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Abstract This paper addresses issue of sensitivity of effi-

ciency classification of variable returns to scale (VRS)

technology for enhancing the credibility of data envelop-

ment analysis (DEA) results in practical applications when

an additional decision making unit (DMU) needs to be

added to the set being considered. It also develops a

structured approach to assisting practitioners in making an

appropriate selection of variation range for inputs and

outputs of additional DMU so that this DMU be efficient

and the efficiency classification of VRS technology

remains unchanged. This stability region is simply speci-

fied by the concept of defining hyperplanes of production

possibility set of VRS technology and the corresponding

halfspaces. Furthermore, this study determines a stability

region for the additional DMU within which, in addition to

efficiency classification, the efficiency score of a specific

inefficient DMU is preserved and also using a simulation

method, a region in which some specific efficient DMUs

become inefficient is provided.

Keywords Data envelopment analysis � Efficiency �
Variable returns to scale technology � Stability region �
Defining hyperplane

Introduction

Data envelopment analysis (DEA) is a mathematical pro-

gramming technique to evaluate relative efficiency of

decision making units (DMUs) with multiple input–output.

An important feature of this DEA technique which has

been studied by many researchers is sensitivity analysis.

During the recent years, the issue of sensitivity and sta-

bility of DEA results has been extensively studied (see for

example Jahanshahloo et al. 2004, 2005a, b). The topic of

sensitivity (=stability or robustness) analysis has taken a

variety of forms in the DEA literature. One type of DEA

sensitivity analysis is based upon data variations. The first

DEA sensitivity analysis paper by Charnes et al. (1985)

examined change in a single output. This is followed by a

series of sensitivity analysis articles by Charnes and Ner-

alic (1989a, b) in which sufficient conditions preserving

efficiency for data variations of the test efficient DMU are

determined. In other words, only subset of stability region

has been achieved by their method. Moreover, the exis-

tence of alternative optimal bases is another defect of this

method. Another type of DEA sensitivity analysis is based

on super-efficiency DEA approach in which a test DMU is

not included in reference set (see for example Andersen

and Petersen 1993; Seiford and Zhu 1999: Charnes et al.

1992). In these methods, the variation range for inputs and

outputs of DMUs has been attained so that the efficiency

classification is preserved or an inefficient unit becomes

efficient or vice versa. In this field, Zhu (1996) and Seiford

and Zhu (1998) obtained the necessary and sufficient

condition for preserving efficiency of a test DMU. In fact,

the entire (largest) stability region which encompasses that

of Charnes et al. (1992) has been obtained. Afterwards,

Zhu (2001) used the super-efficiency approach in DEA

sensitivity analysis for preserving a DMU’s efficiency
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classification when various data changes are applied to all

DMUs. In this method, variable percentage data changes

are assumed for a test DMU and for the remaining DMUs.

Also, he considered the worst-case analysis where the

efficiency of the test DMU is deteriorating while the effi-

ciencies of the other DMUs are improving. Cooper et al.

(2001) have studied another research for the sensitivity of

DEA results to variations in the data. The newer method

makes it possible to determine ranges within which all data

may be varied for any DMU before a reclassification from

efficient to inefficient status (or vice versa) occurs. The

DEA sensitivity analysis methods that authors have just

reviewed are all confined to stability of DEA results under

data variations for inputs and outputs of DMUs. Other

topics such as sensitivity analysis to model changes or

diminution or augmentation of the number of DMUs are

not examined in detail. Therefore, the purpose of this

article is to propose such new type of DEA sensitivity

analysis. From this viewpoint, the suggested method, in

comparison with previous methods, provides a more

comprehensive framework for sensitivity analysis in DEA.

In addition to DEA, sensitivity analysis is used in many

fields, including industry. Pitchipoo et al. (2013) proposed

an appropriate platform for process industries in selecting

suppliers. In their research, the sensitivity analysis was

performed to improve the robustness of the results with

regard to the relative importance of the evaluation criteria

and the parameters of the evaluation process. Singh et al.

(2012) have studied the steady state behavior of a single

server queueing model with vacation and varying arrival

rates. They also used the sensitivity analysis to explore

the effect of different parameters on the performance

measures. Faghihinia and Mollaverdi (2012) presented a

multi-criterion decision-making model for preventive

maintenance planning. They also used sensitivity analysis

to verify the robustness of certain parameters of their

proposed model. Lachhwani and Poonia (2012) showed a

procedure for solving multilevel fractional programming

problem based on the fuzzy set theory and goal pro-

gramming approach. They also provided sensitivity

analysis with variation of tolerance values on decision

vectors to show how the solution is sensitive to the change

of tolerance values. In all of mentioned researches, Sen-

sitivity analysis is a technique used to determine how

different values of an independent variable will impact a

particular dependent variable under a given set of

assumptions. It is a method to predict the outcome of a

decision if a situation turns out to be different compared

to the key predictions. In fact, the validity proposed

models is tested by the sensitivity analysis and applying it

helps to understand how accurate the problem perfor-

mance is (for more analysis, see also Tabrizi and Razmi

2013; Fardis et al. 2013). In a similar way, this paper is

designed to examine the sensitivity of efficiency classifi-

cation of variable returns to scale (VRS) technology for

enhancing the credibility of DEA results in practical

applications where researchers are faced with a situation

in which an additional DMU needs to be added to the set

of the observed DMUs, a new production possibility set

(PPS) is obtained. As a result of the proposed method, the

variation range for inputs and outputs of additional DMU

is determined so that the additional DMU becomes effi-

cient and the classification of efficient and inefficient

DMUs of VRS technology remains unchanged; further-

more, the other special conditions are preserved. For

example, the efficiency score of a specific inefficient

DMU is preserved or a specific efficient DMU becomes

inefficient or all DMUs on a specific defining hyperplane

become inefficient.

The current article proceeds as follows: Sect. ‘‘Back-

ground’’ briefly reviews a mathematical basis used for this

study. Also, stability radius of DEA models in various

papers is defined. In Sect. ‘‘Proposed method’’, the pro-

posed method is presented. Four proposed methods are

applied for two numerical examples in Sect. ‘‘Numerical

examples’’. Finally, concluding remarks are summarized in

the last section.

Background

DEA is a mathematical programming technique to evaluate

relative efficiency of DMUs with multiple input–output. It

was introduced by Charnes et al. (1978). In their original

DEA model, Charnes et al. (CCR model) proposed that the

efficiency of a DMU can be obtained as the maximum of a

ratio of weighted outputs to weighted inputs, subject to the

condition that the same ratio for all DMUs must be less

than or equal to one. The envelopment in CCR is constant

returns to scale (CRS) meaning that a proportional increase

(decrease) in inputs results in a proportionate increase

(decrease) in outputs. However, in efficiency analysis, VRS

can also be considered. Banker et al. (1984) developed the

BCC model with VRS to estimate the efficiency of DMUs,

which we are interested in this paper.

Suppose that we have n DMUs, where each DMUj,

j = 1,…,n, produces the same s outputs in (possibly) dif-

ferent amounts yrj, r = 1,…,s, using the same m inputs xij,

i = 1,…,m, also in (possibly) different amounts. All data

are assumed to be nonnegative, but at least one of the

components of every input and output vector is positive. A

pair of such a semipositive input and output vector is called

an activity. The PPS is defined as the set of feasible

activities. Since, we are interested in BCC models in this

paper, we represent the PPS of VRS technology in the

following manner:
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Tv ¼ x; yð Þjx�
Xn

j¼1

kjxj; y�
Xn

j¼1

kjyj;

(

�
Xn

j¼1

kj ¼ 1; kj � 0; j ¼ 1; . . .; n

)

Definition 1 DMUp is called to be efficient in Tv if and

only if there does not exist another (x, y) 2 Tv such that

(-x, y) C (-xp, yp) and (-x, y) = (-xp, yp), otherwise,

DMUp is called inefficient. In other words, DMUp is called

efficient if and only if DMUp is a non-dominated DMU in

Tv.

Based on the PPS of VRS technology the envelopment

form of BCC model is in the following manner:

Min h

s:t:
Xn

j¼1

kjxj � hxp

Xn

j¼1

kjyj � yp

Xn

j¼1

kj ¼ 1

kj � 0; j ¼ 1; . . .; n

ð1Þ

For DMUp, its reference set, Ep, is defined by

Ep ¼ j k�j [ 0 in some optimal solution of ð1Þ
���

n o

� f1; . . .; ng

References of a DMUp are efficient DMUs that there is a

combination of them that dominates DMUp.

Model (1) used for evaluating relative efficiency of

DMUp (p = 1,…,n) classifies them into three different

categories, which are mutually disjoint.

1. DMUp is inefficient, then it is not a reference DMU

and there are other DMUs in its reference set, Ep.

2. DMUp is extreme efficient, then its only reference of

itself.

3. DMUp is nonextreme efficient, then in addition of

itself, there is at least one other DMU in Ep.

The multiplier form of BCC model based on the dual of

model (1) is as follows:

Max utyp þ u0

s:t: vtxp ¼ 1

utyj � vtxj þ u0 � 0; j ¼ 1; . . .; n

u� 0; v� 0; u0 free

ð2Þ

where ut = (u1, …, us) and vt = (v1, …, vm)are s-vector

and m-vector, respectively.

Definition 2 In (2), DMUp is efficient if and only if there

exists at least one optimal solution (u*, v*, u0
*) for (2), with

(u*, v*)[ 0 such that u*typ ? u0
* = 1; otherwise DMUp is

inefficient.

In the evaluation of DMUp (p [ {1,…,n}), if (u*, v*, u�0)

is an optimal solution of (2), u*t y - v*t x ? u�0 = 0 will be

a supporting hyperplane on the PPS (Cooper et al. 1999).

Consider DMUp in Fig. 1. Using model (2), it can be seen

that there are alternative optimal solutions (see cooper et al.

2007) which define an infinite number of hyperplanes

passing through DMUp, of which only two hyperplanes (H1

and H2) are defining hyperplanes. (for more details of

defining hyperplanes and properties see Jahanshahloo et al.

2007).

The efficiency score obtained by standard DEA models

cannot be used for ranking efficient DMUs. So Andersen

and Petersen (1993) developed a procedure for ranking

efficient units. They omitted the evaluating DMUp from the

observed DMUs. Based on the VRS technology, the new

PPS is as follows:

T
0
v ¼ ðx;yÞjx�

Xn

j¼1
j 6¼p

kjxj; y�
Xn

j¼1
j 6¼p

kjyj;
Xn

j¼1
j 6¼p

kj ¼ 1;kj�0; j¼ 1; . . .;n; j 6¼ p

8
>><

>>:

9
>>=

>>;

Let DMUp is evaluated. The AP model for ranking

DMUs is as follow:

H1
H

H2

DMUp

Fig. 1 H1 and H2 are defining. H is not defining
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zp ¼ Min h

s:t:
Xn

j¼1
j 6¼p

kjxj � hxp

Xn

j¼1
j 6¼p

kjyj � yp

Xn

j¼1
j 6¼p

kj ¼ 1

kj � 0; j ¼ 1; . . .; n; j 6¼ p

ð3Þ

For the optimal solution z�p:

• If z�p \ 1, then DMUp is inefficient.

• If z�p = 1, then DMUp is non-extreme efficient.

• If z�p [ 1 or (3) is not feasible, then DMUp is extreme

efficient.

Having identified efficient and inefficient DMUs in a DEA

analysis, one may want to know how sensitive these identifi-

cations are to possible variations in the data. A new avenue for

sensitivity analysiswas openedbyCharnes et al. (1992, 1996).

They determined ‘‘radii of stability’’ within which data vari-

ations will not alter a DMU’s classification from efficient to

inefficient status (or vice versa). Then, Cooper et al. (2001)

modified the models in Charnes et al. (1996) for sensitivity

analysis of inefficient DMUs. Their model have yielded a

radius of stability within which all inputs and outputs for an

inefficient DMUp can be improved without producing a

change from inefficient to efficient status. This means that no

reclassification to efficient status will occur within the sym-

metric region defined by them. However, for sensitivity

analysis of efficient DMUs, they used the proposed model by

Charnes et al. (1996). Jahanshahloo et al. (2005b) presented a

modified version of the proposed models in Cooper et al.

(2001) to determine stability radius for inputs and outputs of

efficient and inefficient DMUs by one-model approach. In the

method proposed byCooper et al. (2001), separatemodels are

solved for sensitivity analysis of efficient and inefficient

DMUs. Therefore, by solving n problems, classification of

DMUs is first identified. Then, for the purpose of obtaining the

variation ranges and radius of stability, at least n problems are

resolved. But in the latter method by solving only n problems,

classification, variations ranges of inputs and outputs and

radius of stability of all DMUs are identified. As mentioned,

stability radius is obtained from various methods to preserve

DEA results under data variations ofDMUs.Other topics such

as sensitivity (or stability) analysis in the presence of the

additional DMU are not examined yet. Therefore, the purpose

of this article is to propose such new type of DEA sensitivity

analysis that examined in the next section. As a result, the

procedure yields an exact stability radius for the additional

DMU within which the efficiency classification of VRS

technology remains unchanged.

Proposed method

This section outlines a sensitivity analysis approach for

DEA studies where researchers are faced with a situation in

which an additional DMU needs to be added to the set

being considered. As a result of proposed method, the

variation range for inputs and outputs of additional DMU is

determined, so that the additional DMU becomes efficient

and the classification of efficient and inefficient DMUs of

Tv remains unchanged. In this paper, this region is called

stability region. This stability region is specified by the

concept of defining hyperplanes of PPS of VRS technology

and the corresponding halfspaces.

Recall that we have n DMUs. By adding an additional

DMU (DMUn?1) to the set of observed DMUs and solving

the problem (3) for it, we have:

• If z�nþ1 B 1, the efficient frontier will remain

unchanged.

• If z�nþ1 [ 1, the additional DMU will change the

efficient frontier and some efficient DMUs may become

inefficient. Hence, a method for finding a stability

region in this case is presented. (It should be noted that

the new efficient frontier includes the additional DMU).

Regardless of the additional DMU, we first find all

efficient DMUs (with model (2)) and defining hyperplanes

of Tv (for a review see Jahanshahloo et al.

2005c, 2007, 2009) which we are interested in. It has been

assumed that the redundant hyperplanes, which have no

effect on the PPS, are omitted.

Let Hi ¼ x; yð Þju�ti y� v�ti xþ u�0i ¼ 0
� �

be one of these

defining hyperplanes. Corresponding to hyperplane Hi, the

halfspaceHi
? is defined as follows:

Hþ
i ¼ x; yð Þju�ti y� v�ti xþ u�0i � 0

� �

After determining of Hi, we find all efficient DMUs of

Tv that lie on Hi. Let X = {DMU1,…, DMUh} be the set of

these DMUs. Now, we find all defining hyperplanes of Tv
(excluding Hi) passing from each DMUl (l = 1,…, h)

defined as follows:

Hik ¼ ðx; yÞ u�tik y� v�tik xþ u�0ik
�� ¼ 0

n o
; k ¼ 1; . . .; f

Corresponding to hyperplane Hik , the halfspace H�
ik

is

defined as follows:

H�
ik
¼ ðx; yÞ u�tik y� v�tik xþ u�0ik

�� � 0
n o

; k ¼ 1; . . .; f
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Now, corresponding to the ith defining hyperplane, we

set

S0i ¼
\f

k¼1

H�
ik
; Si ¼ S0i

\
Hþ

i ; S ¼
[

i

Si

Theorem 1 S ¼
S
i

Si is a stability region for the addi-

tional DMU.

Proof Without loss of generality, we prove that the effi-

ciency classification remains unchanged by adding an

additional DMU to Si. By contradiction, suppose that one

of the efficient DMUs, say DMUl, becomes inefficient.

Therefore, there is another (virtual) DMU of new PPS such

that ð�
Pnþ1

j¼1 kjxj;
Pnþ1

j¼1 kjyjÞ� �xl; ylð Þ and ð�
Pnþ1

j¼1 kjxj;
Pnþ1

j¼1 kjyjÞ 6¼ �xl; ylð Þ.

Suppose that u�tik yl � v�tik xl þ u�0ik ¼ 0 is the passing

defining hyperplane (excluding Hi) from DMUl. Hence

u�tik

Xnþ1

j¼1

kjyj � v�tik

Xnþ1

j¼1

kjxj [ u�tik yl � v�tik xl

Set u�tik yl � v�tik xl ¼ �u�0ik . Then substitute it in the above

expression to obtain

u�tik

Xnþ1

j¼1

kjyj � v�tik

Xnþ1

j¼1

kjxj þ u�0ik [ 0

This implies that ð
Pnþ1

j¼1 kjxj;
Pnþ1

j¼1 kjyjÞ 62 Si. Conse-

quently there is no another (virtual) DMU of new PPS

which dominates DMUl. Thus, DMUl remains efficient.

Theorem 2 If the additional DMU does not belong to the

reference set of a specific inefficient DMUp the efficiency

score of DMUp will remain unchanged.

Proof Since additional DMU does not belong to the ref-

erence set of DMUp, kn?1
* = 0 (for each optimal solutions

of (1)), and elimination of DMUn?1 does not change the

optimal objective function value of (1). Therefore, the

efficiency score of DMUp remains unchanged.

Now, we obtain a stability region for the additional

DMU within which, in addition to efficiency classification,

the efficiency score of a specific inefficient DMU is pre-

served. In other words, by adding the additional DMU, the

status of a special inefficient DMU does not change (does

not become worse). One of the practical applications of this

subject is when an additional DMU needs to be added to

the set being considered, but by adding this additional

DMU, Decision Maker (DM) does not want to deteriorate

the situation of the other inefficient unit that is in the

sensitive position.

For this purpose, we first find all efficient DMUs and

defining hyperplanes of Tv. Then by omission of defining

hyperplane that includes the reference set of DMUp, we

repeat previous methodology for the remaining defining

hyperplanes of Tv.

Sometimes, in practice, DM faced problems in which he

wants to construct a new unit or department so that the

competitor efficient units become inefficient and the effi-

ciency classification of the other units remains unchanged.

In this way, we now determine a stability region for

additional DMU that an efficient DMUp becomes ineffi-

cient and also the efficiency classification of the other

DMUs remains unchanged.

Again we first find all efficient DMUs and defining

hyperplanes of Tv that passes through DMUp. Corre-

sponding to these hyperplanes, the halfspaces Hi
?

(i = 1,…,l) are defined in the following manner:

Hþ
i ¼ ðx; yÞ u�ti y

�� � v�ti xþ u�0i [ 0
� �

; i ¼ 1; . . .; l

Suppose that X = {DMU1,…, DMUh} be the set of

efficient DMUs of Tv that lies on H1 or H2 or …. or Hl. So,

we find all defining hyperplanes of Tv (excluding Hi) that

DMU1,…,DMUh lie on them. Let

H�
ik
¼ fðx; yÞ u�tik y� v�tik xþ u�0ik � 0g

�� ; k ¼ 1; . . .; fð Þ

be the halfspaces obtained by these hyperplanes.

Corresponding to DMUp, set

S1 ¼
\l

i¼1

Hþ
i ; S2 ¼

\f

k¼1

H�
ik
; S ¼ S1

\
S2

Theorem 3 S ¼ S1
T
S2 is a stability region for the

additional DMU that an efficient DMUp becomes inefficient

and also the efficiency classification of the other DMUs

remains unchanged.

Proof By contradiction, suppose that DMUp remains effi-

cient in the presence of additional DMU. Hence, there is at

least a defining hyperplane of new PPS, say Hp, which

passes through DMUp. Since DMUp is efficient, there is no

point of efficient facet contained in this hyperplane domi-

nated by (virtual) DMUs that belong to new PPS. Conse-

quently, DMUn?1 belongs to the halfspace Hp
- of passing

defining hyperplane from DMUp. So, DMUn?1 62 S is a

contradiction.

In the following, we wish to determine a stability region

for the additional DMU in which all DMUs that lie on a

specific defining hyperplane (H) of Tv become inefficient.

Suppose that X = {DMU1,…,DMUh} be the set of

efficient DMUs that lies on H. So, we find all defining

hyperplanes of Tv (excluding H) which DMU1,…,DMUh

lie on them. Corresponding to these hyperplanes, the

halfspaces Hi
? (i = 1,…,l) are defined as follows:

Hþ
i ¼ ðx; yÞ u�ti y

�� � v�ti xþ u�0i [ 0
� �

; i ¼ 1; . . .; l
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Corresponding to the remaining defining hyperplanes of

Tv, we find halfspaces H�
ik

k ¼ 1; . . .; fð Þ
Set

S1 ¼
\l

i¼1

Hþ
i ; S2 ¼

\f

k¼1

H�
ik
; S ¼ S1

\
S2

In the first glance, it seems that there should be enough

information locally to determine whether a new DMU is

inside a stability region without necessarily finding a full

representation of this region using hyperplanes with

resolving the entire DEA problem whenever there is a new

exterior DMU and hence this leads to solve (n ? 1) linear

programs whereas the scheme proposed requires a com-

plete description of Tv in terms of hyperplanes which is

computationally confusing.

There is one obvious alternative:

Despite the apparent simplicity of this approach, it has

been noticed that the procedure needs to resolve (n ? 1)

linear programs in the presence of additional DMU and the

problem actually grows every time a new DMU is con-

sidered. In this method we also cannot determine the

variation range of inputs and outputs and stability region of

additional DMU. However, in our method, since n earlier

DMUs evaluated by multiplier form and the classification

of efficient and inefficient DMUs specified, we can easily

find all defining hyperplanes of Tv with applying the pro-

posed algorithm in Jahanshahloo et al. (2009). On the other

hand, using optimal solutions of the multiplier form when n

DMUs are evaluated, we can determine the stability region

of additional DMU which satisfies the special conditions

for the rest of DMUs (For example, the efficiency score of

a specific inefficient unit must be preserved or some

competitor efficient units need to be inefficient in the

presence of additional DMU).

Numerical examples

To illustrate the proposed method, we present two

examples.

Example 1 Consider the six DMUs with single input and

single output as defined in Table 1.

By evaluating these DMUs by means of the model (2),

we find out that the DMUs A, B, C and D are efficient and

DMUs E and F are inefficient.

We find all defining hyperplanes of Tv defined in the

following manner:

HA ¼ fðx; yÞ �xþ 1 ¼ 0gj
HAB ¼ fðx; yÞ y� 3xþ 2 ¼ 0gj
HBC ¼ fðx; yÞ y� x� 2 ¼ 0gj
HCD ¼ fðx; yÞ 3y� x� 14 ¼ 0gj
HD ¼ fðx; yÞ y� 7 ¼ 0gj

For finding a stability region for the additional DMU,

we first consider HBC. The set of all DMUs that lie on HBC,

X, is defined by

X ¼ DMUB; DMUCf g

Hence, we will have

Hþ
BC ¼ fðx; yÞ y� x� 2� 0gj

H�
AB ¼ fðx; yÞ y� 3xþ 2� 0gj

H�
CD ¼ fðx; yÞ 3y� x� 14� 0gj
S0BC ¼ H�

AB

\
H�

CD

¼ fðx; yÞ y� 3xþ 2� 0; 3y� x� 14� 0gj
SBC ¼ S0BC

\
Hþ

BC

¼ fðx; yÞ y� 3xþ 2� 0j ; 3y� x� 14� 0; y� x� 2� 0g

Figure 2 illustrates a stability region for the additional

DMU corresponding to HBC. So, we repeat the previous

methodology for each defining hyperplane of Tv. S ¼ [iSi
is a stability region of this problem.

Now, we obtain a stability region for the additional

DMU within which, in addition to efficiency classification,

the efficiency score of DMUF is preserved.

Table 1 DMUs’ data of

Example 1
DMUs A B C D E F

Input 1 2 4 7 3 6

Output 1 4 6 7 2 5

A

Input

B

C

D

E

F

Output

Fig. 2 Stability region for the additional DMU corresponding to HBC
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By omission of defining hyperplane that included the

reference set of DMUF, HBC, we get:

S1 ¼ fðx; yÞ �xþ 1� 0; y� 3xþ 2� 0gj
S2 ¼ fðx; yÞ �y� 3xþ 2� 0; y� x� 2� 0; �xþ 1� 0gj
S3 ¼ fðx; yÞ 3y� x� 14� 0; y� x� 2� 0; y� 7� 0gj
S4 ¼ fðx; yÞ y� 7� 0; 3y� x� 14� 0gj

S ¼
T4

i¼1 Si is a stability region for the additional DMU

as shown in Fig. 3.

Example 2 Consider the data setting of Table 2 contain 7

DMUs with single input and single output.

The results of model (2) show five DMUs, A, B, P,

C and D are efficient.

Now, we are interested to determine a stability region

for the additional DMU such that DMUP becomes ineffi-

cient and also the efficiency classification of the other

DMUs remains unchanged. We first find all defining

hyperplanes of Tv which are passing from DMUP. These

hyperplanes and corresponding halfspaces (Hi
?) are as

follows:

HBP ¼ fðx; yÞ 2y� 3x� 2 ¼ 0gj
HPC ¼ fðx; yÞ 2y� x� 10 ¼ 0gj
Hþ

BP ¼ fðx; yÞ 2y� 3x� 2i 0gj
Hþ

PC ¼ fðx; yÞ 2y� x� 10i 0gj

X = {DMUB, DMUC} is the set of efficient DMUs of Tv
that lies on HBP or HPC. The defining hyperplanes passing

from the members of set X (excluding HBP and HPC) and

corresponding halfspaces ðH�
ik
Þ are as follows:

HAB ¼ fðx; yÞ y� 3xþ 2 ¼ 0gj
HCD ¼ fðx; yÞ 4y� x� 26 ¼ 0gj
H�

AB ¼ fðx; yÞ y� 3xþ 2� 0gj
H�

CD ¼ fðx; yÞ 4y� x� 26� 0gj

Therefore, we will have:

S1 ¼ Hþ
BP

\
Hþ

PC

¼ fðx; yÞ 2y� 3x� 2i 0; 2y� x� 10i 0gj
S2 ¼ H�

AB

\
H�

CD

¼ fðx; yÞ y� 3xþ 2� 0j ; 4y� x� 26� 0g
S ¼ S1

\
S2

¼ fðx; yÞ 2y� 3x� 2i 0; 2y� x� 10i0; y� 3xj
þ 2� 0; 4y� x� 26� 0g

:

S is a stability region as shown in Fig. 4.

We wish to determine a stability region in which DMUP

and DMUC that lie on HPC become inefficient as shown in

Fig. 5.

For this purpose, we perform as follows:

A

Input

B

C

D

E

F

Output

Fig. 3 Stability region for the additional DMU where the efficiency

score of DMUF is preserved

Table 2 DMUs’ data of Example 2

DMUs A B P C D E F

Input 1 2 4 6 10 4 6

Output 1 4 7 8 9 4 5

A

Input

B

P

C

E

F

Output D

Fig. 4 Stability region for the additional DMU where DMUp

becomes inefficient
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Hþ
BP ¼ fðx; yÞ 2y� 3x� 2i 0gj

Hþ
CD ¼ fðx; yÞ 4y� x� 26i 0gj
H�

A ¼ fðx; yÞ �xþ 1� 0gj
H�

AB ¼ x; yð Þjy� 3xþ 2� 0f g
H�

D ¼ fðx; yÞ y� 9� 0gj
S1 ¼ Hþ

BP

\
Hþ

CD

¼ fðx; yÞ 2y� 3x� 2i 0; 4y� x� 26i 0gj
S2 ¼ H�

A

\
H�

AB

\
H�

D

¼ fðx; yÞ �xþ 1� 0j ; y� 3xþ 2� 0; y� 9� 0g
S ¼ S1

\
S2

¼ fðx; yÞ 2y� 3x� 2i 0; 4y� x� 26i 0;�xþ 1� 0;j
y� 3xþ 2� 0; y� 9� 0g

Conclusion

In this paper, a new version of proposed methods for

sensitivity analysis DMUs has been presented. The prob-

lem is to assess the sensitivity and stability of efficiency

classification of VRS technology when an additional DMU

needs to be added to the set being considered. As a result of

proposed method, a stability region for the additional DMU

is specified within which the additional DMU becomes

efficient and the classification of efficient and inefficient

DMUs of Tv remains unchanged. This stability region is

simply specified by the concept of defining hyperplanes of

PPS of VRS technology and the corresponding halfspaces.

Furthermore, this stability region is determined under the

special conditions in which the efficiency score of a

specific inefficient DMU remains unchanged or some

specific efficient DMUs become inefficient. Practical

applications of each method provided in this article could

be the reason for the contribution of this work. Also, the

following directions can be applied for future researches:

1. Finding a stability region for the additional DMU

under new condition in which the ranking of efficient

DMUs does not change.

2. Finding a stability region for the additional DMU

under new condition in which returns to scale of the

other DMUs does not change.

3. Developing the proposed methods for preserving

efficiency classification of constant returns to scale

(CRS) technology in data envelopment analysis.

4. Determining the largest stability region for the addi-

tional DMU under different proposed conditions in

Sect. ‘‘Prosposed method’’.

The largest stability region means that if the additional

DMU is placed outside this region, at least one of the efficient

units will move interior of Tv and becomes inefficient.
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