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The Economic Production Quantity (EPQ) model is often used in the manufacturing sector to assist firms in
determining the optimal production lot size that minimizes overall production-inventory costs. There are some
assumptions in the EPQ model that restrict this model for real-world applications. Some of these assumptions are
(1) infinite space of warehouse, (2) all of the produced items are perfect, and (3) only one type of goods is
produced. In this paper, we develop the EPQ model by assuming that each produced lot contains some imperfect
items and scraps. In addition, we have more than one kind of products along with warehouse space limitations.
Under these conditions, we formulate the problem as a non-linear programming model and propose a genetic
algorithm to solve it. At the end, we present a numerical example to illustrate the applications of the proposed
methodology and identify the optimal value of the parameters of the genetic algorithm.
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Background

The Economic Production Quantity (EPQ) model can be
considered as an extension to the well-known Economic
Order Quantity (EOQ) model, and it is a technique to
find out optimum production quantity by considering
costs of procurement, inventory holding, and shortage.
As the first assumptions of the EPQ model may not be
valid for many real-life conditions, many researchers
have developed EOQ and EPQ models. In real-life
manufacturing systems, generation of defective items is
inevitable. Hence, many researchers consider producing
defective items in EOQ and EPQ models. For instance,
Hayek and Salameh (2001) assumed that all of the de-
fective items produced are repairable and derived an op-
timal operating policy for the EPQ model. The basic
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assumptions of this model are allowing backorders; all of
the defective items are reworked and become perfect
quality. They also consider rework time in their model.
Rosenblatt and Lee (1986) proposed an EPQ model for a
production system which contains defective production.
The basic assumption in their model is that the produc-
tion system produces 100% non-defective products from
the starting point of production until a time point which
is a random variable. At this time point, the system
becomes out of control and starts to produce defective
items with a percentage of production until the end of
production period. Also, they assumed that the distribu-
tion of time passes is exponential until the system gets out
of control. Kim and Hong (1999) extended Rosenblatt and
Lee's model with the assumption that the time passes are
arbitrarily distributed until the system gets out of control.
Salameh and Jaber (2000) developed an EPQ model for
circumstances where a fraction of the ordered lot is of im-
perfect quality and has a uniform distribution. Their
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model assumed that shortage is not permitted. Chiu et al.
(2007) presented a procedure to determine the optimal
run time for an EPQ model with scrap, rework, and sto-
chastic machine breakdowns. In real-life manufacturing
systems, generation of defective items and random break-
down of production equipment are inevitable.

Hou (2007) presented an EPQ model with imperfect
production processes, in which the setup cost and process
quality are functions of capital expenditure. This model
illustrates the relationship among production run length,
setup reduction, and process quality improvement in an
imperfect production system. He showed that investment
in setup reduction leads to reduction in optimal produc-
tion run length and reduces lot size, whereas investment
in process quality improvement leads to an increase in op-
timal production run length and increases lot size. At the
end, he proposed that it is very important to investigate
the optimal allocation of investment between both
options. In several cases, producing new or transforming
defective products takes place on a common facility. Con-
sequently, it is necessary to coordinate the production and
rework activities with respect to the timing of operations
and with regard to the appropriate lot sizes for both pro-
cesses. Buscher and Lindner (2007) presented a lot size
model which addresses all of these aspects. In addition,
they cited that it is very important how completed units
are assigned at one stage to partial lots - called batches -
for shipment to the next operation.

Liao et al. (2009) studied maintenance and production
programs with the EPQ model for an imperfect process
involving a deteriorating production system with increas-
ing hazard rate. The imperfect repair restores the system
to an operating state but leaves its failure until perfect pre-
ventive maintenance (PM) is performed. They introduced
two types of PM, namely imperfect and perfect PM. The
probability that perfect PM is performed depends on the
number of imperfect maintenance operations performed
since the last renewal cycle. In addition, they represent
that if the PM rate is estimated based on the actual data,
analysts can use the learning curves to project the PM
costs in the integrated EPQ model.

One of the most important aspects of the extension of
EOQ and EPQ models is to fuzzify their parameters. For
instance, in the research of Lee and Yao (1998), they fuz-
zified demand and production quantity to solve eco-
nomic production quantity per cycle.

In this paper, we develop the EPQ model by assuming
that each produced lot contains some imperfect items
and scraps. In addition, we have more than one kind of
products along with warehouse space limitations. Under
these conditions, we formulate the problem as a non-
linear programming model and propose a genetic algo-
rithm to solve it. At the end, we present a numerical
example to illustrate the applications of the proposed
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methodology and identify the optimal value of the para-
meters of the genetic algorithm.

The remainder of the paper is as follows: in ‘Problem
definition” and ‘Problem modeling’ sections (Method),
the definition and the modeling of the problem are pre-
sented, respectively, followed by a genetic approach in
‘The solution algorithm’ section to solve the model. In
the ‘A numerical example’ section, a numerical example
to demonstrate the application of proposed algorithms is
presented. Finally, in the ‘Conclusions’ section, the paper
wraps up with the conclusion and some recommenda-
tions for future research.

Methods

Problem definition

In this paper, we assume that a production company pro-
duces multi-products that receive raw materials from a
supplier. All produced items are inspected, and the time
of inspection is zero. After inspection, there are three
types of products. The first type is perfect products, the
second is defective but repairable items, and the third is
defective and not repairable products. The second and
third types are called imperfect and scrap, respectively.
After separation of all products, the imperfect products
are reworked and changed to perfect products. We as-
sume that all imperfect products after reworking are chan-
ged to perfect products, and we sell scraps with reduced
cost. We have three types of materials near the machine:
(1) raw materials, (2) perfect products, and (3) reduced-
cost products, all of which are called work in process
(WIP) inventory. Other conditions are as follows:

(a) There are # kinds of products.

(b) The warehouse space of the company for all
products is limited.

(c) Shortage and delay are not allowed.

(d) All parameters, such as demand rate, rate of
imperfect and scrap items, and setup cost, are
known and deterministic.

Under these conditions, we want to determine the opti-
mal production quantity that minimizes total costs and
satisfies the constraint, too, and we prove that the revenue
of the inventory system does not depend on the lot size.

Problem modeling

For modeling, we have to extend the classical EPQ
model with regard to the conditions of the problem. We
note that in this problem, we have limited warehouse
space and three types of products: perfect, imperfect,
and scrap. In this section, at first, we define the para-
meters in the ‘Parameters and notations’ section. Then,
we pictorially demonstrate the situation using an inven-
tory graph in the ‘Inventory graph’ section. In the ‘Costs
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calculations’ section, we derived the different costs, and
finally, we present the model of the problem in the
‘Problem formulation’ section.

Parameters and notations

For i=1,..., n, we define the parameters of the model as
follows:

n  the number of products

Q; order quantity for product i

P; production rate for product i

D; demand rate for product i

A; setup cost for each cycle for product i

h; rate of holding cost for product i

M; price of one raw material for product i

S;  setup time for product i

m; time of machining for product i

R; rate of production cost in unit time for product i
¢; average of cost for producing any unit of product i
v; average of value added for product i

W; average of invest value of work in process
inventory for product i

I; average of inventory in warehouse for product i
p1 percent of imperfect items for product i

P2 percent of scrap items for product i

s1;  price of perfect products for product i

sy;  price of scrap items for product is

T; cycle time for product i

TP; sum of setup and production time in each cycle
time for product i

t; average time of production for any unit of product
i

f; required space for perfect product for product i

F  total space of warehouse for all products
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TCwrp; total holding cost for work in process
inventory for product i

TCy; total holding cost for perfect products in
warehouse for product i

TC total annual cost for all products

Inventory graph

In order to calculate all of the inventory's costs, it is ne-
cessary to survey the work in process and the warehouse
inventory. For the problem at hand, the graph of quan-
tity of raw materials in terms of time is demonstrated in
Figure la. In addition, the graphs of perfect and scrap of
work in process inventory in terms of time are shown in
Figure 1b,c, respectively. In this problem, the rate of de-
mand is constant, and then the graph of the quantity of
final products in the warehouse is similar to the EOQ
model which is illustrated in Figure 1d; it is obvious that
only perfect products are delivered to the warehouse.

Cost calculations

In this model, shortage and delay are not permitted.
Hence, total cost of all products per year (TC) is the
sum of total providence cost (TCp), total setup cost
(TCop), total inspection cost (TCy), total holding cost for
work in process inventory (TCyp), and total holding
cost for inventory in the warehouse (TCy) for all pro-
ducts. In other words, we have

TC = Z?:I(TCpi + TCo; + TCy; + TCyip; + TChy;)-
(1)

However, before starting to calculate the costs, it is ne-
cessary to define some of the parameters. In any cycle,
setup time, production time, and reworking time are
equal to S; m,;Q;, and my(p1;Q;), respectively. Then, total
setup and production time (TP;) for product i is as fol-
lows:

TCp; total procurement cost for product i
TCo; total setup cost for product i
TCy  total inspection cost for product i
g
A
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Figure 1 Inventory graphs in terms of time: (a) raw material, (b) perfect products, (c) scrap items, and (d) product in the warehouse.
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TP; = S; + m;Q; + m;(p1,Q:)
=S+ mQi(1 + p1;). (2)

Then, the average of operation time for each unit of
product i is equal to Equation 3:
P, S
= =—+m;(1+ p1). 3
Q 3 9 ®)
Regarding our definition of R;, which is the rate of pro-
duction cost per unit time, we can define v; and ¢; as fol-
lows:

Li

S;
Vi=Rit; = R; {6 + m;(1 +P1i)] (4)
S
Q:Mﬁw:M+&6ﬁmm+m% (5)

As in this model delay is not allowed, supply and de-
mand are equal together. Hence, we have

1+p2i)Qi
(1 =p2)Qi = DiT>T; = %- (6)
In the ‘Parameters and notations’ section, we defined
s1; and s,; as the price of perfect and scrap items, re-
spectively. Then, average revenue in unit time is as fol-
lows:

(1 — p2i) Qis1i + p2iQisa;
T;
Dai

(1= pa)

It can be seen that revenue in unit time does not de-
pend on the lot size.

Now, with regard to Equations 2 to 6, we can calculate
all costs. Since the annual rate of demand for each prod-
uct is known, total provision cost for product i per unit
time is obtained through Equation 8:

n MiQi MiDi
TG = Zi:l T, 27:1 m;

TR; =

:D,»sh»—i— D[Sgl'; i= 1,...,1’1. (7)

i=1,...,n.

(8)

The cost of setup accrues only one time for each prod-
uct. We can calculate total setup cost per unit time as
follows:

n Al‘ n A,‘D[
TCo=D i\ T,= 2l —pp)

;o i=1,...,nm.
1 —py)

(©)

In this paper, it is assumed that all of the products are
inspected and all of the imperfect products after rework-
ing are transformed to perfect quality. Then, any
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product is inspected only once after its production.
Total cost of inspection per unit time equals Equation 10:

n 1;Q; n LD;
TG = Zi:l T, Zi:l 1=p)

i=1,...,n.
(10)

In this stage, we want to calculate the holding cost for
work in process inventory. The most famous method to
present the holding cost per unit time (Cy) is as follows
(Silver et al. 1998):

Cui = hicil;, (11)
where /; is the rate of holding cost for product i, so we
have

Cwipi = hiw;, (12)
where w is the average monetary value for work in
process inventory, that is, the sum of the monetary value
of the average of raw materials, perfect items, and
reduced-cost products. For any items, the average inven-
tory of raw materials is the total of raw materials (it is
equal to the surface under the graph of inventory)
divided by the time of one cycle. The average of the
monetary value of raw materials is obtained by multiply-
ing the average inventory of raw materials by the price
of any raw materials. Similarly, the average monetary
value of perfect products and reduced-cost products can
be calculated. Then, the average monetary value for all of
the works in process inventory is as follows (Equation 13):

1 1 1
> Q/TP; 3 (1 — p2i)Q/TP; §p2iQiTPi
w; = M; + ¢ + C;
1 Ti 1 Ti 1 Ti 1
1 Q;TP; D;
_ _Qz i (ML’ + Ci) - v
2 T 2(1 — pai)

R;S;
# =+ Rimi(l +pli) .

i

(Si + mi(1+ p11)Q;) |:2Mi +

(13)

With regard to Equations 12 and 13, the average hold-
ing cost for work in process inventory is as follows:

TCyrp = Zn 3 Di

i m(si +m;(1+ p1:)Qi)

1

R;S; .
2Ml+?+lel(1 +p1i) l:17~"7n'
(14)

In this step, we want to calculate the holding cost, but at
first, we have to estimate the average of inventory in the
warehouse. Regarding Figure 1d, it is equal to Equation 15:
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_ 5Qi(1—pa)T;

1
= - 1
T 5 Q(
Then, the total holding cost is similar to Equation 16:
TCh = Z:;lhiciji
1 R;S;
—h; | M;
i [ o
(1-pa)Qi; i=1,...n.

Now, we can calculate the total annual cost of all pro-
ducts using Equation 17:

TC — Z A;D; n 1;D; +@
=1 ( I—Pzz Qz’(l_Pzz’) (I—pxu) 2

i

— P2i)- (15)

(16)

+ Rim; (1 + py;)

D;
A=) (Si + miQi(1 + p1))

2M; +

R;S;
Q + Rim;(1 +P1t)] + (1 = p2)Q;i
1

R
M; +

Qi
(17)

Problem formulation
As we described earlier, the goal is to determine eco-
nomic production quantity in order to minimize the
total annual cost given in Equation 17 and satisty the
constraint.

Hence, we can formulate the problem as follows:

A;D;

n 1;D;
Qi(l — p2i)

1 —=pu)

Min TC = Zl 1(1 —Pzz)

h; D;
2 | (1—px)

{ R;S;
2M; + ——

i

(Si + m;iQi(1 + p1i)) ;

+ Rim;(1 +p1,)}

|+ —P2i)Qz{

g’
Qi
i=1,....n

St: Y " (1-pa)QfisF

Q; > 0.

(18)

In the next section, we present an efficient algorithm
to solve this objective function.

The solution algorithm
The formulation given in Equation 18 is a non-linear pro-
gramming model which is hard to solve by conventional

lSi
— 4+ Rim;(1 +I91i)”; i=1,...,n
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optimization techniques. Then, we have to use heuristic
search. Simulating the natural evolutionary process of
human beings results in stochastic optimization techni-
ques, of which the most applicable is genetic algorithm
(Gen 1997). Solving a non-linear programming problem
by traditional techniques will lead to a local optimum so-
lution. In other words, the global optimum cannot be
obtained. If meta-heuristic approach such as genetic algo-
rithm (GA) is used, we will get the closest solution to the
global optimum (Shabani et al. 2011).

The usual form of GA was described by Goldberg (1989).
Generally, conventional algorithms for optimization have
a point-to-point approach and maybe they fall in local op-
tima. However, GA performs a multiple directional search
by maintaining a population of solutions. Each solution is
called a chromosome. The chromosomes which improved
in consecutive iterations are called generations. During
each generation, the chromosomes are evaluated using
some measures of fitness. To create the next generation,
new chromosomes, called offspring, are formed by either
crossover or mutation operator. In addition, the chromo-
somes that have higher fitness are kept for the next gener-
ation. After several generations, the algorithm converges
to the best chromosome which hopefully represents the
optimum or suboptimal solution to the problem.

In the next subsections, we describe the required steps
to solve the aforementioned model by GA.

Initial conditions
The required initial conditions to start solving a model
with GA are as follows:

(a) Population size: It is the number of chromosomes
that is kept in each generation, but its value changes
in consecutive iterations to improve objective
function; we denoted it by pop-size or N.

(b) Crossover rate: It is defined as the ratio of the
number of offspring produced by crossover operator
and denoted by Pc.

(c) Mutation rate: It controls the number of
chromosomes to undergo mutation operation and
denoted by Py,.

Chromosome

In the GA method, each individual in the population is
called a chromosome, and any chromosome contains some
genes. In this model, we present a chromosome by a
matrix that has one row and n columns. Each column
shows the quantity of production for each product. Figure 2
presents one chromosome for the problem at hand.

Evaluation
Each chromosome in the GA method was evaluated with
some measures, and we have to assign a fitness value for



Hafshejani et al. Journal of Industrial Engineering International 2012, 8:27

http://www jiei-tsb.com/content/8/1/27

Page 6 of 8

Qi [Ql Q2 Qn]

Figure 2 Chromosome presentation.

it. In this model, it signifies the value of the objective
function. For a constrained optimization problem, the
main issue is to control the feasibility of chromosomes.
In order to control infeasible solutions, we have to em-
ploy penalty policy presented by Gen (1997). Because
this problem is a minimization one, penalty is defined as
a positive value. The more infeasible chromosomes, the
more are the penalties. Hence, when a chromosome is
feasible, its penalty is zero. In this case, the fitness func-
tion for a chromosome is the sum of its objective func-
tion and its penalty.

Initial population
To perform GA, at first, we have to define the first gen-
eration for the GA method randomly with regard to
population size.

Crossover

Crossover is the main genetic operator. It operates on
two chromosomes at a time and generates offspring by
combining the features of both chromosomes (Gen
1997). At first, we have to select a pair of chromosomes
from the generation randomly with probability P.. One
simple way to achieve crossover is to create a binary
chromosome randomly. We do not change the genes
with a value of 0, but we consider the genes with a value
of 1. To produce offsprings, genes of parents are crossed
so that they have the same positions as those with a
value of 1. Figure 3 demonstrates the crossover oper-
ation for the four products.

Mutation

Mutation is a background operator which produces a
random change in chromosomes, and maybe it results in
a chromosome with a higher fitness value. For our
model, a chromosome is randomly produced as its genes
are between 0 and 1. We do not change the genes with a
value more than that of Py, but, we replace the genes

[3226 45 18] [28 26 45 21

[1001]

[26 35 32 24]

Figure 3 An example of crossover operation.

[32 3522 18]

[26 35 3240] [0.250.63 0.48 0.015] [28 3522 21]

N

Figure 4 Graphical representation of mutation operator.

with a value less than that of Py; with a new random
value within the boundaries of the parameter. Figure 4
shows an example of the mutation operator for the four
products, and Py, is equal to 0.05.

Chromosome selection

After producing the offsprings with the crossover and
mutation operators and measuring their fitness value, we
have to make the next generation based on the chromo-
somes which have the highest fitness. Then, we select N
chromosomes among the parents and offsprings with
the best fitness value. In this problem, we select the
chromosomes that result in less cost.

Stopping criteria

Genetic algorithm is a sequence of computational steps
that converge to optimal solution. We have to define
some measures to stop the generations. Stopping criteria
are a set of conditions that when the method satisfies
them, a good solution is obtained. In this paper, we use
two stopping criteria. At first, after some generations,
the algorithm examines the values of fitness. If there is
no improvement in the fitness function values for some
consecutive generations, the algorithm stops. In another
case, the algorithm continues for some generations again
and checks the values of fitness another time.

Results and discussions

A numerical example

In order to demonstrate the application of the proposed
genetic algorithm, we present a numerical example in
this section. The values of all parameters are given in
Table 1. In addition, we assume that the total space of
the warehouse is 1,500.

With this data, we run the proposed genetic algorithm
for 110 times, but we only change the parameters of the
genetic algorithm. We assume that the rate of crossover
and mutation change is in the range of 0.45 to 0.85 and
0.005 to 0.05, respectively. Also, the number of

Table 1 Data for the example

Product A; M; D; S; m;  py px R h I f
1 128 32 0009 001 014 005 12 016 15 13
2 139 25 0001 004 025 009 14 025 12 16
3 14 5 42 0002 0099 015 005 12 042 14 10
4 15 9 38 0004 003 028 011 11 025 12 8
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m's Il 1 1 1 1 1
5 10 15 2 % 0
generation
Figure 5 The graph of convergence.

chromosomes (pop-size) falls between 20 and 60. Next,
we estimate the equation of regression of these results.
In the next step, we optimized this equation with regard
to the range of parameters. In addition, we assume that
the pop-size is only an integer.

The optimized parameters are 0.85, 0.05, and 60 for cross-
over rate, mutation rate, and pop-size, respectively. Now,
with these parameters, the graph of fitness value in terms of
the number of generations is presented in Figure 5.

Figure 3 shows that the minimum cost is 8,584 and
the algorithm converges after five generations.

Conclusions

One inevitable aspect of manufacturing systems is the
production of defective products. In this paper, we
developed a multi-product EPQ model with defective
items and reworking. In addition, the warehouse space is
limited for all products. In this condition, we formulated
the problem as a non-linear programming, and in order
to solve it, a much easier genetic algorithm was applied.
At the end, we presented a numerical example to dem-
onstrate the application of the proposed algorithm, and
in this example, we optimized the parameters of the gen-
etic algorithm. Also, for future research, some recom-
mendations are presented as follows:

(a) Other heuristic search techniques such as ant
colony optimization or simulated annealing
algorithm can be used to solve the presented model
and compare their results with the proposed genetic
algorithm.

(b) In the future, researchers can add some limitations
such as delay and shortage to the model. Aside from
warehouse space constraint, they can consider
constraints about budget and so on. Using some
constraints together makes the problem too hard,
and using a meta-heuristic approach to solve the
model is inevitable.
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(c) We can extend the model in such a way that some
parameters such as the rate of demand become
random or fuzzy variables.
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