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Abstract The time–cost tradeoff problem is one of the

most important and applicable problems in project

scheduling area. There are many factors that force the

mangers to crash the time. This factor could be early uti-

lization, early commissioning and operation, improving the

project cash flow, avoiding unfavorable weather condi-

tions, compensating the delays, and so on. Since there is a

need to allocate extra resources to short the finishing time

of project and the project managers are intended to spend

the lowest possible amount of money and achieve the

maximum crashing time, as a result, both direct and indi-

rect costs will be influenced in the project, and here, we are

facing into the time value of money. It means that when we

crash the starting activities in a project, the extra invest-

ment will be tied in until the end date of the project;

however, when we crash the final activities, the extra

investment will be tied in for a much shorter period. This

study is presenting a two-objective mathematical model for

balancing compressing the project time with activities

delay to prepare a suitable tool for decision makers caught

in available facilities and due to the time of projects. Also

drawing the scheduling problem to real world conditions

by considering nonlinear objective function and the time

value of money are considered. The presented problem was

solved using NSGA-II, and the effect of time compressing

reports on the non-dominant set.

Keywords Time–cost tradeoff � Time value of money �
Crashing � NSGA-II � Multi-objective problem � AOA

network

Introduction

Discrete time–cost tradeoff problem (DTCTP) has many

applications, and a lot of research has been conducted on

this area. In these studies, customer needs to get services in

shorter time periods and necessity of reducing the project

cost were considered together, and this approach raised the

importance of DTCTP for business owners and researchers.

In 1991, Hindelang and Muth presented the DTCTP for the

first time (Hindelang and Muth 1979). Prabuddha et al.

(1997) and Vladimir et al. (2001) showed that this problem

belongs to NP-hard problem. One of the basic assumptions

in this problem is that the activities cost is a function of the

activities duration, which is a decision variable. The lower

limit of duration is crash duration, and the upper limit of

duration is normal duration. Kelley and Walker (1959),

Fulkerson (1961), Kelly (1961), Ford and Fulkerson (1962),

Siemens (1971), Goyal (1975), and Elmaghraby and Salem

(1981) presented the linear mathematical models and

Moder et al. (1983) considered continuous activities cost.

DTCTP was solved using many different exact methods,

such as dynamic programing (Hindelang and Muth 1979),

enumeration algorithm (Patterson and Harvey 1979), and

branch and bound (Demeulemeester et al. 1996, 1998;

Erenguc et al. 2001), but none of the methods could solve

the DTCTP in large scale, so many researchers decided to

use heuristics and metaheuristic algorithms to solve this

problem. Akkan (1998) used a heuristic algorithm based on

Lagrange released, while Liu et al. (2000) used genetic

algorithm (GA) for solving DTCTP and Elmaghraby and

& Mohammadreza Shahriari

shahriari@iau.ae; Shahriari.mr@gmail.com

1 Faculty of Management, South Tehran Branch, Islamic Azad

University, Tehran, Iran

123

J Ind Eng Int (2016) 12:159–169

DOI 10.1007/s40092-016-0148-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s40092-016-0148-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40092-016-0148-8&amp;domain=pdf


Kamburowski (1992) considered reward and penalty on

objective function. Ann and Erenguc (1998) introduced

activities compression, and Van Slyke was the first

researcher who used the Monte Carlo simulation method for

compressing activities. It has many advantages, such as

longer projects time, flexibility of selecting distribution

functions of activities time, and ability to calculate the value

of the path critically (Van Slyke 1963), and DTCTP was

considered with time switch in it (Vanhoucke et al. 2002).

All the presented researchers have only one objective

function, and the aim of all is decreasing the project cost or

time. The researchers found that for determining the dura-

tion of activities, many things must be considered. For

example, one may wish to finish the project in shortest time

with minimum cost. To this effect, two finishing time and

project cost objective functions can be considered in a

scalar unique objective function (Sasaki and Gen 2003a, b),

and can solve this multi-objective problem using the LP-

metric method (Pasandideh et al. 2011). Mohammadreza

Shahriari et al. introduced a mathematical model for time–

cost tradeoff problem with budget limitation based on a

mixed-integer programing, considering the time value of

money (Mohammadreza Shahriari et al. 2010). Jaeho Son

et al. (2013) presented a new formulation technique is

introduced to merge the two independent scenarios mathe-

matically, and it guarantees the optimal solution. Öncü -

Hazır (2014) presented a mathematical model to support

project managers from a wide range of industries in

scheduling activities to minimize deviations from project

goals. Tiwari and Johari (2015) introduced an approach,

which was experimented on several case studies that proved

its usefulness. The intertwined approach using simple and

popular Microsoft Office tools (Excel and MSP) is logical,

fast, and provides a set of feasible project schedule meeting

the deadline and that do not violate resource limits. Mar-

io Vanhoucke extend the standard electromagnetic meta-

heuristic with problem specific features and investigate the

influence of various EM parameters on the solution quality

(Vanhoucke 2014).

Kaveh et al. (2015) showed that two new metaheuristic

algorithms, charged system search (CSS) and colliding

body optimization (CBO), are utilized for solving this

problem. The results show that both of these algorithms

find reasonable solutions; however, CBO could find the

result in a less computational time having a better quality.

Ke et al. proposed a model to deal with an intelligent

algorithm combining stochastic simulations and GA, where a

stochastic simulation technique is employed to estimate ran-

dom functions and GA is designed to search optimal schedules

under different decision-making criteria (Ke et al. 2012).

In this study, we used NSGA-II for solving this two-

objective problem.

The assumption of activities compressing in time–cost

tradeoff problem was presented to achieve the specific

solutions. In this solution, with spending money, the

project time will decrease. Generally, delay in finishing

the projects is inevitable. The World Commission on

Dams (WCD) made a research on 99 large projects and

reported that only 50 of these projects finished in due

time, 30 % of them have 1–2 years delay, and 20 % have

more than 2 years delay (4 projects have more than

10 years delay), and the main reasons of delays are

financial problems, inefficiency of contractors and oper-

ation management, unreal scheduling, and employers

dissatisfaction (WCD 2000). Unlike the studies in this

area, we consider the ‘‘maximum duration’’ for the upper

level of activities duration, whatever moving from normal

time to compressed time caused more compressing cost,

and whatever moving from normal time to presented

upper bound of the time caused more saving of money.

The final front of the solutions in NSGA-II presents a

variety of solutions for decision makers, and they have

opportunity to select a proper solution based on the

available budget and appropriate time for the project.

Another problem considered in this study is the time value

of money. In large projects, it is important to know the

proper time of spending or saving the money due to the

time value of money. This study has five parts. The sec-

ond part presents a mathematical model. Third part deals

with solving algorithm. In part 4, a numerical example is

presented, and the final part belongs to conclusion and

further studies.

Mathematical model

Nomenclatures

ti Happening time of event i

Df ijð Þ Minimum allowed time of activity i� j

Dn ijð Þ Normal time for activity i� j

Dm ijð Þ Maximum allowed time of activity i� j

dij Scheduled (actual) time of activity i� j

H Indirect (overhead) project cost

Kn Direct project cost

Cf ijð Þ Compressing cost of activity i� j

Cn ijð Þ Normal cost of activity i� j

Cm ijð Þ The cost of delaying in activity i� j

Cij Compressing cost rate of activity i� j

C0
ij Saving rate of delaying for activity i� j

tMax Maximum allowed time for finishing the project

CMax Maximum available budget

I0 Interest rate
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yij ¼
1 If the activity i� j compressed

0 Otherwise

�

y0ij ¼
1 If the activity i� j has delay

0 Otherwise

�

y00ij ¼
1 If the activity i� j has been done in normal time

0 Otherwise

�

Problem definitions

When the beginning activities of a project compressed, the

compressing budget would be involved until the finishing

project time, and this value of money would be involved

for shorter time. This effect is obvious for the money that is

involved with delaying in activities time, so the time value

of money is an effective factor in this area. In the presented

model, we used the time value of money to calculate the

best time for compressing or delaying the activities. We

added the compressing cost to the total cost function and

subtract the venue of saving money of delaying on the

activities from the total cost function, so the Pert network

make better tradeoff between time and cost, considering

the time value of money. The cost function contains direct

cost, overhead cost, compressing cost, and delaying cost as

follows:

Z1 ¼ H tn � t1ð Þ þ Kn þ
X
i

X
j

Cij:yij Dn ijð Þ � dij
� �

�
X
i

X
j

C0
ij:y

0
ij Dn ijð Þ � dij
� �

ð1Þ

For interpolation of the equations that contain the time

value of money for compressing, we act as follows. Con-

sider some of the activities have been compressed, and for

each time unit of compression, Cij is the unit of money

spend, and therefore,
P

i

P
j Cij tn � tið Þ is the total money

that spends for compression involved from day ti to day tn
(finishing time of project). For calculating the saving

money of delaying, we act the same, so we have:

Z1 ¼ H tn � t1ð Þ þ Kn

þ
X
i

X
j

Cij:yij Dn ijð Þ � dij
� �

þ tn � tið ÞI0
� �

�
X
i

X
j

C0
ij:y

0
ij Dn ijð Þ � dij

� �
þ tn � tið ÞI0

� �
ð2Þ

Much research has been conducted on the effects of the

project cost and the cost of compression. Ameen (1987)

presented the definition of cost gradient and offered a new

technique, ‘‘CAPERTSIM’’, for decision making under

uncertainty in time–cost tradeoff in compressing and the

relation between them. In this research, a cost gradient

index is defined as the ratio of money spend to compressing

value and considering the time duration of each activity as

a probabilistic variable presents a simple simulation-based

model for time compressing.

In this study, we present a nonlinear relation between

activities durations and Cij and C0
ij, as shown in Fig. 1:

According to Fig. 1, if the relation between compressing

time and compressing cost was an exponential distribution,

then we would have:

C dij
� �

¼ ae�b�dij ð3Þ

If we had the coordination of Dn and Df , the values of a
and b could be calculated as follows:

b ¼
Ln Cn

Cf

� �
Df � Dn

ð4Þ

a ¼ e Ln Cnð Þþb�Dnf g ð5Þ

Using the same approach for the saving coefficient, we

have:

C0 dij
� �

¼ a0e�b0 �dij ð6Þ

b0 ¼
Ln Cm

Cn

� �
Dn � Dm

ð7Þ

a0 ¼ e Ln Cmð Þþb0 �Dmf g ð8Þ

The second objective function is considered as the fin-

ishing time of the project as follows:

Z2 ¼ tn ð9Þ

Mathematical model

Min Z1 ¼ H tn � t1ð Þ þ Kn þ
X
i

X
j

yij � aije�bij�dij

1 þ tn � tið ÞI0f g
�
X
i

X
j

y0ij � a0ije�b0ij�dij 1 þ tn � tið ÞI0f g ð10Þ

Min Z2 ¼ tn ð11Þ

Fig. 1 Relation between activities durations and Cij (C0
ij)
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S:t :

tj � ti � dij
ð12Þ

yij � Df ijð Þ � yij � dij � yij � Dn ijð Þ; 8i; j ð13Þ

y0ij � Df ijð Þ � y0ij � dij � y0ij � Dn ijð Þ; 8i; j ð14Þ

y00ij � dij ¼ Dn ijð Þ � y00ij; 8i; j ð15Þ

yij þ y0ij þ y00ij ¼ 1; 8i; j ð16Þ

tn � tMax ð17Þ

H tn � t1ð Þ þ
X
i

X
j

yij � aije�bij�dij 1 þ tn � tið ÞI0f g

�
X
i

X
j

y0ij � a0ije�b0ij�dij 1 þ tn � tið ÞI0f g�CMax ð18Þ

ti � 0 ð19Þ

Equation (10) is the first objective function that deals

with minimizing project cost, considering the time value of

money. Equation 11 is the second objective function that

minimizes the finishing time of project. Considering this

two objective function together moves the problem to

balance the compression and delaying of the project

activities.

Solving algorithm

Because the presented problem belongs to NP-hard prob-

lem, the metaheuristic algorithms were used to solve the

problem. One of these algorithms is GA. Sou-Sen Leu

(2000) used GA based on fuzzy theory and considered the

effects of uncertainty of the parameters in time–cost

tradeoff. Li and Cao (1999) created ‘‘MLGAS’’ technique

by combining GA and Learning machines method and

claimed that when the relation between activities and cost

is nonlinear, the presented technique has better solutions.

Heng et al. (Burns 1994) presented a new algorithm based

on GA and prepared a computational program to evaluate

the efficiency of the presented algorithm. This research is

the most complete research in this area that used GA for

time–cost tradeoff. Chau and Chan (1997) claimed that

exact methods, such as DP and LP, have very long solving

time and are not suitable for solving time–cost tradeoff, so

he developed the GA for this problem and considered the

resource constraints for each activity.

The single objective optimization algorithm could find

the better solution for one objective function, and if

more than one objective considered for a problem, these

algorithms have no efficiency. When the problem has

more than one objective function, the results can be

shown as a Pareto front of non-dominant solutions. This

Pareto front contains the solutions that are

acceptable operation for all objective functions. When

we have Pareto front of solutions, none of the solutions

in Pareto frons has better result for all objective function

comparing with other solutions in Pareto front, and we

have not a single optimal solution (Tavakkoli-Moghad-

dam et al. 2008). Figure 2 shows the Pareto sets in

multi-objective problems (Deb 2001).

NSGA-II algorithm

Non-dominated sorting genetic algorithm (NSGA-II) is one

of the most efficient and famous multi-objective algo-

rithms, which was presented by Deb (2001) and Zade et al.

(2014) and proved its usefulness in multi-objective prob-

lems (Deb et al. 2002). The NSGA-II can convergent with

Pareto sets of solutions, and the results could spread to all

sets. NSGA-II uses non-dominant sorting for convergent

confidence and also crowding distance for cutting the bad

solutions for earning better solutions (Gen and Cheng

1997; Amiri and Khajeh 2016). Totally, its higher

Fig. 2 Pareto sets in multi-objective problems (Deb 2001)

Fig. 3 Problem chromosome structure

Table 1 NSGA-II parameters

value
npop 50

PC 0.7

PM 0.3

nIt 100
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competence makes this algorithm a good selection for

multi-objective problems.

The steps of NSGA-II are as follows.

Initialization

The structure of the chromosome that used in this study is

shown in Fig. 3. This chromosome is a 1 � n matrix, and

each genome in this chromosome is duration of activities.

In addition, the initial information of this algorithm is:

npop The population size represents the number of

chromosomes in each iteration of algorithm.

PC Probability of crossover operator that represents the

number of parents in the mating pool.

PM Probability of mutation operator that represents the

number of chromosomes mutating in each iteration

of algorithm.

nIt Maximum algorithm iterations.

The values of these parameters are shown if Table 1.

Fast non-dominant sorting and crowding distance

In this step, all chromosomes ranked using fast non-dom-

inant sorting and crowding distance concepts. In fast non-

dominant, sorting the population is sorted based on domi-

nation concept. Each solution in this step is compared with

all other chromosomes and determines which one is dom-

inant or non-dominant. Finally, we have a set of non-

dominant solutions that forms the first boundary of solu-

tions. For determining the second boundary, the solutions

that located in first boundary ignore and the procedure is

repeated again. This procedure runs until all solutions are

located in solution boundaries. In this procedure, the worst

situation happened when each boundary contains one

solution. In this situation, the complexity of algorithm is

Fig. 4 Procedure on non-

dominant sorting

Fig. 5 Crowding distance of a specific solution (Deb 2001)

Fig. 6 Crossover operator

Fig. 7 Mutation operator
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Fig. 8 Mechanism of NSGA-II

evolution

Table 2 Value of example

parameters
Act (Df) (Dn) (Dm) (Cf) (Cn) (Cm) Act (Df) (Dn) (Dm) (Cf) (Cn) (Cm)

A1 3 8 10 2000 500 375 A22 4 9 11 4050 1900 1425

A2 3 6 8 2050 850 637 A23 6 9 11 6020 500 375

A3 3 5 6 2480 480 360 A24 6 8 10 1900 360 270

A4 10 15 19 1830 380 285 A25 2 5 6 2070 870 652

A5 4 8 10 2100 300 225 A26 5 7 9 4000 500 375

A6 11 12 15 1890 690 517 A27 2 6 8 15,020 1180 885

A7 5 9 11 320 200 150 A28 6 15 19 64,600 7000 5250

A8 4 11 14 25,000 1200 900 A29 5 12 15 3710 700 525

A9 5 6 8 770 230 172 A30 2 4 5 470 370 277

A10 6 8 10 615 175 131 A31 4 8 10 7720 920 690

A11 3 7 9 6420 2300 1725 A32 14 19 24 16,800 5000 3750

A12 12 19 24 19,980 5700 4275 A33 3 5 6 1110 940 705

A13 3 5 6 3150 550 412 A34 7 12 15 27,550 5300 3975

A14 2 4 5 525 125 94 A35 5 7 9 5600 3400 2550

A15 11 13 16 3520 660 495 A36 9 11 14 3580 300 225

A16 6 9 11 2535 885 664 A37 4 8 10 8690 770 577

A17 4 7 9 12,660 3000 2250 A38 6 11 14 2190 690 517

A18 6 9 11 610 250 187 A39 1 5 6 6520 3000 2250

A19 10 13 16 9980 980 735 A40 6 8 10 2940 2200 1650

A20 5 7 9 3440 1440 1080 A41 4 9 11 12,600 1100 825

A21 8 11 14 3970 280 210 A42 3 8 10 3850 600 450

Fig. 9 AOA network of presented example
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O MN2ð Þ, where M is the number of objectives and N is the

population size. The procedure on non-dominant sorting is

shown in Fig. 4.

For determining the density of the solutions around a

specific solution, the average distance between the specific

solutions and two adjacent solutions is calculated and

considered as a crowding distance. In other words, if we

draw a rectangle that two adjacent solutions located on its

vertex, sum of its length and width would be the crowding

distance of the specific solution, as shown in Fig. 5. A

specific solution with less crowding distance means less

solution density around the specific solution, so for

selecting the solutions for the next generation, the more

crowding distance is better than less crowding distance

(Deb 2001).

Parents

After non-dominant sorting and calculating crowding dis-

tance of each solution, the parents are ready for crossover

and mutation operators based on selecting strategy.

Selecting strategy Parents are selected for crossover and

mutation operators based on crowded tournament selection

operator. In this operator, two solutions are compared with
Fig. 10 Pareto front of the results for presented example

Table 3 Result of the first and

second objective functions for

50 runs of NSGA-II and the

values of compressing and

delaying on activities

No. Time Cost Crash Delay No. Time Cost Crash Delay

1 120 735,183 65 20 26 129 315,744 50 24

2 120 735,183 65 20 27 130 284,427 48 24

3 121 637,017 61 22 28 130 284,427 48 24

4 122 585,702 59 24 29 130 284,427 48 24

5 123 555,798 59 23 30 131 225,226 48 25

6 124 504,895 54 23 31 131 225,226 48 25

7 124 504,895 54 23 32 132 197,302 46 24

8 124 504,895 54 23 33 132 197,302 46 24

9 124 504,895 54 23 34 132 197,302 46 24

10 125 479,169 53 23 35 132 197,302 46 24

11 126 422,887 52 23 36 133 158,326 46 26

12 126 422,887 52 23 37 133 158,326 46 26

13 126 422,887 52 23 38 133 158,326 46 26

14 126 422,887 52 23 39 133 158,326 46 26

15 127 392,340 50 23 40 134 138,559 44 27

16 127 392,340 50 23 41 135 121,757 46 28

17 127 392,340 50 23 42 136 92,339 44 27

18 127 392,340 50 23 43 136 92,339 44 27

19 128 355,261 50 25 44 136 92,339 44 27

20 128 355,261 50 25 45 136 92,339 44 27

21 128 355,261 50 25 46 137 71,646 42 28

22 128 355,261 50 25 47 137 71,646 42 28

23 129 315,744 50 24 48 137 71,646 42 28

24 129 315,744 50 24 49 138 53,281 42 29

25 129 315,744 50 24 50 139 47,021 40 28
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each other, and winner is selected. The ith solution has two

properties:

1. Has a rank or degree on non-domination that shows by

ri,

2. Has a crowding distance that shows by di,

The ith solution is the winner of the competition com-

paring with jth solution if and only if, one of two below

conditions is established (Deb 2001):

1. The ith solution has better rank in a non-dominant

sorting procedure (ri\rj) that means this solution has

Table 4 Duration of activities in solutions 1 to 25

Solution 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

A2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

A3 4 4 6 4 5 4 4 6 6 6 5 4 4 4 6 4 5 6 5 6 4 5 4 5 6

A4 13 13 13 13 13 13 13 13 13 13 14 13 13 13 13 13 14 13 14 13 13 14 13 14 13

A5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

A6 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

A7 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

A8 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

A9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

A10 8 8 8 8 8 8 8 8 8 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8

A11 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

A12 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

A13 4 4 6 4 4 4 4 6 6 6 4 4 4 4 6 4 4 6 4 6 4 4 4 4 6

A14 4 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

A15 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

A16 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

A17 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

A18 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

A19 11 11 13 11 11 11 13 14 13 14 11 13 13 11 13 11 13 13 13 13 11 11 13 13 13

A20 5 5 7 5 7 5 5 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

A21 8 8 9 8 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

A22 5 5 9 5 9 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

A23 9 9 10 9 9 9 9 9 10 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

A24 7 7 7 7 7 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

A25 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

A26 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

A27 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

A28 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17

A29 6 6 8 6 6 6 6 6 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

A30 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

A31 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

A32 15 15 20 15 15 15 15 20 20 20 20 20 15 15 15 20 20 20 15 15 20 20 15 15 20

A33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

A34 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

A35 5 5 8 5 5 5 5 5 5 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 8

A36 9 9 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

A37 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

A38 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

A39 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

A40 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

A41 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

A42 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
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better non-domination degree comparing with jth

solution,

2. If ith solution has more crowding distance comparing

with jth solution (di [ dj), when the rank of both

solutions are equal.

Crossover operator

For crossover operator, two parents were randomly selec-

ted, and two offspring produced using a uniform crossover

operator. In this operator, for each genome of the parent’s

Table 5 Duration of activities in solutions 26–50

Solution 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

A1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

A2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

A3 4 5 4 6 6 6 6 6 4 5 4 5 5 4 6 6 6 4 4 5 6 4 5 6 6

A4 13 14 13 13 13 13 13 13 13 14 13 14 14 13 13 13 13 13 13 14 13 13 14 13 13

A5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

A6 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

A7 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

A8 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

A9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

A10 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

A11 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

A12 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

A13 4 4 4 6 6 6 6 6 4 4 4 4 4 4 6 6 6 4 4 4 6 4 4 6 6

A14 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

A15 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

A16 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

A17 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

A18 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

A19 13 13 11 13 13 13 13 13 11 11 13 13 13 11 13 13 13 11 13 13 13 11 13 13 13

A20 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

A21 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

A22 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

A23 9 9 9 9 10 9 10 9 9 9 9 9 9 9 9 9 10 9 9 9 9 9 9 9 9

A24 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

A25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

A26 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

A27 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

A28 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17

A29 6 6 6 6 8 6 8 6 6 6 6 6 6 6 6 6 8 6 6 6 6 6 6 6 6

A30 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

A31 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

A32 20 20 15 20 20 20 20 15 20 20 15 15 20 15 20 20 20 15 15 15 15 20 20 20 20

A33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

A34 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

A35 5 5 5 8 8 5 8 5 5 5 5 5 5 5 8 5 8 5 5 5 5 5 5 5 8

A36 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

A37 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

A38 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

A39 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

A40 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

A41 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

A42 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
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chromosome, a binary random variable is produced. If this

variable is 1, the genome of the parents is changed with

each other, and if this variable is 0, the genome stays in its

place (Chau and Chan 1997; Deb et al. 2000). The cross-

over operator is shown in Fig. 6.

Mutation operator

The mutation operator is done in all four matrices of solution

chromosome. For each genome, a uniform random variable

between 0 and 1 is produced. If the value of this random

variable is less than mutation rate, the genome mutates

randomly, and if the value of the random variable is greater

than mutation rate, the genome does not change (Chau and

Chan 1997). The mutation operator is shown in Fig. 7.

Offsprings evaluation and combining with parents

In this section, we evaluate the offsprings that are created

with crossover and mutation operators and assign a fitness

quantity to each offspring. Then, we combine the parents

and offsprings, and create a new population. This combi-

nation keeps the better solutions in new population. In

multi-objective optimization problems, elithism has ambi-

guity. In these cases, we use a non-domination rank for

each solution, so that each solution is rated based on non-

domination.

After combination of the parents and offsprings, each

solution is ranked based on the fast non-dominant sorting

and crowding distances.

The mechanism of NSGA-II evolution is shown in

Fig. 8.

Stop condition

The last step of NSGA-II is checking the stop condition. In

multi-objective metaheuristic algorithms, there is no stan-

dard stop condition, so we consider a predefined algorithm

iteration.

Numerical example

For illustrating the steps of presented algorithm, we used

the numerical example of the paper entitled ‘‘Crashing

PERT network using mathematical Programming’’ pub-

lished in ‘‘International Journal of Project Management’’ in

2001. This example has been used in many studies as an

authentic example for time compressing. In this example,

all activities are assumed to be done in normal or com-

pressed time. We extend this example for considering the

delay in project activities. The values of example param-

eters are presented in Table 2.

The other parameters are Kn ¼ 100; 000; H ¼
2000; I0 ¼ 0:1; CMax ¼ 1000; 000; and tMax ¼ 140.

The AOA network of presented example is shown in

Fig. 9.

The results of solving the example with NSGA-II are

presented as a Pareto front in Fig. 10.

As it is shown in Fig. 10, for faster finishing of projects,

we need to pay more money, and in this situation, we must

compress the activities more than normal situations. On the

other hand, if we want to finish the projects in maximum

acceptable due time, we have more money saving. The

result of the first and second objective functions for 50 runs

of NSGA-II and the values of compressing and delaying on

activities are presented in Table 3.

As it is shown in Table 3, only 20 results are unique in

50 obtained ones, and the other results are repetitive. In

addition, from the result no. 1 to no. 50, the time of fin-

ishing project increases, the project cost increases, and the

compression and delaying activities show increasing

trends. The duration of activities in each solution presented

in Tables 4 and 5 consequently.

Conclusion and further studies

In this study, we showed that adding some assumptions

to DTCTP can draw the problem nearer to real-world

situations. One of these assumptions is adding the time

value of money, because in many projects scheduling,

the time value of money has a very important effect on

making decision about compressing of the activities. In

addition, adding the ability of delaying on project

activities is another important factor appended to time–

cost tradeoff problems. Moreover, presenting a Pareto

front of results to decision makers gives them the

opportunity to select the better solution due to project

limitations and make the decision making procedure

more flexible.
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