that they

determine the location of each facility in each period.

Equation (5) indicates that ytilq ¼ 1 if the facility i is shifted

from location l in period t - 1 (i.e. x t�1ð Þil ¼ 1) to location q

in period t (i.e. xtiq ¼ 1). The flow of materials linking

machines i and j in period t created by part k can be cal-

culated using Eq. (6), where the condition |Nk - Nkj| = 1

refers to two consecutive operations, which are done on part

k by machines i and j. Since the demand is divided by the

batch size, the quantity of the flow should be discrete value.

As mentioned in the assumptions of the problem, the

demand for part k in period t (Dtk) is a random variable with

normal distribution. Therefore, according to Eq. (6), the

materials current created by part k in period t from facility i

to facility j and vice versa (ftijk) is also a random variable

with a normal distribution having the expectation and vari-

ance given in Eqs. (7) and (8), respectively.

ftijk ¼
Dtk

Bk

Ctk if Nki � Nkj ¼ 1

0 otherwise

(
ð6Þ

Etijk ¼
Dtk

Bk

Ctk if Nki � Nkj ¼ 1

0 otherwise

(
ð7Þ

Vartijk ¼
Dtk

B2
k

C2
tk if Nki � Nkj ¼ 1

0 otherwise

8
<

: ð8Þ

The total materials current linking machines i and j in

period t created by all parts (i.e. ftij) is obtained usingEq. (9) in

which ftijk is a random variable with normal distribution and

thereby ftij is also a randomvariablewith a normal distribution

having the expectation and variance shown in Eqs. (10) and

(11), respectively. According to assumption (4), in each per-

iod, demands of parts are dependent. It means that

CovðDtk;Dtk0 Þ 6¼ 0 and thereby covðftijk; ftijk0 Þ 6¼ 0. Kulturel-

Konak et al. (2004) has already used an equation similar to

Eq. (11), but for a single period problem. Inserting Eqs. (7)

and (8) into Eqs. (10) and (11) leads to the new form of the

expectation and variance of ftij as represented in Eqs. (12) and

(13), respectively.UtilisingEqs. (1) and (5), the total cost for a

given dynamic machine layout pdm, which is denoted by

C(pdm), is calculated using Eq. (14). In this equation, the total
cost is equal to the summation of the totalMHC (the first term)

and the total rearrangement cost (the second term).

ftij ¼
XK

k¼1

ftijk ð9Þ

E ftij
� �

¼
XK

k¼1

E ftijk
� �

ð10Þ

Var ftij
� �

¼
XK

k¼1

Var ftijk
� �

þ 2
XK

k¼1

XK

k0¼kþ1

covðftijk; ftijk0 Þ ð11Þ

E ftij
� �

¼
XK

k¼1

E Dtkð Þ
Bk

Ctk ð12Þ

Var ftij
� �

¼
XK

k¼1

Var Dtkð Þ
B2
k

C2
tk

þ 2
XK

k¼1

XK

k0¼kþ1

CtkCtk0

BkBk0
covðDtk;Dtk0 Þ ð13Þ

6L

L7

L1  L2  L3   L4  L5

L12  L11 L10 L9  L8

(a) (b)

L1 L2 L3 L4 

L5 L6 L7 L8 

L9 L10 L11 L12 

Fig. 1 a Rectangular

configuration and b U-shaped

configuration
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C pdmð Þ ¼
XT

t¼1

XM

i¼1

XM

j¼1

XM

l¼1

XM

q¼1

ftijdlqxtilxtjq

þ
XT

t¼2

XM

i¼1

XM

l¼1

XM

q¼1

atilqx t�1ð Þilxtiq ð14Þ

Since ftij is a random variable with normal distribution,

then according to Eq. (14), C(pdm) is also a normally dis-

tributed random variable (Braglia et al. 2005). Using

Eq. (14), the expected value and variance of C(pdm) are

given in Eqs. (15) and (16), respectively. According to the

assumption (3), demands of a particular part in different

time periods are independent. It means that

Cov Dtk;Dt0kð Þ ¼ 0 and thereby in Eq. (16), Cov ftij; ft0ij
� �

¼ 0, but as earlier mentioned, CovðDtk;Dtk0 Þ 6¼ 0.

E C pdmð Þð Þ ¼
XT

t¼1

XM

i¼1

XM

j¼1

E ftij
� �XM

l¼1

XM

q¼1

dlqxtilxtjq

þ
XT

t¼2

XM

i¼1

XM

l¼1

XM

q¼1

atilqx t�1ð Þilxtiq ð15Þ

Var C pdmð Þð Þ ¼
XT

t¼1

XM

i¼1

XM

j¼1

Var ftij
� � XM

l¼1

XM

q¼1

dlqxtilxtjq

 !2

ð16Þ

Since we consider time value of money, Ctk and atilq can

be calculated using Eqs. (17) and (18), respectively. In

these equations, Ck is the present value of the movement

cost for part k, a0ilq is the present value of atilq and Ir is the

interest rate for each period. Using Eqs. (12), (13), (15),

(16), (17), and (18), the new form of the expectation and

variance of the total cost are given in Eqs. (19) and (20),

respectively. For a given dynamic machine layout pdm if

the decision maker considers U(pdm, p) as the maximum

value (upper bound) of C(pdm) with the confidence level p,

then U(pdm, p) given in Eq. (21) can be minimised instead

of minimising C(prm) (Kulturel-Konak et al. 2004; Mos-

lemipour and Lee 2012; Norman and Smith 2006; Tavak-

koli-Moghaddam et al. 2007)

Ctk ¼ Ckð1þ IrÞt ð17Þ

atilq ¼ a0ilqð1þ IrÞt ð18Þ

E C pdmð Þð Þ

¼

XT

t¼1

XM

i¼1

XM

j¼1

XK

k¼1

E Dtkð Þ
Bk

Ckð1þ IrÞt
XM

l¼1

XM

q¼1

dlqxtilxtjqþ

XT

t¼2

XM

i¼1

XM

l¼1

XM

q¼1

atilqx t�1ð Þilxtiq

0
BBBBB@

1
CCCCCA

ð19Þ

U pdm; pð Þ = E C pdmð Þð Þ + Zp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var C pdmð Þð Þ

p
ð21Þ

The mathematical model to obtain the optimal layout of

machines for each period of the SDFLP can be written as

follows using Eqs. (19), (20) and (21):

Minimisation of

Var C pdmð Þð Þ ¼
XT

t¼1

XM

i¼1

XM

j¼1

XK

k¼1

Var Dtkð Þ
B2
k

C2
k ð1þ IrÞ2tþ

2
XK

k¼1

XK

k0¼kþ1

CkCk0

BkBk0
ð1þ IrÞ2tcovðDtk;Dtk0 Þ

0

BBBB@

1

CCCCA

XM

l¼1

XM

q¼1

dlqxtilxtjq

 !2

ð20Þ

OFVdm ¼

XT

t¼1

XM

i¼1

XM

j¼1

XK

k¼1

E Dtkð Þ
Bk

Ckð1þ IrÞt
XM

l¼1

XM

q¼1

dlqxtilxtjqþ

Zp
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Subject to: Equations from (2)–(4)

Proposed the CS-SA hybrid algorithm to solve
the SDFLP

Due to the fact that SA is a single search algorithm, the

solution quality and computational time are affected by the

initial solution. In addition, it is a well-known local search

technique, which has been used to improve the quality of a

known initial solution generated by other algorithms.

Therefore, in the proposed hybrid algorithm, to conquer the

reliance of SA on initial solution, a population of initial

solutions is used rather than one initial solution. The pro-

posed hybrid CS-SA algorithm contains three stages as

follows: (1) generating a population of feasible initial

solutions (antibodies) randomly, (2) selecting and cloning

the antibodies produced in the first stage using the CS

algorithm, and (3) improving the cloned antibodies using

SA algorithm. The notations used in this section are shown

in Table 2 apart from the ones given in Table 1. The three

above-mentioned stages are described in the following sub-

sections.

Stage 1: initial solution construction

It is essential to state that in the CSA, antibodies are

potential solutions of the problem. In this stage, a popu-

lation of the potential initial solutions consists of the

antibodies are randomly generated and the number of

antibodies is defined as the population size. It is assume

that the population size to be equivalent of the number of

time periods (T) in the SDFLP. In this stage, T initial

solutions are randomly generated during the two following

stepes:

Step 1: select T permutations of 1, 2, …, M as the first

row of T matrices

Step 2: to consider each of the permutations for all

periods

Each of the T partial solutions (layouts) constructed in Step

1 are considered for all periods in Step 2. By doing so, a

population of initial solutionswith sizeT is constructed for the

SDFLP. It is necessary to mention that a solution of the

SDFLP is represented by a two dimensional matrix where

each row represents a period, each column represents a loca-

tion, and each element represents a machine number. For

example, for a dynamic layout problem having three time

periods and three facilities including machines 1, 2, and 3, the

population of initial solutions can be in the following form:

Population of initial solutions ¼ s01; s
0
2; s

0
3

� �

¼
3 1 2

3 1 2

3 1 2

2

64

3

75;
1 3 2

1 3 2

1 3 2

2

64

3

75;
2 1 3

2 1 3

2 1 3

2

64

3

75

8
><

>:

9
>=

>;

Stage 2: selection and cloning antibodies

Asmentioned in section ‘‘Clonal selection algorithm’’, CS is

a population-based algorithm. Therefore, the population of

initial solutions constructed in Stage 1 can be easily applied

to the CS algorithm. In this stage, only the selection and

cloning steps of CS are used to amplify the power of the good

initial solutions constructed in the first stage. Therefore, a

number of the best initial antibodies are selected and cloned

according to their affinity value. The affinity of the initial

solution (antibody) si
0 is defined as the inverse of its objective

function value as given in Eq. (23). In this approach, better

antibodies have the higher value of affinity.

Affinityðs0i Þ ¼
1

f ðs0i Þ
ð23Þ

During selection process, n (n\ T) best antibodies

having the highest affinity values are selected for cloning.

Actually, the affinity values of the best n antibodies are

sorted in descending order. Doing so, for i\ j, Affinity

(si
0)[Affinity (sj

0). Using cloning process, the selected

antibodies are cloned according to Eq. (24) extracted from

De Castro and Von Zuben (2002) so that the antibody with

higher affinity value has higher number of clones.

NCi ¼ round
d � n
i

� 	
ð24Þ

where, i denotes the rank of antibody (for the antibody with

the highest affinity i = 1), NCi is the number of clones for

antibody si
0, d is a size factor (Here, d = 1), n is the number

Table 2 Notations for CS-SA algorithm

Notation Description

t Index for period/ant (t = 1,2,…,T)

ftijk Materials flow for part k between machines i and j in

period t

fijk Average flow of part k

fij Materials flow for all parts between machines i and j

cij Total part handling cost between machines i and j

pðiÞ The location containing the machine i

dpðiÞpðuÞ The distance between the locations where machines i and

u are placed

fvj The flow of parts between machines v and j

Tin Initial temperature in SA

h Cooling ratio in SA

Pel The probability of accepting non-improving neighbouring

solution in SA
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of selected antibodies, and round refers to the closest

integer. Using this approach, the size of the new population

would be the summation of NCi.

To illustrate the aforementioned procedure, we consider

the example of a population of initial solutions given in

section 4.1. We assume that the initial solutions are

arranged in descending order so that Affinity (s1
0-

)[Affinity (s2
0)[Affinity (s3

0). It is also assumed that all

of the initial solutions are selected (i.e., n = T = 3).

According to the order of the initial solutions, the rank of

s1
0, s2

0, and s3
0 (i.e., i in Eq. (24)) will be 1, 2, and 3,

respectively. Thus, using Eq. (24), the number of clones

(NCi) for the initial solutions (antibodies) s1
0, s2

0, and s3
0 are

equals to 3, 2, and 1, respectively. By doing so, the final

population of initial solutions (antibodies), which is applied

to the SA algorithm in the next stage, is as follows:

CS also includes mutation and receptor editing pro-

cesses used for solution improvement and to avoid from

getting trapped in local optima, respectively. However, in

this stage, there is no need to use the aforementioned

processes. Because they are done in the third stage of the

hybrid algorithm (i.e., SA algorithm). In the inner loop of

SA algorithm, the solution is improved by searching for a

better neigbouring solution and accepting non-improving

neigbouring solutions prevents the algorithm from getting

trapped in local optima.

Stage 3: initial solutions improvement

In this stage as the last part of the hybrid algorithm, SA

algorithm is used to find the optimal solution of the prob-

lem at hand. In the proposed hybrid algorithm, to conquer

the reliance of SA on initial solution, a population of

cloned initial solutions is used rather than one initial

solution. Thus, the cloned initial solutions (antibodies)

constructed by the two previous stages, are applied to the

SA algorithm according to their order in the population. By

doing so, the first initial solution, which has the highest

affinity, is the starting initial solution. In general, SA starts

with the initial solution s0 and a high initial temperature

Tin. As mentioned, the solutions are in the form of matrix

and the SA algorithm consists of two loops, including inner

loop and outer loop. At each iteration of the inner loop, a

neighbouring solution s0 for the best current solution s,

which is obtained in the previous iteration, is generated

using the local search technique named random exchange

method. In this method, first, a row (period) is selected at

random. Then, two columns (locations) are randomly

selected. Finally, the elements (machines) in the two

locations are exchanged. The solution s0 is evaluated by the

objective function f given in Eq. (2). It is accepted as the

current best solution if f s0ð Þ � f sð Þ. In the case of

f s0ð Þ [ f sð Þ it is also accepted if x 2 0; 1ð Þ�Pel, where x

is a randomly generated number and Pel is the probability

of accepting this non-improving neighbouring solution s0 at
iteration el of the outer loop. The outer loop starts with a

high value of temperature. At each iteration of this loop or

in other words, at each temperature, the inner loop is

repeated until the system reaches the steady state or ther-

mal equilibrium. In this paper, for solving the SDFLP with

M facilities (machines) and T periods, the maximum

number of iterations for the inner loop ilmax is calculated by

Eq. (25).

ilmax ¼ u�M � T ð25Þ

where, experimentally, u = 0.5 for small-sized problems.

It is increased proportional to the size of problem. The

temperature is gradually reduced by running the outer loop

so that its current value in the iteration el of this loop is

calculated using Eq. (26), where, h 2 0:80; 0:99ð Þ is the

cooling ratio (here, h ¼ 0:95), elmax denotes the maximum

number of iterations of the outer loop, and Tin denotes the

initial value of the temperature. According to McKendall

et al. (2006), the initial temperature is calculated by

Eq. (27).

Tel ¼ Tinh
el; el ¼ 0; 1; . . .; elmaxð Þ ð26Þ

Tin ¼ � 0:1f ðs0Þ
lnð0:25Þ ð27Þ

The probability of accepting the non-improving solution

is given in Eq. (28). Using Eq. (28), the value of temper-

ature at iteration el (i.e. Tel) can be calculated by Eq. (29).

Using Eq. (29), the initial temperature Tin and final tem-

perature Tf are given in Eqs. (30) and (31), respectively,

where, Pin and Pf are the initial and final values of Pel.

Using Eqs. (30) and (31), Eq. (32) can be written. The

maximum number of iterations of the outer loop elmax

corresponds to Tf can be calculated using Eq. (33) that can

be rewritten as Eq. (34). In fact, in Eq. (26), if we put

3 1 2

3 1 2

3 1 2

2
4

3
5;

3 1 2

3 1 2

3 1 2

2
4

3
5;

3 1 2

3 1 2

3 1 2

2
4

3
5;

1 3 2

1 3 2

1 3 2

2
4

3
5;

1 3 2

1 3 2

1 3 2

2
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2 1 3
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2
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5
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Tel ¼ Tf and el ¼ elmax then Eq. (33) is obtained. The

Eq. (33) can be rearranged as Eq. (34). The final form of

Eq. (34) can be written as Eq. (35) using Eqs. (30) and

(31).

Pel ¼ e
f sð Þ�f s0ð Þ

Tel ð28Þ

Tel ¼
f sð Þ � f s0ð Þ

lnðPelÞ
ð29Þ

Tin ¼
f sð Þ � f s0ð Þ

lnðPinÞ
ð30Þ

Tf ¼
f sð Þ � f s0ð Þ

lnðPfÞ
ð31Þ

Tf ¼ Tin ln
Pin

Pf

� 	
ð32Þ

Tf ¼ Tinh
elmax ð33Þ

elmax ¼ logh
Tf

Tin

� 	
ð34Þ

elmax ¼ logh ln
Pin

Pf

� 	
ð35Þ

The probability of accepting the non-improving solution

Pel is high at the initial stages of the algorithm (Pin � 1)

and it is reduced gradually while the algorithm is repeated

so that it approaches to a very small value at the final stages

of the algorithm (Pf � 0). Finally, the Pseudocode of

proposed hybrid is shown in Fig. 2.

Qualitative analysis of the CS-SA algorithm

In this section, the performance of the proposed hybrid

algorithm is investigated from both of the solution quality

and computational time points of view in a qualitative

Fig. 2 The pseudocode of the

hybrid CS-SA algorithm
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manner. In other words, it will be explained that how the

good initial solutions generated by CS lead to improve both

of the solution quality and the computational time of SA

algorithm. First, the effect of the randomly generated initial

solutions improved by CS algorithms on the computational

time of the SA is investigated. To this end, the maximum

number of iterations of the outer and the inner loops of the

SA is considered.

To estimate the maximum number of iterations of the

outer loop (elmax) of the SA used in the proposed hybrid

algorithm, we assume that, Pin ¼ 0:95, Pf ¼ 10�15 and h ¼
0:95 (Baykasogylu and Gindy 2001). Doing so, it is cal-

culated as elmax � 127 using Eq. (35). According to

Eq. (30), in the proposed algorithm, starting SA algorithm

with a better initial solution s0 generated by CS leads to

lower value of the cost function f(s0) and in turn causes to

decrease the initial temperature Tin. Referring to Eq. (34),

decrease in the initial temperature results in decrease in the

maximum number of the outer loop iterations. Therefore,

the maximum number of iterations of the outer loop of the

SA used in the hybrid algorithm is less than the above-

mentioned estimated value (i.e., elmax � 127). Starting the

inner loop of the SA with a good initial solution drives the

algorithm to search for a better solution in the neighbouring

area of the good solution. Doing so, the local search

technique used in the inner loop of SA is reached to a

frozen (equilibrium) state very fast. When a frozen state is

reached, the chance of finding new better solutions is quite

small (Heragu 1997). In other words, there is no

improvement in the solution quality after several iterations.

Therefore, using the good initial solutions the maximum

number of iterations of the inner loop (ilmax) is also

reduced.

Due to reduction in both of the elmax and the ilmax, the

SA algorithm converges to a global optimal solution faster

than the case in which it starts with only one known or

randomly generated initial solution. As a result, the com-

putational time elapsed by the SA algorithm is decreased

by starting with a population of good initial solutions

constructed by CS algorithm.

The good initial solutions constructed by CS algorithm

also result in improvement in the quality of the final

solution obtained by the SA algorithm. As mentioned, in

SA algorithm, the quality of solution is improved by

searching for a neighbouring solution using a local search

technique. This technique is amplified by starting the SA

algorithm with a good initial solution. Because, by doing

so, the local search technique forces the algorithm to search

in the neighbouring area of the good solution to hope to

find a better solution. The quality of the neighbourhood

solution affects the success of the local search method.

Actually, this process behaves like the intensification

strategy, which is used in other metaheuristics, for instance,

in the TS algorithm. The intensification strategy drives the

algorithm to search for a better solution in the neighbouring

area of the good solution. As a result, amplification of the

local search technique by starting with good initial solution

leads to improve the quality of the final solution of SA

algorithm. The proposed hybrid algorithm is generic that

can be used to solve any forms of the mathematical models

of the FLP, which can be different by considering some

critical constraints such as using unequal-sized machines,

the shop floor with different dimensions and shapes. Since

initial solutions constructed by the CS algorithm are

improved using a local search technique such as random

pair-wise exchange method used in the SA algorithm, they

are subject to randomly change at each iteration of the SA

method. Therefore, the initial solutions are not affected by

some constraint such as the case that two facilities can not

be placed consecutively, and budget constraint. Instead,

such constraints should be considered in the third stage (i.e.

SA algorithm) of the hybrid algorithm.

Computational results and discussion

In this section, to validate the proposed model and also to

evaluate the performance of the proposed hybrid CS-SA

algorithm, design of experiment and benchmark methods

are used as explained in the two following sub-sections:

Design of experiment

In this section, design of experiment method is utilised to

verify and validate the proposed model and the hybrid CS-

SA algorithm, which is proposed for solving the SDFLP.

To this end, a large number (say, 1000) of randomly gen-

erated test problems are applied to the model and solved

using the the hybrid CS-SA algorithm. A personal com-

puter with Intel 2.10 GHZ CPU and 3 GB RAM is used to

run the hybrid and SA algorithms, which are programmed

in Matlab. Since there is no historical data on expectation

and variance of demands in each period, design of exper-

iment method is used to evaluate the performance of the

proposed CS-SA hybrid algorithm. To this end, 1000 ran-

domly generated test problems are applied to the dynamic

machine layout design model given in Eq. (22) and solved

using the proposed hybrid CS-SA and the SA algorithms.

Actually, the performance of the SA algorithm starting

with a population of initial solutions, which is generated by

the CS algorithm, is compared with the performance of the

SA algorithm starting with a single known initial solution.

Each test problem has the following input data: Expecta-

tion and variance of parts demand (E and V) are randomly

438 J Ind Eng Int (2018) 14:429–442

123



generated with uniform distribution so that E 2
ð1000; 10000Þ and V 2 ð1000; 3000Þ. The distance matrix

is given in Table 3. The number of machines and the

number of periods are twelve and ten (M = 12, T = 10),

respectively. The facility rearrangement cost (atilq) is equal

to 1000. In Eq. (2), number of parts (k), transfer batch size

(Bk), and part movement cost (Ctk) are set to one.

According to Freund (1992), the 100*(1 - a)% confi-

dence interval for difference between means of two pop-

ulations is calculated as Eq.(36), where, n1 and n2 are

sample size, x1 and x2 are sample means, r21 and r22 are

sample variances, and za=2 is standard normal Z value so

that

Pr �za=2� Z � za=2


 �
¼ 1� a:

x1 � x2ð Þ � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

s

\l1 � l2\ x1 � x2ð Þ

þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

s ð36Þ

x ¼
Pn

i¼1 x

n
ð37Þ

r2 ¼ 1

n� 1

Xn

i¼1

xi � xð Þ2 ð38Þ

After solving each test problem, the optimal value of

total cost (objective function) is obtained as a sample of a

population. Actually, two populations can be considered as

follows. The first population includes optimal cost values

obtained by the proposed hybrid algorithm and the second

one is the population of optimal cost values obtained by the

SA algorithm with a known initial solution. Using

Eqs. (36)–(38) the sample means (xHybrid and xSA) and

sample variances (r2Hybrid and r2SA) of the optimal cost

values along with the calculated 95% confidence interval

for difference between means of the populations are shown

in Table 4. According to the computational results, both of

the lower and upper bounds of the confidence interval are

negative, and thereby lHybrid\lSA. The average compu-

tation time elapsed for each problem is also displayed in

Table 4. According to the results, the proposed hybrid

algorithm has better performance than the SA algorithm

from both the solution quality and computation time

standpoints. Besides, this section indicates the capability of

the proposed model and the hybrid algorithm to cope with

the stochastic environment of facility layout problems.

Benchmark method

Since there is no historical data on the expectation, vari-

ance, and covariance of demands in each period, the pro-

posed model is tested in a deterministic environment by

comparing with previous approaches as benchmark. To this

end, a 50% percentile level (p = 50%) equivalent of

zp = 0 is applied to the model. By doing so, the second

term of the proposed model containing variance and

covariance of part demands is ignored, thereby there is no

need to data on variance and covariance of part demands in

each period. In this case, demand of parts in each period,

which is known in deterministic case, is regarded as the

expectation of part demands in the proposed model. Data

set used for testing the model are taken from Yaman et al.

(1993). The problem includes nine machines and five

periods. Data on machine sequence and part demand in

different periods are given in Tables 5 and 6, respectively.

Rectangular layout configuration is considered so that a

location grid of 3 9 3 is used as facilities locations. Part

Table 3 Distance between facility locations

From To

1 2 3 4 5 6 7 8 9 10 11 12

1 0 10 20 30 40 50 70 60 50 40 30 20

2 10 0 10 20 30 40 60 50 40 30 20 30

3 20 10 0 10 20 30 50 40 30 20 30 40

4 30 20 10 0 10 20 40 30 20 30 40 50

5 40 30 20 10 0 10 30 20 30 40 50 60

6 50 40 30 20 10 0 20 30 40 50 60 70

7 70 60 50 40 30 20 0 10 20 30 40 50

8 60 50 40 30 20 30 10 0 10 20 30 40

9 50 40 30 20 30 40 20 10 0 10 20 30

10 40 30 20 30 40 50 30 20 10 0 10 20

11 30 20 30 40 50 60 40 30 20 10 0 10

12 20 30 40 50 60 70 50 40 30 20 10 0

Table 4 A comparison

between the hybrid and SA

algorithms

95% confidence interval for CS-SA hybrid algorithm SA algorithm

[-2641300, -2064100] xHybrid r2Hybrid xSA r2SA

2.8803e ? 008 1.0261e ? 013 2.9039e ? 008 1.1425e ? 013

Computational time (sec.) 15.8 16.7
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movement cost, and batch size are set to ten and one,

respectively.

Yaman et al. (1993)’s problem is applied to the pro-

posed model. The proposed CS-SA hybrid algorithm is

used to solve the model. To compare the performance of

the proposed model with the previous approaches, which

deal with the static environment, facility relocating cost is

set to zero. Madhusudanan-Pillai et al. (2011) proposed a

SA algorithm to solve their robust layout design model,

which is termed MP-SA hereafter. Another heuristic

method was also developed by Irappa and Madhusudanan

(2008) to solve their model, which is denoted by I-M

hereafter. The results of the proposed hybrid algorithm and

the results of different approaches in literature are shown in

Table 7. The findings contain the MHC of the optimal

layout in each period and the total MHC over the entire

planning horizon. On comparison, better performance of

the proposed CS-SA hybrid algorithm is concluded so that

it leads to 2.1% improvement with respect to the best

previous approach (i.e. MP-SA). Besides, the approaches in

literature except for the I-M and MP-SA methods, can be

used only for problems having maximum nine machines,

whereas the proposed approach including the dynamic

model and the hybrid algorithm can be applied to any size

of the problem. Finally, this section shows the capability of

the proposed model and the hybrid algorithm to deal with

the deterministic situation of facility layout problems.

Conclusion

In this paper, a novel hybrid CS-SA algorithm along with a

new QAP-based mathematical model to design a dynamic

facility layout was proposed to solve the SDFLP. Solving

the proposed model leads to design of an optimal facility

layout in each period of the multi-period time planning

horizon. In the proposed algorithm, a population of ran-

domly generated feasible initial solutions is improved

using the CS algorithm. In fact, in the proposed hybrid

algorihm, the SA algorithm starts with a population of good

initial solutions rather than a single initial solution. The

performance of the proposed model and the hybrid algo-

rithm was evaluated using design of experiment (a large

number of randomly generated test problems) and bench-

mark (data from the literature) methods with the following

conclusions: (1) on the basis of computational results

obtained by the design of experiment method, the proposed

hybrid algorithm has outstanding performance in compar-

ison with the SA algorithm starting with a single initial

solution from both solution quality and computational time

standpoints; (2) according to findings of benchmark

method, better performance of the proposed CS-SA hybrid

algorithm is concluded so that it leads to 2.1% improve-

ment in total cost with respect to the best previous

approach; (3) in spite of some approaches in literature, the

proposed hybrid algorithm can be applied to any size of the

problem; (4) in the proposed dynamic layout design model,

the relative contribution of the expectation and variance of

demands on the total cost can be controlled using a deci-

sion maker’s defined percentile p value; (5) in practice, the

proposed model can be applied to both of the stochastic and

Table 5 Data on machine sequence

Part no. Machine sequence

1 1 ? 3?5 ? 7?2 ? 7?9

2 1 ? 4?2 ? 5?6 ? 8?9

3 1 ? 5?7 ? 8?5 ? 6?2 ? 9

4 1 ? 2?4 ? 6?7 ? 8?2 ? 3?9

5 1 ? 7?6 ? 4?2 ? 8?3 ? 5?6 ? 9

Table 6 Part demand in different periods

Part no. Period

1 2 3 4 5

1 10 35 90 40 55

2 30 50 25 65 20

3 45 15 40 70 15

4 70 80 55 90 85

5 85 60 70 20 30

Table 7 MHC of the proposed

model and previous approaches
Approach Period

1 2 3 4 5 Planning horizon

MP-SA (2011)* 27800 26400 29500 30200 22000 135900

I-M (2008) 29100 27200 31200 30200 22350 140050

Chan et al. (2004) 28500 27900 31600 31650 22750 142400

Tang and Abdel-Malek (1996) 28200 29800 32000 31000 23550 144550

Yaman et al. (1993) 34700 33500 35700 40650 29750 174300

Proposed hybrid algorithm** 27100 26200 28900 29050 21800 133050

*Computational time = 29625 s **Computational time = 33 s
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the deterministic environments of manufacturing systems.

Regarding the limitations of this research, since the pro-

posed model has been developed based on QAP formula-

tion, it can be applied only to layout problems having

equal-sized facilities such as Raytheon Aircraft Company

(Krishnan et al. 2006) and Vought Aerospace Company in

Dallas, Texas (Groover 2008) as two real cases. Finally, the

following works can be taken into consideration in the

future researches:

• To propose a more effective hybrid meta-heuristic

approach by combining the SA algorithm with other

intelligent approaches to improve the quality of the

solution and the computational time.

• To apply the population of initial solutions constructed

by the CS, to other algorithms such as GA, TS, and

PSO approaches.

• To consider some constraints such as unequal-sized

machines, adding and removing machines in different

periods, closeness ratio, aisles, routing flexibility, and

budget constraint for total cost.
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