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Abstract
Acyclic phase-type distributions form a versatile model, serving as approximations to many probability distributions in 
various circumstances. They exhibit special properties and characteristics that usually make their applications attractive. 
Compared to acyclic continuous phase-type (ACPH) distributions, acyclic discrete phase-type (ADPH) distributions and 
their subclasses (ADPH family) have received less attention in the literature. In this paper, we present the definition, proper-
ties, characteristics and PH representations of ADPH distributions and their subclasses with finite state space. Based on the 
definitions of geometric and shifted geometric distributions, we propose a distinct classification for the ADPH subclasses 
analogous to ACPH family. We develop the PH representation for each ADPH subclass and prove them through their clo-
sure properties. The advantage of our proposed classifications is in applying precise representations of each subclass and 
preventing miscalculation of the probability mass function, by computing the ADPH family based on geometric and shifted 
geometric distributions.

Keywords Phase-type distribution · Acyclic discrete phase-type distribution (ADPH) · Classification of ADPH · 
Representations of ADPH · Geometric and shifted geometric distribution

Introduction

Phase-type (PH) distributions, introduced by Neuts (1975, 
1981), form a very general class of distributions that have 
been successfully applied in a wide variety of stochastic 
disciplines for the last few decades. Acyclic subsets of PH 
(APH) distributions, continuous and discrete, are the impor-
tant and interesting subclass of PH distributions with trian-
gular matrix representation. They constitute a versatile mod-
eling tool for as much as firstly, they admit a unique minimal 
representation, called canonical form (Bobbio et al. 2003). 
Secondly, the canonical form would simplify the computa-
tion of the best approximation for given distribution, by not 
taking into account redundant parameters. Thirdly, the com-
plexity of overall system model can be controlled by APH 
minimal representation (Cumani 1982). Special properties 

and characteristics of APH distributions usually make the 
analysis easier and they are highly applicable in mathemati-
cal and analytical approaches. Two important applications of 
APH distributions in stochastic modeling, namely smaller-
sized representations, and estimation of the APH distribution 
parameters are reviewed in the following paragraphs.

The first application, smaller-sized representations, is one 
of the most interesting theoretical research questions in the 
field of APH distributions. The size of the matrix representa-
tions has a strong effect on the computational efforts which 
is needed in analyzing this kind of distributions. These rep-
resentations, however, are not unique, and two representa-
tions of the same distribution can differ drastically in size. 
The systematic study of representations for acyclic continu-
ous phase-type (ACPH) distributions has been initiated by 
Cumani (1982). In particular, he proves that every ACPH 
representation has a bidiagonal representation of the same 
or less order. Aside from the bidiagonal representation, he 
also provides two other canonical forms and straightforward 
procedures to transform one to others. In O’Cinneide (1989), 
the result of Cumani (1982) is extended and restated that 
every PH representation with a triangular PH generator has 
a Coxian representation. O’Cinneide (1991, 1993) identifies 
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liminality conditions without presenting algorithmic con-
siderations. Mocanu and Commault (1999) introduce an 
extension of the triangular PH distributions (monocyclic 
distributions). They show that any PH distribution can be 
represented as a mixture of these simple sparse distributions. 
For two recent decades, most researchers have focused their 
attention on algorithms to construct the minimal representa-
tion of any ACPH distribution. He and Zhang (2008) provide 
an algorithm for computing minimal representations of APH 
distribution. This algorithm involves converting the given 
ACPH distribution to a representation that only contains the 
poles of the distribution and solving a system of nonlinear 
equations for each additional state. Pulungan and Hermanns 
(2008a) develop an algorithm to address the same problem 
which is considered by He and Zhang (2008). Their algo-
rithm eliminates states from a representation until no further 
elimination is possible. He et al. (2011) present two new 
algorithms to find a Coxian representation for any PH rep-
resentation with only real eigenvalues. Pulungan and Her-
manns (2013) develop an algorithm that almost surely (i.e., 
with probability 1) finds the smallest possible representation 
of a given ACPH distribution. The algorithm is embedded in 
a simple, yet expressive calculus of delays, enabling the user 
to specify complex delay dependencies with the aid of con-
venient operations. The first exploration of acyclic discrete 
phase-type (ADPH) distributions is started by Bobbio et al. 
(2003), and they show that similar to the continuous case 
(Cumani 1982), the ADPH class admits a unique minimal 
representation, called canonical form. Bobbio et al. (2004) 
introduce a new parameter for DPH distributions named 
scale factor. This new parameter represents the time span 
associated with each step and can be viewed as a new degree 
of freedom since its choice largely impacts the shape and 
properties of a DPH distribution over the continuous time 
axis. They show that the case when the scale factor is strictly 
positive results in DPH distributions and if the scale factor 
is zero, the resulting class is the class of CPH distributions. 
New results on the canonical representation of DPH with 2 
and 3 phases (DPH(2) and DPH(3)) as well as discrete MAP 
with 2 phases (DMAP(2)) are presented by Meszáros et al. 
(2014). They provide explicit formulas for parameter match-
ing using these canonical forms, give moments and correla-
tion bounds for these models and show their efficiency in 
fitting through numerical examples. The canonical represen-
tation of DPH distributions with 3 phases is investigated by 
Horváth et al. (2015). During the course of their investiga-
tion, they find that the problem of canonical representation 
of DPH distributions with 3 phases is far more complex than 
the one of CPH distribution with 3 phases. As a result, they 
distinguish 8 different subclasses of DPH distribution with 3 
phases, while it is enough to distinguish 3 subclasses of CPH 
distribution with 3 phases for their canonical representation.

The second application, estimation of the PH distribu-
tion parameters, is a critical problem with several numerical 
limitations in practice. The difficulty of the fitting problem 
is largely related to the nonlinearity of the model and to the 
number of the parameters to be estimated (Bobbio and Telek 
1994). Considerations of model parsimony have led many 
authors to constrain many of the PH transition rates to be the 
same or functionally related such as ACPH subclasses (Slud 
and Suntornchost 2014). One of the CPH subclass distribu-
tions, represented by the so-called Coxian distribution (Cox 
1955), can be formally considered as resulting from a series 
of exponential stages with complex valued transition rates. 
Fitting a Coxian distribution of order n needs the estimation 
of 2n parameters. Even with the reduced number of param-
eters required for the Coxian distribution, estimation can 
still be problematic. This is due to the nonlinear expression 
and non-unique representations of the distribution which 
requires optimizing a number of parameters simultaneously 
(Marshall and Zenga 2012). In order to overcome these 
problems, various restrictions of the ACPH representation 
are defined by many authors.

A simple and popular restriction representation of ACPH 
distributions consists of mixtures of Erlang or hyper-Erlang 
distributions (HErD). Bux and Herzog (1977) develop a 
nonlinear estimation approach based on the matching of 
the first two moments coupled with the minimization of a 
distance measure with respect to the mixtures of Erlangs. 
Singh et al. (1977) consider series/parallel combinations 
of Erlang stages and estimated parameters by matching an 
equal number of moments by means of a Newton–Raph-
son numerical method. In some series of papers, John-
son and Taaffe explore the problem of matching the first 
three moments to a mixture of two Erlangs (Johnson and 
Taaffe 1989, 1990a; Johnson 1993). Thümmler et al. (2006) 
develop a new approach by an expectation–maximization 
(EM) algorithm for mixed-type distributions to compute 
MLEs of hyper-Erlang distributions (mixed-Erlang distribu-
tions). Since their approach focuses only on the hyper-Erlang 
distributions, the computation speed is improved over other 
algorithms such as Asmussen et al.’s EM algorithm (Asmus-
sen et al. 1996).

Another popular restriction representation of ACPH dis-
tributions is hyper-exponential distribution introduced by 
Botta and Harris (1986). An ML estimation procedure for 
hyper-exponential distribution has been described by Harris 
and Sykes (1984). A new technique for fitting long-tailed 
data sets is proposed by Riska et al. (2004). This technique 
fits data sets with non-monotone densities into a mixture 
of Erlang and hyper-exponential distributions, and data sets 
with completely monotone densities into hyper-exponential 
distributions. Their method partitions the data set in a divide-
and-conquer fashion and uses the EM algorithm to fit the 
data of each partition into a hyper-exponential distribution. 
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Sadre and Haverkort (2008) focus on the EM-based fitting 
of heavy-tailed distributed data to hyper-exponential distri-
butions. They present a data aggregation algorithm which 
accelerates the fitting by several orders of magnitude.

The primary attempt to define the subclass of ADPH is 
given by Bobbio et al. (2003). They propose three canonical 
forms to introduce the subclasses of ADPH and present the 
ML estimation algorithm for one of them. Callut and Dupont 
(2006) mention some example of ADPH such as negative 
binomial, the mixture of negative binomials and the discrete 
Coxian distribution. They also present an EM algorithm con-
sidered as an adaptation to discrete distributions of the work 
of Asmussen et al. (1996), which handles CPH distributions.

Table 1 summarizes the majority of studies performed 
on fitting algorithms and smaller-sized representation 
approaches related to APH distributions. Based on the 
reviewed literature, listed in Table 1, ACPH distribution and 
its subclasses have been extensively studied. Conversely, the 
ADPH distribution and its subclasses (ADPH family) have 
received very little attention, and most studies presented 
in the literature are just concentrated on general ADPH. 

Moreover, the ADPH family takes advantage of the canoni-
cal form, minimal representation as well as simplification 
of computation.

The present paper is concentrated on the definition, prop-
erties, characteristics, and PH representations of ADPH fam-
ily with finite state space. In this research, a distinct classifi-
cation is developed for the subclasses of ADPH distributions 
based on two different definitions of the geometric distribu-
tion. The advantage of ADPH classifications is in applying 
correct representation of each class and preventing miscal-
culation of probability mass function (pmf), by computing 
the ADPH family based on geometric and shifted geometric 
distributions. For example, Esparza et al. (2010) define pmf 
of Shifted negative binomial distribution while use PH rep-
resentation of negative binomial distribution. In addition, all 
the subclasses of ADPH analogues to ACPH are introduced 
and the properties, characteristics and PH representations 
related to each subclass are calculated and proven.

The rest of the paper is organized as follows: Sect. 2 
describes the basic definitions, notation, and properties of 
DPH distributions. Section 3 introduces the definition of 

Table 1  A review of APH studies based on the fitting algorithm and smaller-sized representation

Distribution Fitting algorithm Smaller-sized representation

ACPH Hyper-exponential Whitt (1982); Harris and Sykes (1984); Botta 
and Harris (1986); Johnson and Taaffe (1991); 
Feldmann and Whitt (1997); Khayari et al. (2003); 
Riska et al. (2004); Dufresne (2007); Singh and 
Dattatreya (2007); Sadre and Haverkort (2008); Yu 
et al. (2012); Reinecke et al. (2013)

Assaf et al. (1982); Augustin and Büscher 
(1982); Dehon and Latouche (1982); David 
and Larry (1987); Maier (1991); Har-
ris et al. (1992); Maier and O’Cinneide 
(1992); Commault and Chemla (1993); 
O’Cinneide (1993); Commault and Chemla 
(1996); Chauveau et al. (1996); Mocanu 
and Commault (1999); O’Cinneide (1999); 
Commault et al. (2002); Commault (2003); 
Commault and Mocanu (2003); M. W. 
Fackrell (2003); Bobbio et al. (2004); He 
and Zhang (2005), (2006a, b); Horváth and 
Telek (2007b); He and Zhang (2007); Telek 
and Horváth (2007); Bodrog et al. (2008); 
Éltető and Vaderna (2008); Pulungan and 
Hermanns (2008b); Horváth and Telek 
(2009); Fackrell et al. (2010); Pulungan and 
Hermanns (2013); Jain and Bhagat (2014); 
Horváth and Telek (2015)

Hyper-erlang Sauer and Chandy (1975); Bux and Herzog (1977); 
Singh et al. (1977); Johnson and Taaffe (1989), 
(1990a, b); Schmickler (1992); Johnson (1993); 
Malhotra and Reibman (1993); Wang et al. (2005), 
(2006); Thümmler et al. (2006); Panchenko and 
Thümmler (2007); Wang et al. (2008); Lee and Lin 
(2010); Kim and Thomas (2011); Horváth (2013); 
Hu et al. (2013); Gong (2014)

General ACPH & Coxian Marie (1980); Parr and Schucany (1980); Altiok 
(1985); Van Der Heijden (1988); de Liefvoort 
(1990); Bobbio and Cumani (1992); Faddy (1993); 
Bobbio and Telek (1994); Faddy (1994), (1998); 
Faddy and McClean (1999); Horvath and Telek 
(2000); Vanden Bosch et al. (2000); Faddy (2002); 
A. Horváth and Telek (2002); Telek and Heindl 
(2002); Osogami and Harchol-Balter (2003a, b); 
Pérez-Ocón and Ruiz-Castro (2003); Bobbio et al. 
(2005); Osogami and Harchol-Balter (2006); Hor-
váth and Telek (2007a), b; Buchholz and Kriege 
(2009); Buchholz et al. (2010); Marshall and Zenga 
(2012)

ADPH General ADPH Horváth and Telek (2002); Telek and Heindl (2002); 
Isensee and Horton (2005); Meszáros et al. (2014); 
Akar (2015)

Telek (2000); Bobbio et al. (2004); Dayar 
(2005); Mészáros and Telek (2013); Papp 
and Telek (2013); Meszáros et al. (2014); 
Horváth et al. (2015)Mixtures of binomial/negative 

binomial/geometric distribu-
tions

Adan et al. (1995); Bobbio et al. (2003)
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ADPH distribution and presents two different representa-
tions of ADPH family based on two different definitions of 
the geometric distribution. The subclasses of ADPH distri-
bution compared with the subclasses of ACPH distribution 
and some properties are proven. Finally, concluding remarks 
are given in Sect. 4.

Discrete phase‑type distribution and their 
properties

The following subsections summarize the definition and 
main properties of DPH family of distributions.

Definition and notation

DPH distributions have been introduced and formalized by 
Neuts (1981) which are defined as the distribution of time 
until absorption in a discrete-state discrete-time Markov 
chain (DTMC) with n transient states, and one absorbing 
state. More precisely, assume that {X(n)}n≥0 denote the 
DTMC with finite state space S = {0, 1, 2,… , n} , where 
the absorbing state is numbered 0 and the transient states 
are numbered 1, 2,…,n. DPH distribution is defined by 
Z = inf(i ∈ ℕ ∶ Xi = 0) with representation (�,�) , and is 
shown by Z ∼ PHd(�,�) . The one-step transition probabil-
ity matrix of the corresponding DTMC can be partitioned as

where � is a square matrix of dimension n, t is a column 
vector and 0 is a row vector of dimension n. Since P is a 
transition probability matrix, we have that Tij ≥ 0 and 
ti ≥ 0∀i, j ∈ S and �� + � = � where 1 is the column vector 
ones of the appropriate dimension n. The initial probability 
for transient and absorbing states is denoted with the row 
vector (�,�0) and �0 = 1 − ��.

The cumulative distribution function of the DPH distribu-
tion Z ∼ PHd(�,�) is calculated by

the probability mass function is

and the factorial moment is

(1)� =

[
� �

� 1

]
,

(2)FZ(x) = P(Z ≤ x) = � − ��
x
� for x = 0, 1, 2,…

(3)
PZ(x) = Pr(Z = x) = ��

x−1
� for x = 1, 2,…

PZ(0) = Pr(Z = 0) = �0

(4)
fk = E[X(X − 1)… (X − k + 1)]

= k!�(� − �)−k�k−1
� for k = 1, 2,…

Closure properties

One of the appealing features of PH distributions is that the 
class is closed under a number of operations. The closure 
properties are a main contributing factor to the popularity of 
these distributions in stochastic modeling. The DPH distri-
butions inherit many properties from the CPH distributions 
(Maier 1991), and both of them are closed under addition, 
finite mixtures, and finite order statistics (Esparza et al. 
2010). However, one of the most interesting properties of 
the DPH distributions is that they can represent in an exact 
way a number of distributions with finite support.

Assume that Zi ∼ PHd(�
(i),�(i)) for i = 1, 2 are two inde-

pendent DPH distributed random variables of order ni.

(1) Convolution of  PHd: the sum Z = Z1 + Z2 ∼ PHd(�,�) 
has a DPH distribution of order n = n1 + n2 with repre-
sentation

Proof See Latouche and Ramaswami (1999), 
Theorem 2.6.1.

(2) Mixture of  PHd: the convex mixture sum 
Z = �Z1 + (1 − �)Z2 ∼ PHd(�,�) has a DPH distribu-
tion of order n = n1 + n2 with representation

Proof See Latouche and Ramaswami (1999), 
Theorem 2.6.2.

(3) M i n i m u m  o f   P H d :  T h e  m i n i m u m 
Z = min(Z1, Z2) ∼ PHd(�,�) has a DPH distribution 
of order n = n1 ⋅ n2 with representation

where ⊗ is the Kronecker product.
  Proof See Latouche and Ramaswami (1999), Theo-

rem 2.6.4.
(4) Maximum of  PHd: The maximum Z = max(Z1,

Z2) ∼ PHd(�,�) has a DPH distribution of order 
n = n1.n2 + n1 + n2 + 1 with representation

(5)𝛑 =

(
𝛑
(1),�

(1)

0
𝛑
(2)
)

and T =

(
T(1)

𝐭(1)𝛑(2)

𝟎 T(2)

)

(6)𝛑 =
(
�𝛑(1), (1 − �)𝛑(2)

)
and T =

(
T(1)

𝟎

𝟎 T(2)

)

(7)𝛑 = 𝛑
(1) ⊗ 𝛑

(2) and T = T(1) ⊗ T(2)

(8)

𝛑 =

�
𝛑
(1) ⊗ 𝛑

(2),𝛑(1)𝜋(2)

0
,𝜋(1)

0
𝛑
(2), 0

�
and

T =

⎛
⎜⎜⎜⎜⎝

T(1) ⊗ T(2) T(1) ⊗ 𝐭(2) 𝐭(1) ⊗ T(2)
𝐭(1) ⊗ 𝐭(2)

𝟎 T(1)
𝟎 𝟎

𝟎 𝟎 T(2)
𝟎

𝟎 𝟎 𝟎 𝟎

⎞⎟⎟⎟⎟⎠
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Proof See Alfa (2016), p. 40.
(5) Shift of  PHd: The shifted Z = max(Z1−r, 0) ∼ PHd(�,�) 

where r ∈ ℕ has a DPH distribution of order n = n1 
with representation

Proof See Neuts (1981), p.47.
(6) Determinist ic  t ime:  The constant  number 

Z = r ∼ PHd(�,�) where r ∈ ℕ has a DPH distribu-
tion of order n = r with representation

Proof See Neuts (1981), p. 47.

Acyclic discrete phase‑type distributions 
and their subclasses

The DPH is defined as an acyclic DPH (ADPH) if its states 
can be ordered in such a way that matrix T is an upper tri-
angular matrix (Bobbio et al. 2003). Based on this defini-
tion, matrix representation (�,�) has n

2+n

2
 parameters for the 

upper triangular matrix (T) and n − 1 free parameters for the 
initial probability vector � . Same as ACPH, ADPH distribu-
tions can be divided into various subclasses depending on 
the structure of � and � which are shown in Table 2. The 
continuous analogous of these ADPH distributions is also 
illustrated in this table. The simplest DPH distribution is the 
geometric distribution that is defined by two ways, the geo-
metric distribution and shifted geometric distribution (Kro-
ese et al. 2013). In the following, we will give an overview 
of ADPH distributions based on geometric distribution and 
shifted geometric distribution and show some properties and 
characteristics related to them.

(9)𝛑 = 𝛑
(1)(T(1))r and T = T(1)

(10)� = (

r

⏞⏞⏞⏞⏞⏞⏞

1, 0,… , 0) and T =

⎡⎢⎢⎢⎣

0 1 0 0 … 0

0 0 1 0 … 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 … 0

⎤⎥⎥⎥⎦

Subclasses of ADPH distributions based 
on geometric distribution

The DPH distributions are created by a system of one 
or more inter-related geometric distributions occur-
ring in sequence or phases. The geometric distribution 
( X ∼ G(p), with p ∈ (0, 1) ) is used to describe the time of 
first success in an infinite sequence of independent Bernoulli 
trials with success probability p. Then, X is the number of 
Bernoulli trials needed to get first success and its probability 
mass function is Pr(X = x) = (1 − p)x−1p, for x = 1, 2,… . 
The DPH representation of geometric distribution (Kroese 
et al. 2013) is given by Eq. (11) and shown in Fig. 1. In all 
figures related to DPH representation, the absorbing state 
is numbered by 0 and the transient states are numbered by 
1, 2, …, n.

The mean and variance of geometric distribution are 
E[X] =

1

p
 and Var[X] = 1−p

p2
 , respectively.

Negative binomial distribution ( X ∼ NB(n, p) ) is defined 
as a number of Bernoulli trials needed before the nth success 
and introduced as the sum of n independent random varia-

bles G(p) – distributed, so Pr(X = x) =

(
x − 1

n − 1

)
(1 − p)x−npn,

for x = n, n + 1,… . Based on the definition of negative bino-
mial distribution and using Eq. (5), the DPH representation 
of negative binomial distribution is given by Eq. (12) and 
illustrated in Fig. 2.

(11)𝛑G = [1], 𝐓G = [1 − p], 𝐭G = [p]

Table 2  Subclasses of ADPH and ACPH distribution

ADPH ACPH

Geometric distribution Exponential distribution
Negative binomial distribution Erlang distribution
Generalized negative binomial 

distribution
Hypo-exponential distribution

Mixed geometric distribution Hyper-exponential distribution
Mixed negative binomial distribution Hyper-Erlang distribution
Discrete Coxian distribution Coxian distribution

Fig. 1  The DPH representation of G(p)

Fig. 2  The DPH representation of NB(n,p)
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The mean and variance of negative binomial distribution 
are E[X] = n

p
 and Var[X] = n(1−p)

p2
 , respectively.

The generalized negative binomial distribution 
( X ∼ GNB(n, pi) ) is considered as the next subclass of 
ADPH which is the general case of negative binomial dis-
tribution. Consider a set of different geometric distributions 
where their success probabilities p1, p2,… , pn are not nec-
essarily identical. The GNB distribution is introduced as 
the sum of n independent random variables of geometric 
distributions with distinct parameters. The probability mass 
function is given by Eq. (13).

Derivation of GNB pmf

Let XG1
,XG2

,… ,XGn
 be independent geometric random vari-

ables where their probability mass function is 
Pr(X = x) = (1 − p)x−1p, for x = 1, 2,… . We assume that 
the probability mass function of Sn = XGNB =

∑n

i=1
XGi

 is 
calculated by Eq. (13). The proof of this equation follows by 
induction on n based on Sen and Balakrishnan (1999). Equa-
tion (13) is trivially true for n = 1 , where by definition, ∏n

j=1
i≠j

pj

pj−pi
≡ 1 . Now suppose that the same equality holds 

(12)

𝛑NB = (1, 0,… , 0), 𝐓NB =

⎛⎜⎜⎜⎜⎜⎝

1 − p p 0 0 0 0

0 1 − p p 0 0 0

0 0 0 ⋱ 0 0

0 0 0 0 1 − p p

0 0 0 0 0 1 − p

⎞⎟⎟⎟⎟⎟⎠

,

𝐭NB =

⎛
⎜⎜⎜⎜⎜⎝

0

0

0

⋮

p

⎞
⎟⎟⎟⎟⎟⎠

(13)
Pr(X = x) =

n�
i=1

⎛
⎜⎜⎜⎝

n�
j=1
i≠j

pj

pj − pi

⎞
⎟⎟⎟⎠
(1 − pi)

x−1pi,

for x = n, n + 1,… pi ≠ pj

Fig. 3  The DPH representation of GNB(n,pi)

when n = m , we shall show that the equation holds for 
n = m + 1 . Noting that Sm+1 = Sm + XGm+1

 , we have

U s i n g  t h e  g e o m e t r i c  s u m  f o r m u l a ∑n2
x=n1

ax =
an2+1−an1

a−1
, a ≠ 1 , and some simplifications, the 

above equation reduces to the following:

By adding and subtracting the (m+1)st term of the first 
sum to the entire expression, we get

Due to the finite sum of Lagrange polynomials 
Q(x) =

∑n

i=1
Q(pi)

∏n
j=1
j≠i

pj−x

pj−pi
 (Yang et al. 2005), the second 

term on the right-hand side of above equation is equal to zero 
because (1 − pm+1)

k−mQ(0) ≡ 0 where Q(x) = x(1 − x)m−1 . 
Therefore, Pr(Sm+1 = k) =

∑m+1

i=1
(
∏m+1

j=1
i≠j

pj

pj−pi
)pi(1 − pi)

k−1 

and the proof is completed. □
By Eq. (5), the convolution of different geometric dis-

tributions can be represented as a DPH distribution with 
Eq. (14) and the graphical representation is demonstrated 
in Fig. 3.

Pr(Sm+1 = k)

=

k−1�
x=m

Pr(Sm = x) ∗ Pr(XGm+1
= k − x)

=

k−1�
x=m

pm+1(1 − pm+1)
k−x−1

m�
i=1

⎛
⎜⎜⎜⎝

m�
j=1
i≠j

pj

pj − pi

⎞
⎟⎟⎟⎠
(1 − pi)

x−1pi

= pm+1(1 − pm+1)
k−1

m�
i=1

pi

(1 − pi)

⎛
⎜⎜⎜⎝

m�
j=1
i≠j

pj

pj − pi

⎞
⎟⎟⎟⎠

k−1�
x=m

�
1 − pi

1 − pm+1

�x

=

m�
i=1

⎛
⎜⎜⎜⎝

m+1�
j=1
i≠j

pj

pj − pi

⎞
⎟⎟⎟⎠
pi(1 − pi)

k−1

− (1 − pm+1)
k−m

m�
i=1

⎛⎜⎜⎜⎝

m+1�
j=1
i≠j

pj

pj − pi

⎞⎟⎟⎟⎠
pi(1 − pi)

m−1

=

m+1�
i=1

⎛
⎜⎜⎜⎝

m+1�
j=1
i≠j

pj

pj − pi

⎞
⎟⎟⎟⎠
pi(1 − pi)

k−1

− (1 − pm+1)
k−m

m+1�
i=1

⎛⎜⎜⎜⎝

m+1�
j=1
i≠j

pj

pj − pi

⎞⎟⎟⎟⎠
pi(1 − pi)

m−1
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The mean of the generalized negative binomial distrib-
uted random variable is calculated as E[X] =

∑n

i=1

1

pi
 and the 

variance as Var[X] =
∑n

i=1

1−pi

p2
i

 . For instance, we assume that 

X ∼ GNB(3, p1 = 0.2, p2 = 0.4, p3 = 0.6) , the pmf of X is 
Pr(X = x) =

∑3

i=1
(
∏3

j=1
i≠j

pj

pj−pi
)(1 − pi)

x−1pi, for x = 3, 4,…

pi ≠ pj . The DPH and diagrammatic representation of X are 
shown in Fig.  4. The mean and variance of X are 
E[X] = 9.1667 and Var[X] = 24.8611 , respectively.

The mixed geometr ic  distr ibut ion (  X ∼ MG

(n, pi,�i) )  is  a  convex mixture of  n  geomet-
ric distributions. The probability mass function is 
Pr(X = x) =

∑n

i=1
�i(1 − pi)

x−1pi, for x = 1, 2,…  where 
𝜋i > 0 for all phases i and 

∑n

i=1
�i = 1 . The DPH representa-

tion of the mixed geometric distribution which is calculated 
by Eq. (6) is given by Eq. (15). Diagrammatic representation 
of mixed geometric distribution is presented in Fig. 5.

(14)

𝛑GNB = (1, 0,… , 0),

𝐓GNB =

⎛⎜⎜⎜⎜⎜⎝

1 − p1 p1 0 … 0 0

0 1 − p2 p2 … 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 … 1 − pn−1 pn−1
0 0 0 … 0 1 − pn

⎞⎟⎟⎟⎟⎟⎠

,

𝐭GNB =

⎛⎜⎜⎜⎜⎜⎝

0

0

⋮

0

pn

⎞⎟⎟⎟⎟⎟⎠

(15)

𝛑MG = (𝛑MG1
,𝛑MG2

,… ,𝛑MGn
) = (�1,�2,… ,�n),

𝐓MG =

⎛
⎜⎜⎜⎜⎜⎝

1 − p1 0 0 … 0 0

0 1 − p2 0 … 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 … 1 − pn−1 0

0 0 0 … 0 1 − pn

⎞
⎟⎟⎟⎟⎟⎠

,

𝐭MG =

⎛⎜⎜⎜⎜⎜⎝

p1

p2

⋮

pn−1

pn

⎞
⎟⎟⎟⎟⎟⎠

The kth factorial moment can be obtained as

Thus, the first moment is obtained by E[X] =
∑n

i=1

�i
pi

 and 

its variance is given by Var[X] =
∑n

i=1
�i

(2−pi)

p2
i

− (
∑n

i=1

�i
pi
)2.

A  mixed  nega t i ve  b inomia l  d i s t r i bu t i on 
( X ∼ MNB(m, ni, pi,�i) ) is considered as a mixture of 
m mutually independent negative binomial distribution 
weighted with the initial probabilities �1,�2,… ,�n , where 
�i ≥ 0 and the vector � is stochastic, i.e., 

∑n

i=1
�i = 1 . Let 

ni denote the number of phases of the ith negative binomial 
distribution.

Then the probability mass function is Pr(X = x) =

∑m

i=1
�i

�
x − 1

ni − 1

�
(1 − pi)

x−nip
ni
i
, for x = minj∈{1,…,m}{nj},

minj∈{1,…,m}{nj} + 1,… . The state space includes of 
∑m

i=1
ni 

transient and one absorbing state. For m = 1 , a single nega-
tive binomial distribution is formed and the case that ni = 1 
for all 1 ≤ i ≤ m represent a mixed geometric distribution. 
In order to calculate the DPH representation, the Eqs. (6) 
and (14) are applied that can be described by

(16)
fk = E[X(X − 1)… (X − k + 1)] =

n∑
i=1

�ik!
(1 − pi)

pk
i

k−1

for k = 1, 2,…

(17)

𝛑MNB = (𝛑MNB1
,𝛑MNB2

,… ,𝛑MNBm
)

= (

n1
⏞⏞⏞⏞⏞⏞⏞⏞⏞

�1, 0,… , 0,

n2
⏞⏞⏞⏞⏞⏞⏞⏞⏞

�2, 0,… , 0,… ,

nm
⏞⏞⏞⏞⏞⏞⏞⏞⏞

�m, 0… , 0),

𝐓MNB =

⎛⎜⎜⎜⎝

𝐓1 0 … 0

0 𝐓2 … 0

⋮ ⋮ ⋱ ⋮

0 0 … 𝐓m

⎞⎟⎟⎟⎠
,

Fig. 4  The DPH representation of GNB(3, p1 = 0.2, p2 = 0.4, p3 = 0.6) Fig. 5  The DPH representation of MG(n, pi, πi)



658 Journal of Industrial Engineering International (2019) 15:651–665

1 3

where �i is calculated based on Eq. (14). Diagrammatic 
representation of mixed geometric distribution is shown in 
Fig. 6.

Mixtures of general negative binomial and mixed geomet-
ric distribution are considered as discrete Coxian distribu-
tions ( X ∼ DCo(ni, pi, gi,�i) ). The initial probability vector 
is given by 𝛑 = (1, 0,… , 0) . It means that the process starts 
from phase one and then traverses through the n successive 
phases with different success probabilities pi . From phase 
i transition into the next phase i + 1st can occur with prob-
ability gi or the absorbing state is reached with the com-
plementary probability 1 − gi . The DPH representation of 
the discrete Coxian distribution is given by Eq. (18) and 
illustrated in Fig. 7.

Subclasses of ADPH distributions based on shifted 
geometric distribution

Shifted geometric distribution ( Y ∼ SG(p), with p ∈ (0, 1) ) 
is another, nonequivalent, definition of the geometric 
distribution ( X ∼ G(p) ) which describes the number of 
failures before the first success in an infinite sequence 
of independent Bernoulli trials. The shifted geomet-
ric distribution is completely characterized by its suc-
cess probability p and the probability mass function is 
Pr(Y = y) = (1 − p)yp, for y = 0, 1, 2,… . The DPH rep-
resentation of shifted geometric distribution is given by 
Eq. (19) and presented in Fig. 8.

(18)

𝛑DC = (1, 0,… , 0),

𝐓DC =

⎛⎜⎜⎜⎜⎜⎝

1 − p1 g1p1 0 0 0 0

0 1 − p2 g2p2 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 1 − pn−1 gn−1pn−1
0 0 0 0 0 1 − pn

⎞⎟⎟⎟⎟⎟⎠

,

𝐭DC =

⎛⎜⎜⎜⎜⎜⎝

(1 − g1)p1
(1 − g2)p2

⋮

(1 − gn−1)pn−1
pn

⎞⎟⎟⎟⎟⎟⎠

Derivation of SG representation

Based on the definition of geometric and shifted geometric 
distribution, there is Y = X − 1 . It means that the geomet-
ric distribution is shifted by one unit. Therefore, by using 
Eq. (9), we can calculate the parameters of shifted geometric 
distribution as following

 □

The mean and variance of shifted geometric distribution 
are E[Y] = 1−p

p
 and Var[Y] = 1−p

p2
 , respectively.

Shifted negative binomial distribution ( Y ∼ SNB(n, p) ) is 
described as the number of failures before the nth success in 
a Bernoulli process and defined as the sum of n independent 
r a n d o m  v a r i a b l e s  SG(p)−  d i s t r i b u t e d ,  s o 

Pr(Y = y) =

(
y + n − 1

n − 1

)
(1 − p)ypn, for y = 0, 1,… . The 

DPH and diagrammatic representation of shifted negative 

(19)𝛑SG = [1 − p], 𝐓SG = [1 − p], 𝐭SG = [p]

�SG = �G = [1 − p],

𝛑SG = 𝛑G𝐓SG = [1 − p].

Fig. 6  The DPH representation of MNB(m,ni,pi,πi)

Fig. 7  The DPH representation of DCo(ni,pi,gi,πi)

Fig. 8  The DPH representation of SG(p)
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binomial distribution are presented in Eq. (20) and Fig. 9, 
respectively.

(20)

𝛑SNB = (�1,�2,… ,�n),�j =

�
n

j − 1

�
(1 − p)n−(j−1)pj−1,

𝐓SNB =

⎛
⎜⎜⎜⎜⎜⎝

1 − p p 0 0 0 0

0 1 − p p 0 0 0

0 0 0 ⋱ 0 0

0 0 0 0 1 − p p

0 0 0 0 0 1 − p

⎞
⎟⎟⎟⎟⎟⎠

,

𝐭SNB =

⎛
⎜⎜⎜⎜⎜⎝

0

0

0

⋮

p

⎞
⎟⎟⎟⎟⎟⎠

In order to reach Eq. (21), we must determine the value 
of �n and prove following Equation.

where (�n)ij is the entry in the ith row and the jth column of 
a matrix �n . To prove Eq. (22), induction on n is applied. 
Equation (22) is clearly true for n = 1 . Now suppose that 
the same equality holds when n = m , we shall show that the 
equation is hold for n = m + 1.

(21)

𝛑SNB = (�1,�2,… ,�n) = (1, 0,… , 0)𝐓n and

�j =

(
n

j − 1

)
(1 − p)n−(j−1)pj−1 for j = 1,… , n

(22)

�
�
n
SNB

�
ij
=

⎧
⎪⎨⎪⎩

�
n

j − i

�
(1 − p)n−(j−i)pj−i i ≤ j, j − i ≤ n

0 otherwise

Fig. 9  The DPH representation of SNB(n,p)

Derivation of SNB representation

By definition of negative binomial and shifted negative 
binomial distribution, the relation between X ∼ NB(n, p) 
and Y ∼ SNB(n, p) is Y = X − n . This implies that negative 
binomial is shifted by n unite to constitute the shifted nega-
tive binomial. Therefore, by using Eq. (9), the matrix �SNB 
is equal to the matrix �NB in Eq. (12) and the vector �SNB is 
calculated by Eq. (21).

(
�
m+1
SNB

)
ij
=

m∑
k=1

(
�
m
SNB

)
ik

(
�
1
SNB

)
kj

i ≤ k ≤ j, k − i ≤ m, j − k ≤ 1

=

m∑
k=1

(
m

k − i

)
(1 − p)m−(k−i)pk−i

(
1

j − k

)
(1 − p)1−(j−k)pj−k

= (1 − p)m+1−(j−i)pj−i
m∑
k=1

(
m

k − i

)(
1

j − k

)
i ≤ k ≤ j ≤ m, k − i ≤ m, j − k ≤ 1

= (1 − p)m+1−(j−i)pj−i
j∑

k=i

(
m

k − i

)(
1

j − k

)
l=k−i
= (1 − p)m+1−(j−i)pj−i

j−i∑
l=0

(
m

l

)(
1

j − i − l

)

Due to the 
�
a + b

r

�
=
∑r

i=0

�
a

i

��
b

r − i

�
 (Ross 2014), 

the equation is written as following,

So Eq.  (22) is true for n = m + 1 . As a result, 
𝛑SNB = 𝛑NB𝐓

n
SNB

= (1, 0,… , 0)𝐓n
SNB

 is the first row of 
matrix �n . It means that i = 1 and when the i = 1 substitutes 
in Eqs. (22), the Eqs. (21) is proved. □

Conceptual interpretation of the initial probability vector 
( �j ) is the discrete probability distribution of the number of 
failures before the (n-j+1)st success. In other words, the jth 
initial probability ( �j ) states the probability of the j failures 
before the (n-j+1)th success.

The factorial moment of the shifted negative binomial 
distribution is given by Eqs. (23),

(
�
m+1
SNB

)
ij
= (1 − p)m+1−(j−i)pj−i

j−i∑
l=0

(
m

l

)(
1

j − i − l

)

=

(
m + 1

j − i

)
(1 − p)m+1−(j−i)pj−i
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where Γ(·) is the gamma function defined by:

The mean and variance of shifted negative binomial dis-
t r i bu t i on  a r e  E[Y] =

n(1−p)

p
 and  Var[Y] =

n(1−p)

p2
 , 

respectively.
The generalized shifted negative binomial distribution 

( Y ∼ GSNB(n, pi) ) is considered as a general case of shifted 
negative binomial distribution. Its probability mass function 
is given by Eq. (25).

Derivation of GSNB pmf

Let YSG1
, YSG2

,… , YSGn
 be independent shifted geometric 

random variables where their probability mass function is 
Pr(Y = y) = (1 − p)yp, for y = 0, 1, 2,… . The probability 
mass function (pmf) of generalized shifted negative bino-
mial distribution is calculated by Sn = YGSNB =

∑n

i=1
YSGi

 
and Eq. (25). Same as the proof of pmf for generalized nega-
tive binomial distribution, the proof of Eq. (25) follows by 
induction on n. Equation (25) is clearly true for n = 1 , where 
by definition, 

∏n
j=1
i≠j

pj

pj−pi
≡ 1 . We assume Eq. (25) holds for 

n = m and proceed to establish it for n = m + 1 . Noting that 
Sm+1 = Sm + YSGm+1

 , we have

Using the geometric sum formula, and some simplifica-
tions, the above equation reduces to the following:

(23)

fk = E[Y(Y − 1)… (Y − k + 1)]

=
� (n + k)

� (n)

(1 − p)k

pk
for k = 1, 2,…

(24)𝛤 (t) = ∫
∞

0

xt−1e−xdx, t > 0

(25)
Pr(Y = y) =

n�
i=1

⎛
⎜⎜⎜⎝

n�
j=1
i≠j

pj

pj − pi

⎞
⎟⎟⎟⎠
(1 − pi)

y+n−1pi,

for y = 0, 1,… pi ≠ pj

Pr
�
Sm+1 = k

�

=

k�
y=0

Pr(Sm = y) ∗ Pr

�
YSGm+1

= k − y
�

=

k�
y=0

pm+1
�
1 − pm+1

�k−y m�
i=1

⎛⎜⎜⎜⎝

m�
j=1
i≠j

pj

pj − pi

⎞⎟⎟⎟⎠
(1 − pi)

y+m−1pi

= pm+1
�
1 − pm+1

�k m�
i=1

pi(1 − pi)
m−1

⎛⎜⎜⎜⎝

m�
j=1
i≠j

pj

pj − pi

⎞⎟⎟⎟⎠

k�
y=0

�
1 − pi

1 − pm+1

�y

By adding and subtracting the (m+1)th term of the first 
sum to the entire expression, we get

Due to the finite sum of Lagrange polynomials, the sec-
ond term on the right-hand side of above equation is equal 
to zero. Therefore, the proof is completed. □

The DPH representation of generalized shifted negative 
binomial distribution is calculated by Eq. (9) and given by

=

m�
i=1

⎛
⎜⎜⎜⎝

m+1�
j=1
i≠j

pj

pj − pi

⎞
⎟⎟⎟⎠
pi(1 − pi)

k+m

−
�
1 − pm+1

�k+1 m�
i=1

⎛
⎜⎜⎜⎝

m+1�
j=1
i≠j

pj

pj − pi

⎞
⎟⎟⎟⎠
pi(1 − pi)

m−1

=

m+1�
i=1

⎛
⎜⎜⎜⎝

m+1�
j=1
i≠j

pj

pj − pi

⎞
⎟⎟⎟⎠
pi(1 − pi)

k+m

−
�
1 − pm+1

�k+1 m+1�
i=1

⎛⎜⎜⎜⎝

m+1�
j=1
i≠j

pj

pj − pi

⎞⎟⎟⎟⎠
pi(1 − pi)

m−1

(26)

�GSNB = �GNB�
n
GNB

= (�1,�2,… ,�n),

�GSNB = �GNB =

⎛⎜⎜⎜⎜⎜⎝

1 − p1 p1 0 … 0 0

0 1 − p2 p2 … 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 … 1 − pn−1 pn−1
0 0 0 … 0 1 − pn

⎞⎟⎟⎟⎟⎟⎠

,

�GSNB =

⎛⎜⎜⎜⎜⎜⎝

0

0

⋮

0

pn

⎞⎟⎟⎟⎟⎟⎠

Fig. 10  The DPH representation of GSNB(n,pi)
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The mean of the generalized shifted negative binomial 
distributed random variable is calculated as E[Y] =

∑n

i=1

1−pi

pi
 

and the variance as Var[Y] =
∑n

i=1

1−pi

p2
i

 . Figure 10 shows the 

DPH representation of generalized shifted negative binomial 
distribution.

The  mixed  sh i f ted  geometr ic  d is t r ibut ion 
( Y ∼ MSG(n, pi,�i) ) is a convex mixture of n shifted geo-
metric distributions. The probability mass function is 
Pr(Y = y) =

∑n

i=1
�i(1 − pi)

ypi, for y = 0, 1, 2,… where 
𝜋i > 0 for all phases i and 

∑n

i=1
�i = 1 . This distribution is 

also the mixed geometric distribution with shifted by one 
unit ( Y = X − 1 ), and its DPH representation and facto-
rial moment are given by Eqs. (27) and (28) and shown in 
Fig. 11.

(27)
𝛑MSG = (�1,�2,… ,�n) = 𝛑MG𝐓MG = (𝛑MG1

(1 − p1),

𝛑MG2
(1 − p2),… ,𝛑MGn

(1 − pn)),

Fig. 11  The DPH representation of MSG(n, pi, πi)

Fig. 12  The DPH representation 
of MSG(3, p1 = 0.2, p2 = 0.3, 
p3 = 0.7, π1 = 0.1, π2 = 0.5, 
π3 = 0.4)

The first moment is obtained as E[Y] =
∑n

i=1

�i(1−pi)

pi
 , and 

i t s  v a r i a n c e  i s  g i v e n  b y  Var[Y] =
∑n

i=1

�i
(1−pi)(2−pi)

p2
i

− (
∑n

i=1

�i(1−pi)

pi
)2 . For instance, we assume that 

Y ∼ MSG(3, p1 = 0.2, p2 = 0.3, p3 = 0.7,

�1 = 0.1,�2 = 0.5,�3 = 0.4) , the pmf of Y is Pr(Y = y) =

0.1 ∗ (0.8)y ∗ 0.2 + 0.5 ∗ (0.7)y ∗ 0.3 + 0.4 ∗ (0.3)y ∗ 0.7,

for y = 0, 1, 2,… . The DPH and diagrammatic representa-
tion of Y are shown in Fig. 12. The mean and variance of Y 
are E[Y] = 1.7381 and Var[Y] = 7.5085 , respectively.

The mixed shifted negative binomial distribution 
( Y ∼ MSNB(m, ni, pi, �i) ) is considered a mixture of m mutu-
ally independent shifted negative binomial distributions 
weighted with the probabilities �1, �2,… , �n , where �i ≥ 0 
and the vector � is stochastic, i.e., 

∑n

i=1
�i = 1 . Let ni denote 

the number of phases of the ith shifted negative binomial 
distribution. Then the probability mass function is 

Pr(Y = y) =
∑m

i=1
�i

�
y + ni − 1

ni − 1

�
(1 − pi)

yp
ni
i
, for y = 0,

1,… . The state space includes 
∑m

i=1
ni transient and one 

absorbing state. The DPH representation of the mixed 
shifted negative binomial distribution can be described by 
Eq. (29).

�MSG =

⎛
⎜⎜⎜⎜⎜⎝

1 − p1 0 0 … 0 0

0 1 − p2 0 … 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 … 1 − pn−1 0

0 0 0 … 0 1 − pn

⎞
⎟⎟⎟⎟⎟⎠

, �MSG =

⎛
⎜⎜⎜⎜⎜⎝

p1
p2
⋮

pn−1
pn

⎞⎟⎟⎟⎟⎟⎠

(28)
fk = E[Y(Y − 1)… (Y − k + 1)] =

n∑
i=1

�ik!

(
1 − pi

pi

)k

for k = 1, 2,…
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where �i is calculated based on Eq. (14).

Derivation of MSNB representation

We define initial probabilities as 𝛑MSNB = (𝛑MSNB1
,

�MSNB2
,… ,�MSNBm

) and 𝛑MSNBi
= (�i

1
,�i

2
,… ,�i

ni
) for 

i = 1,… ,m . Each �MSNBi
 is initial probability of transient 

state for shifted negative binomial distribution and by using 
Eq.  (9) can reach to �MSNBi

= �i(1, 0,… , 0)�
ni
i

 for 
i = 1,… ,m .  Based on Eq.  (21),  (1, 0,… , 0)�

ni
i
=(

ni
j − 1

)
(1 − pi)

ni−(j−1)p
j−1

i
 . Then, we can calculate each �i

j
  

for j = 1,… , ni, i = 1,… ,m by Eq. (29).  □
A factorial moment of the mixed shifted negative bino-

mial distribution is calculated by Eq. (30), and its diagram-
matic representation is illustrated in Fig. 13.

(29)

�MSNB =
(
�MSNB1

,�MSNB2
,… ,�MSNBm

)
,

�MSNBi
=

(
�i
1
,�i

2
,… ,�i

ni

)
,

�i
j
= �i

(
ni

j − 1

)
(1 − pi)

ni−(j−1)p
j−1

i

for j = 1,… , ni, i = 1,… ,m

�MSNB =

⎛⎜⎜⎜⎝

�1 0 … 0

0 �2 … 0

⋮ ⋮ ⋱ ⋮

0 0 0 �m

⎞⎟⎟⎟⎠
,

(30)

fk = E[Y(Y − 1)… (Y − k + 1)]

=

m∑
i=1

�i
� (ni + k)

� (ni)

(1 − pi)
k

pk
i

for k = 1, 2,…

Conclusions and suggestions for future 
research

In this paper, we presented the definition, properties, char-
acteristics and PH representations of acyclic discrete phase-
type (ADPH) distributions and their subclasses (ADPH 
family). The simplest ADPH distribution is the geometric 
distribution defined by either of the two discrete probability 
distributions, the geometric or the shifted geometric distri-
bution. Based on the two definitions of the geometric distri-
bution, we proposed a distinct classification for the ADPH 
subclasses and introduced their definitions. The advantage 
of our proposed classifications is in applying precise repre-
sentations of each subclass and preventing miscalculation 
of the probability mass function, by computing the ADPH 
family based on geometric and shifted geometric distribu-
tions. To this end, we developed the PH representation for 
each subclass and proved them by using the closure proper-
ties of ADPH, especially “shifted DPH.” In addition, all the 
subclasses of ADPH analogous to ACPH are considered and 
their properties and characteristics are discussed.

For further research, applying the proposed classification 
in real stochastic modeling and developing fitting algorithms 
based on the ADPH subclasses are suggested.
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