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Abstract Crisp input and output data are fundamentally

indispensable in traditional data envelopment analysis

(DEA). However, the real-world problems often deal with

imprecise or ambiguous data. In this paper, we propose a

novel robust data envelopment model (RDEA) to investi-

gate the efficiencies of decision-making units (DMU) when

there are discrete uncertain input and output data. The

method is based upon the discrete robust optimization

approaches proposed by Mulvey et al. (1995) that utilizes

probable scenarios to capture the effect of ambiguous data

in the case study. Our primary concern in this research is

evaluating electricity distribution companies under uncer-

tainty about input/output data. To illustrate the ability of

proposed model, a numerical example of 38 Iranian elec-

tricity distribution companies is investigated. There are a

large amount ambiguous data about these companies. Some

electricity distribution companies may not report clear and

real statistics to the government. Thus, it is needed to uti-

lize a prominent approach to deal with this uncertainty. The

results reveal that the RDEA model is suitable and reliable

for target setting based on decision makers (DM’s) pref-

erences when there are uncertain input/output data.

Keywords Data envelopment analysis � Discrete
uncertain data � RDEA � Robust optimization

Introduction

In the highly competitive and dynamic markets derived

from globalization, the domestic firms should find a com-

petitive edge that enables them to survive in the market.

Moreover, limited natural resources and growing environ-

mental concerns and regulations about production pro-

cesses are new considerations influence the firms’

operations. Therefore, the operational efficiencies would

play an important role in survival and growth of firms.

Especially in electricity distribution companies, operational

efficiency is the most crucial issue among regulators

(Sadjadi and Omrani 2008).

Data envelopment analysis (DEA) is a well-known non-

parametric technique that measures the relative operational

efficiency of similar decision-making units (DMUs). The

most important capability of DEA is its ability to compare

several parameters (inputs/outputs) concurrently and sum

up them into a scalar measure of relative efficiency. The

efficiencies of DMUs are obtained from weights corre-

sponding to each input and output that computed through

the optimal solution of linear programming (LP) problems.

In fact, DEA is a data-oriented method for measuring and

benchmarking the relative efficiency of peer DMUs. Target

setting and improvement of DMU’s performance are

important features of DEA technique. There are several

successful real-world applications of DEA method in dif-

ferent public and private sector industries such as banks,

software development, health care, pharmacies, auto

manufacturing, fisheries and search engines (Saranga and

Phani 2009). Sadjadi and Omrani (2008), for instance, used
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DEA method for measuring the relative efficiency of

energy companies in Iran. Roghanian and Foroughi (2010)

implemented DEA to compare efficiencies of all regional

and international airports in Iran using different input/

output data. Goto and Tsutsui (1998) employed DEA

approach to measure overall cost and technical efficiencies

between Japanese and US electricity power plants. Saranga

and Phani (2009) employed non-parametric DEA models

and parametric methods such as regression analysis to

specify the factors that have contributed to the internal

operational efficiencies of firms in Indian pharmaceutical

industry.

One of the most important issues associated with DEA is

the uncertainty associated with the data. Since the resulted

formulation of DEA technique is in form of LP, one can

use traditional sensitivity analysis when there are one or a

few uncertain parameters. However, when all input data are

subject to uncertain, it is practically impossible to use

sensitivity analysis method to handle all uncertainties.

There are several methods for estimating the efficiencies of

DMUs under data uncertainty.

In the real-world problems, data are often contami-

nated by perturbations (Izadi and Kimiagari 2014; Khalaj

et al. 2013; Hosseini and Tarokh 2011; Shad et al. 2014).

Because of perturbations in data, the efficient frontier in

DEA is changed and the determined targets may become

incorrect. Thus, the correction in the proposed target

setting models would be necessary such that perturbation

in inputs and outputs data would be considered (Monf-

ared and Safi 2013; Bashiri et al. 2013). In a survey

study, Ben-Tal and Nemirovski (2000) showed that a

small perturbation on data could lead to infeasible solu-

tions for some benchmark optimization problems. On the

other hand, Bertsimas and Sim 2003, 2004; Bertsimas

and Thiele 2006 and Bertsimas et al. (2004) developed

new LP to adjust the robustness of the model against

conservatism of the solution. In our LP reformation of

DEA model, the results of the efficiency estimation and

target setting could be unreliable in many cases espe-

cially when the efficiency of a particular firm is close to

another. Mulvey et al. (1995) suggested an alternative

approach, which is called scenario-based robust optimi-

zation (RO). This approach integrates goal programming

formulations with a scenario-based description of prob-

lem data. It is a series of solutions of the model data

from a scenario set. This motivates us to use robust DEA

model to achieve more reliable results.

Sadjadi and Omrani (2008) developed a DEA model

based on robust optimization approach and proposed a

new formulation of DEA which is more reliable for

efficiency estimating and ranking strategies. Also, they

showed that the robust DEA founded upon Bertsimas

and Sim 2003, 2004; Bertsimas and Thiele 2006) and

Bertsimas et al. (2004) is easier and more applicable

than robust DEA based on Ben-Tal and Nemirovski

(2000) approach. Robust optimization generally refers to

the modeling of optimization problems with uncertain

data to obtain a solution that is guaranteed to be good

and feasible for all or most possible uncertain parameters

Bashiri and Moslemi (2013). Uncertainty in the param-

eters is containing all (or most) possible values that may

be realized for the corresponding parameters. Shokouhi

et al. (2010) proposed DEA under uncertainty which was

based on a robust optimization model that input and

output parameters were constrained to be within an

uncertainty set. They applied Monte Carlo simulation to

compute the conformity of the ranking in the RDEA

model.

Morita (2003) developed a method using DEA which

dealt with the use of non-parametric production frontiers

and did not require cost information on inputs and out-

puts for identifying the economies of scope. The most

robust multipliers have been defined for evaluation of the

dominance relation of efficient frontiers. Foroughi and

Aouni (2012) determined efficiency based on DEA with

interval data and setting up a full ranking of DMUs in

two phases. At first, interval efficiencies have been

computed; afterwards, they combined the lower and

upper bounds of the interval efficiencies. Hatami-Marbini

et al. (2012) developed a fuzzy DEA framework with a

Banker, Charnes and Cooper (BCC) model for measuring

crisp and interval efficiencies using alfa-level approach

to convert BCC model into an interval programming

model.

Our paper is closely related to Sadjadi andOmrani (2008).

They studied robust DEAmodel under continuous uncertain

data. To the best of authors’ knowledge, no research was

found that considers the discrete uncertainty regarding input

and output data of DEA. Therefore, there are two main

contributions in this study. For the first and foremost, we

extend DEA model to scenario-based description of the

uncertain data. Using RO approach of Mulvey et al. (1995),

we develop DEA formulation to consider discrete uncer-

tainty in input and output parameters as a set of possible

scenarios. In the second place, we explore the effect of the

discrete uncertain data on the degree of operational effi-

ciency achieved by the Iranian electricity distribution com-

panies (Satapathy and Mishra 2013).

The rest of the article is organized as follows. In ‘‘Data

envelopment analysis (DEA)’’, the background of DEA

approach has been described. In ‘‘Robust optimization’’,

scenario-based robust approach based on Mulvey robust

optimization has been expressed briefly. In ‘‘Robust DEA

based on Mulvey approach’’, we formulate robust DEA

model based on Mulvey approach. A real numerical

example demonstrates the efficacy of the model in Iranian
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Electricity Company in ‘‘Case study’’. At the end, con-

cluding remarks and some directions for future research are

given in ‘‘Conclusion’’.

Data envelopment analysis (DEA)

DEA is a non-parametric approach which determines a

piecewise linear efficiency frontier along the most efficient

companies (DMUs) and derives the relative efficiency

measures for all other companies (DMUs). The method

was first introduced by Charnes et al. (1978) and has been

widely implemented by many researchers in various sec-

tors. DEA identifies an efficient frontier made up of the

best practice DMUs to measure the relative efficiency

scores of the less efficient DMUs. We choose an input-

oriented approach of DEA to adjust the output by changing

the input parameters such that the efficiency is maximized.

Assume that n DMUs should be evaluated by DEA

method where each DMU has m input and t output data.

Let xij denotes ith input and ytj represents tth output of

DMU j. Moreover, let ur and vi be the dual variables

associated with xij and ytj, respectively. The fractional DEA

model is formulated as follows:

max z ¼
Pt

r¼1 uryr0Pm
i¼1 vixi0

; ð1Þ

s.t.
Pt

r¼1 uryrjPm
i¼1 vixij

� 1; j ¼ 1; . . .; n; ð2Þ

ur; vi � 0:

Model (1–3) is a non-linear programming problem

(NLP). The DEA model is solved n times to determine the

relative efficiencies of different DMUs. Since model (1–4)

is an NLP problem, Charnes et al. (1983) recommended a

simple modification of the objective function to linearize

the problem as follows:

maxz ¼
Xt

r¼1

ur0yr0; ð3Þ

s.t.

Xt

r¼1

uryrj �
Xm

i¼1

vixij � 0; ð4Þ

Xm

i¼1

vixi ¼ 1; ð5Þ

ur; vi � 0; 8j ¼ 1; 2; . . .; n:

LP problem (3–5) has been widely used for the past

three decades and the results have been commonly

accepted as measure of relative efficiencies of different

DMUs. However, when there is uncertainty with regard to

the inputs and the outputs data, specific techniques should

be used to make sure that small changes in input/output

data do not alter the resulted rankings.

Robust optimization

Classical modeling approaches in operation research under

uncertainty assume full probabilistic characterizations. The

learning which is needed to implement the policies derived

from these models is accomplished either through classical

statistical estimation procedures or subjective Bayesian

priors. However, in many models, the uncertainty is ignored

altogether, and a representative nominal value of the data is

used simply (e.g., expected values). The classical approach

to deal with uncertainty is stochastic programming (SP).

Recently, RO is introduced as a complementary alternative

to sensitivity analysis and SP. Indeed, RO, while not

without limitations, has some pros over stochastic LP and it

is more generally applicable. Soyster (1973) proposed the

highest protection model of the nominal linear optimization

problem which is the most conservative in practice in the

sense of the robust solution. Ben-Tal and Nemirovski

(2000) assumed that the true values of uncertain data entries

in ith inequality constraint are obtained from the nominal

values of the entries by random perturbations.

The need for robustness has been recognized in a

number of application areas. Mulvey et al. (1995) dealt

with optimization problems that have two distinct compo-

nents: a structural component that is fixed and free of any

noise in its input data, and a control component that is

subjected to noise in its input data. Then, they introduced

two sets of variables to formulate such problems:

x 2 Rn1 ; represents the vector of decision variables that

their optimal values are not dependent upon the realization

of the uncertain parameters. They are also called design

variables that cannot be adjusted once a specific realization

of the data is observed.

y 2 Rn2 ; represents the vector of control decision vari-

ables that their optimal value are contingent upon the

realization of uncertain parameters as well as the optimal

value of the design variables.

Assume an LP model with the following structure:

mincTxþ dTy; x 2 Rn1 ; y 2 Rn2 ; ð6Þ

s.t.

Ax ¼ b; ð7Þ
Bxþ Cy ¼ e; ð8Þ
x; y� 0:
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The objective function (11) consists of design and

control decision variables. Equation (12) represents the

structural constraints that their coefficients are assumed

fixed and free of noise. Equation (13) represents the control

constraints that their coefficients and parameters are sub-

ject to noise.

To formulate the RO problem, Mulvey et al. (1995)

defined a set of probable scenarios X ¼ 1; 2; . . .; Sf g for LP
model (14–15). To this end, for each scenario s 2 X, the
set ds;Bs;Cs; esf g of realizations for the coefficients and

parameters are associated. Moreover, the probability of

scenarios are indicated by ps,where
PS

s¼1 ps ¼ 1
� �

The

optimal solution of problem (6–8) will be robust with

respect to optimality if it stays ‘‘close’’ to optimal for any

probable scenario s 2 X. It is then called solution robust.

The solution is also robust with respect to feasibility if it

stays ‘‘almost’’ feasible for any probable scenario s 2 X. It
is then called model robust.

It is improbable that any solution to program (6–8) will

stay both feasible and optimal for all scenarios indicated by

s 2 X. If the system that is being modeled inherently has

substantial redundancies built in, then it might be possible

to achieve solutions that stay both feasible and optimal.

Otherwise, the RO model proposed by Mulvey et al. (1995)

enables us to measure the tradeoff between solution and

model robustness. Let us define a set y1; y2; . . .; ysf g of

control variables for each scenario s 2 X. Additionally, let
a set z1; z2; . . .; zsf g be the error vectors that measure the

infeasibility allowed in the control constraints under sce-

nario s 2 X. Now, consider the formulation of the RO

model as follows:

min r x; y1; . . .; ysð Þ þ xq z1; . . .; zsð Þ; ð9Þ

s.t.

Ax ¼ b; ð10Þ
Bsxþ Cs þ Zs ¼ es; 8s 2 X; ð11Þ
xs � 0; ys � 0; 8s 2 X:

With multiple probable scenarios, the objective function

n ¼ cTxþ dTy turns into a random variable that takes the

value ns ¼ cTxþ dTs ys, with probability ps. Therefore, there

is no longer a unique choice for an aggregate objective.

Term q z1; z2; . . .; zsð Þ penalizes violations of the control

under some of the scenarios. Different alternatives can be

employed for penalty function and it is also problem

dependent (Mulvey et al. 1995).For instance,

q z1; z2; . . .; zsð Þ ¼
P

s2X ðpszTs zsÞ is a quadratic penalty

function for equality constrained problems where both

positive and negative violations should be penalized.

Penalty function q z1; z2; . . .; zsð Þ ¼
P

s2X psmaxf0; zsg can

be applied for inequality control constraints when only

positive violations should be penalized (i.e., negative val-

ues of show slack in the inequality constraints which are

acceptable).By adjustment the goal programming weight

x, the RO model is able to generate a spectrum of solutions

that measure tradeoff between solution and model

robustness.

Von Neumann and Morgenstern (2007) interpreted the

risk as the variance of output. High variance of ns ¼
cTxþ dTs ys shows that there is high fluctuation in outcome.

Bar-Shira and Finkelshtain (1999) stated that using the

function, which simultaneously raises the mean and redu-

ces variance, is more robust than approaches based on

expected value. The following equation demonstrates the

mean–variance function for each scenario.

r x; y1; . . .; ysð Þ ¼
X

s2S
psns þ k

X

s2S
psðns �

X

s02S
p0s ns0 Þ

2:

ð12Þ

An efficient frontier can be generated simply by

parameterizing the tradeoff between risk and expected

outcome (i.e., by changing k, systematically).This formu-

lation needs that the distribution of the random variable ns
be symmetric around its means as well as the third and

higher moments of ns are not considered (Mulvey et al.

1995).

Robust DEA based on Mulvey approach

As mentioned, it is almost impossible for DEA applications

in many real cases to determine and capture the completely

accurate data of the inputs and outputs. In other words, the

real data are uncertain and the applications of the exact

models could lead to incorrect results.

Since the DEA model (3–20) is an LP, uncertainty in

output and input data (i.e., xij and yrj, respectively) can be

formulated by RO model based on approach of Mulvey

et al. (1995) [i.e., RO model (21–22)]. A set of scenario of

probable input and output data is indicated by X ¼
1; 2; . . .; Sf g with incidence probability ps, for each sce-

nario s 2 X.Therefore, the robust DEA model based on

Mulvey approach is as follows:

max
X

s2X

Xt

r¼1

psuryros � c
X

s2X
psdso

� k
X

s2X
ps ns �

X

s02X
ps0ns0

 !2

; ð13Þ

s.t.

Xm

i¼1

vixio þ dso ¼ 1; 8s 2 X; ð14Þ
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Xt

r¼1

uryrj �
Xm

i¼1

vixij þ dsj ¼ 0; 8s 2 X ; j ¼ 1; . . .; n;

ð15Þ
vi; ur; dsj � 0; 8i; r; s:

The objective function of the robust formulation of DEA

has three terms. The first term is the expected efficiency of

the DMUs. The second term is the variance of the effi-

ciency weighted by the goal programming parameter c. dsj
is error variable under scenario s for DMUj which adjusts

how much DMUj can go out of feasibility space under s

scenario. The infeasibility penalty value is measured by

term
P

s2X
psdso

� �

. Therefore, the third term of objective

function (26) penalizes a norm of the infeasibilities,

weighted by parameter k. The coefficients c and k are user-

defined parameters which identify the importance of vari-

ance and infeasibility terms, respectively. The robust for-

mulation (13–15) is an NLP program and the problem can

be more readily solved if it is transformed into an LP

problem. Therefore, we use transformation variables Qþ
s

and Q�
s for the quadratic term of the variance in the

objective function. Therefore, NLP model (13–15) converts

into the following LP model:

max
X

s2X

Xt

r¼1

psuryros � c
X

s2X
psdso � k

X

s2X
ps Qþ

s þ Q�
s

� �
;

ð16Þ

s.t.

Xm

i¼1

vixio þ dso ¼ 1; 8s 2 X; ð17Þ

Xt

r¼1

uryrj �
Xm

i¼1

vixij þ dsj ¼ 0; 8s 2 X ; j ¼ 1; . . .; n;

ð18Þ

Xt

r¼1

psuryros � ps
X

s02X

Xt

r¼1

ps0uryros

 !

¼ Qþ
s � Q�

s ;

8s 2 X;

ð19Þ

vi; ur; dsj;Q
þ
s ;Q

�
s � 0; 8i; r; s:

The variance term in objective function (13) is quadratic

and it has been transformed into linear form using variables

Qþ
s and Q�

s . Constraint (19) computes the variance term of

efficiency under each scenario. Term
P

s02X

Pt

r¼1

ps0uryros

� �

in

constraint (19) is the expected value of efficiencies which

indicates the amount of DMU’s efficiency under probable

scenarios. Since one of the variables Qþ
s and Q�

s takes the

positive value, this constraint measures the expected

deviation of efficiency from its expected value such as

variance. Therefore, the variance value in model (16–19) is

demonstrated via term
P

s2X
ps Qþ

s þ Q�
s

� �
� �

in objective

function.

Case study

To discuss the performance of the proposed robust DEA

based on Mulvey approach, we employ the proposed

method in the real problem of electricity distribution units.

Since, Mulvey robust approach yields an NLP program, we

implement the transformation variation to convert it into an

LP problem [see model (16–19)].

The actual data of year 2008 for Iranian electricity

distribution units (as DMUs) have been considered. The

Iranian electricity distribution units, established in 1992,

are public and operate under the supervision of TAVANIR

Company1 (Iran Power Generation, Transmission, and

Distribution Management Company). TAVANIR has con-

ceived that electricity distribution companies have high

incentive to not report real and clear data. It may be ben-

eficial for them to conceal real information and reveal

deceptive input and output data. Moreover, real and accu-

rate data about key performance criteria of all companies

do not always exist. Therefore, it is important to TAVA-

NIR to analyze efficiency of these companies under a large

amount of uncertainty. The analyzers of TAVANIR are

able to determine pessimistic, medium, and optimistic

scenarios for output and input data of the companies. We

propose RDEA to deal with these uncertain situations.

Jamasb and Pollitt (2000) extensively reviewed the

electricity international case studies and identified the most

often used inputs as operating cost, the number of

employees, transformer capacity and network length.

Moreover, the most frequently used outputs are recognized

as units of energy delivered, the number of customers and

the size of service area, as well. Hence, similar to Sadjadi

and Omrani (2008), we take account of five parameters as

inputs and output data for estimating the operational effi-

ciency of the electricity distribution units. The inputs are

the number of labors, transformer capacity, and network

length. The outputs are also units of total electricity sales

and the number of customers. It is noteworthy that the

measurement units for transformer capacity, the network

length and total electricity sales are MVA, Kilometer (Km)

and MWh, respectively.

1 TAVANIR is responsible for electricity generation, transmission,

and distribution in Iran. This company operates under the supervision

of Ministry of Energy.
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The case study contains annual data on 38 companies

observed in 2008 obtained from Power Generation,

Transmission, and Distribution Management Company

publications. Note that in the real world, these data are not

precise and they are estimated with a specific error level.

For instance, the network length and transformers capacity

data for electricity distribution units are capital parameters

and their actual values are not often available. Moreover,

total electricity sales and number of customers are not often

reported precisely. We take three scenarios into account for

data that are called pessimistic, medium, and optimistic

scenarios. The occurrence probabilities of these scenarios

are estimated as 0.25, 0.5, and 0.25, respectively. Table 1

demonstrates the inputs and outputs of units under these

scenarios.

(s1 = Pessimistic, s2 = Medium, s3 = Optimistic).

The robust DEA model based on Mulvey approach has

been applied to evaluate 38 companies for Iranian elec-

tricity distribution units under imprecise data in year 2008.

In this model, the expected value and variance impact of

probable scenarios have been considered. As mentioned

earlier, tradeoff between solution robustness and model

robustness can be derived by penalty parameter c. Figure 1

illustrates the effects of the penalty function on the

expected value of efficiency of DMUs. We know from the

figure that the expected value of efficiency of DMUs is

decreasing with the penalty parameter c. On the other hand,
by parameterizing the value k, the tradeoff between

expected value and variance can be constructed. The larger

the parameter k, the more importance of variance of sce-

narios will be. Figure 2 demonstrates the effects of

parameter k on efficiency of DMUs, as well. From the

figure, we know that when k increases, the expected value

of efficiency decreases. From these figures, it is also found

that in these cases, the parameters c and k significantly alter
DMUs’ efficiencies, but they rarely change DMUs ranking.

Note that in other cases, when there are considerable

variations among probable scenarios, changing the

parameter k may remarkably alters the ranking as well.

To get deep insight from robust DEA model (16–19), we

compare all terms of objective function systematically. To

this end, the goal programming parameters c and k are

assumed fixed (c ¼ 3 & k ¼ 0:8). Solving the robust DEA

model, all terms of objective function are calculated and

reported in columns of Table 2. Next to each column, the

ranking is indicated as well.

Now, let us consider the probable scenarios in more

detail. The pessimistic efficiency value of each DMU is the

worst and the optimistic efficiency of each DMU is the best

value of efficiency amount, which are found by efficiency

ranking under probable scenarios. For calculating the

efficiencies under different scenarios, we should set

appropriate values for probabilities. For instance, under

pessimistic scenario, we should set p1 = 1, p2 = 0, and

p3 = 0. The obtained efficiencies for DMUs in pessimistic,

medium, and optimistic scenarios are indicated in Table 2.

The efficiencies in these cases also give us the ranking of

DMUs in standard DEA formulation under each probable

scenario. Comparing the ranking of DMUs, we found that

the position of the electricity distribution units has slightly

changed under different probable scenarios.

As we saw earlier, different efficiencies and rankings

have obtained under various scenarios. Robust DEA model

(16–19) gives us an aggregate measure. Expected value and

variance terms of the model are indicated in Table 2. In the

last column of the table, expected value and variance

measures are integrated with coefficient k. The penalty

function
P

s2X
psdso estimates the infeasibility allowed in

different scenarios. The infeasibility penalty measure

associated with each DMU is also reported in the table. The

highest rank of infeasibility penalty measure demonstrates

the electricity distribution unit which has the lowest

infeasibility measure.

From the table we found that, the 20th electricity dis-

tribution unit is the highest efficient unit. For this DMU,

the efficiencies under pessimistic, medium, and optimistic

scenarios are 0.81981982, 0.9009009, and 1, respectively.

Hence, the expected value of the efficiency of this unit

would be 0.90540541. According to the infeasibility pen-

alty measures, we derive that 20th DMU has a low influ-

ence on the quality of its efficiency. Total objective value

of robust DEA for this DMU is 0.6658089; therefore, it

attains the first rank. Moreover, we obtain that 22th DMU

has a high influence on the quality of its efficiency where

the total objective value of robust DEA for this DMU is

0.1558; hence, it means that 22th DMU attains the last

position in all DMUs ranking. Moreover, we derive from

the Table 2, that the changing in parameters k and c does

not trigger a dramatic change in ranking of DMUs.

Conclusion

Uncertainty is an inherent part of the real performance

evaluation problems. On the one hand, some precise real data

about companies may not always available, on the other

hand, some companies may have an incentive to conceal

their real output and input data. Although, two approaches of

robust optimization for DEA was proposed by Sadjadi and

Omrani (2008), discrete data uncertainty based on probable

scenarios has not been considered yet. For scenario-based

uncertainty about input and output data, we presented a new

robust DEA model founded upon the approach of Mulvey

et al. (1995). One of the main advantages of this approach is

that it enables decision makers to draw a tradeoff between

204 J Ind Eng Int (2015) 11:199–208
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expected value and variance of DMUs’ efficiency under

probable scenarios, and a tradeoff between solution and

model robustness. We implemented the results of the pro-

posed model using data gathered from an Iranian energy

organization when optimistic, medium, and pessimistic

scenarios exist about their reported data. Our preliminary

results indicate that our robust DEA approach can provide

analysts with more decision criteria under uncertain condi-

tion. Moreover, sensitivity analyses on parameters k and c
can derive a spectrum of solutions that may be useful for

managerial tradeoffs.

Although our model is restricted to input-oriented model

and constant return to scale, one can easily generalize it to

output-oriented model and variable return to scale. Our

model considers statics situation, however, it can be readily

developed to dynamic situation to adapt the model in

multi-period real problems. There are also other directions

and suggestions for future research. First, we assumed that

all outputs are desirable; however, the real problem may be

the undesirable output data, decreasing the amount of

which is favorable. Extending our robust DEA model for

both desirable and undesirable data is interesting. Second,

the robust DEA model can be developed into the two-stage

or network DEA models where output of a DMU becomes

input data of other DMU(s). Eventually, the parameters of

the proposed model may be changed during the planning

horizon. In this situation, we can expand the suggested

model into the Malmquist model in dynamic condition.

Since the return to scale models is linear, if the discrete

uncertainties have been observed in data, one can utilize

our approach to analyze the efficiency of DMUs. It means

that all four models of CCR, BCC, CCR-BCC, and BCC-

Fig. 1 Comparison of objective function under k = 0.8 and different values of c

Fig. 2 Comparison of objective function under c = 0.8 and different values of k
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CCR can be appropriately altered by the robust optimiza-

tion approach.
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