
CASE STUDY

A stochastic model for operating room planning
under uncertainty and equipment capacity constraints

J. Razmi • M. Barati • M. S. Yousefi •

J. Heydari

Received: 3 September 2014 / Accepted: 8 January 2015 / Published online: 5 February 2015

� The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract In the present economic context, the operating

theater is considered as a critical activity in health care

management. This paper describes a model for operating

room (OR) planning under constraint of a unique equip-

ment. At first level we schedule elective surgeries under the

uncertainty of using a unique equipment. At the second

level we consider emergency surgeries, and at the third

level a coefficient factor for surgeons is introduced in using

this unique equipment. The planning problem consists in

scheduling a unique equipment and assigning elective

cases to different periods over a planning horizon to min-

imize the sum of elective patient related costs and overtime

costs of ORs. The most important factor that we have

focused on this paper is equipment resource constraint. A

new mathematical programming model is first proposed

and at the second and third level, a new stochastic math-

ematical programming model is proposed. Then sample

average approximation is presented to approximate the

problem with sample size N and then Lingo is used as an

exact approach. Because of NP-hardness, exact method

does not work for large size problems, so a Metaheuristic

approach (differential evolution) is proposed for large size

problems. Numerical results show that important gains

(approximately 3.5 % in overall cost) can be realized by

this stochastic OR planning model.

Keywords Mathematical programming model � Unique
Equipment � Operating rooms � Surgery planning �
Differential evolution (DE) � Sample average

approximation (SAA)

List of symbols

H Planning horizon

t = 1, 2,…,H Time period index

K C-ARM performance duration in

each use

Tt Total available regular capacity of

all ORs in period t

H0
t ¼ 1; 2; . . .; 60�Tt

K

� �
Number of C-ARM performance

opportunities in each period

j = 1, 2, …, Ht

0
Frequency of using the equipment

in each period

N Number of elective cases

i = 1, …, N Elective case index

Pi Time needed for performing

elective case i which is assumed to

be a given constant

Bi Earliest period for performing case i

CEit Cost of performing elective case i in

period t for t = Bi, Bi?1, …, BH?1

CUEit Cost of using C-ARM for patient

i in period t for t = 1, …, H

COt Cost per unit of overtime in period t

mi Number of available J in each

interval of performing C-ARM

(i.e., C-ARM free time, between

two performance for one patient)

qi Frequency of using C-ARM for

elective case i

wt Capacity needed for emergency

cases of period t
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di C-ARM performance duration, it is

assumed to be factor of

K (surgeon’s coefficient factor)

Introduction

Surgery is one of the most important functions in hospitals

and it generates revenue and admissions to hospitals. The

operating cost of a surgery department is one of the largest

hospital cost category, approximately one-third of the total

cost (Macario et al. 1995). While surgery is the largest cost

center, it also accounts for approximately two-third of

hospital revenues (Jackson 2002). Therefore, small

improvements in efficiency could translate into significant

savings and benefits to the patient by early treatment and

reducing the hospitalization cost as well as the hospital. For

these reasons, effectively managing the surgical resources

reduce the costs which this draws considerable attention

from the healthcare community. Sometimes the budget of

hospital is fixed and the goal is to maximize the number of

cured cases under a fixed budget (Tao et al. 2012)

In this paper, we focus on planning a unique equipment

(C-Arm imaging equipment) of operating rooms (ORs) for

elective and Emergency surgeries. Equipment plays a vital

role in hospitals and especially ORs, equipment resources

are key sources in hospitals and their shortage or unavail-

ability causes a lot of problems and many performances

and treatments will stop. These problems may lead to death

of the patient. Indeed it is very essential to plan and

schedule hospital’s equipment. Scheduling and planning

equipment seems more important when the equipment is

unique and also very useful. The main aspect of this study

is to schedule this unique equipment for elective and

emergency patients. Electives cases can be delayed and

planned for future dates. The planning of surgical activities

in ORs has been extensively addressed over the past three

decades. Magerlein and Martin (1978) presented a review

of surgical suite scheduling and discussed procedures for

planning patients in advance of their surgical dates and

techniques for the assignment of patients to ORs at specific

times of day. Gerchak et al. (1996) propose the use of a

stochastic dynamic program to determine the elective

surgeries that may be performed each day according to the

required procedures of that day. Marcon et al. (2003)

model the problem of allocating operations to ORs as a

multiple knapsack problem while minimizing the differ-

ence of workload between the rooms and minimizing the

risk of no-shows. They assume that the date of the surgical

procedures is known. Agnetis et al. (2012) investigated

long-term policies for determining the Master Surgical

Schedule (MSS) throughout the year. Guinet and Chaabane

(2003) heuristically solve the assignment problem of

operations to ORs with resource capacity and time-window

additive constraints by an extension of the Hungarian

method. They minimize a fixed patient intervention cost

based on the hours of activity of an OR and the patient

waiting time. For scheduling surgical procedures, Kharraja

et al. (2003) consider operating and recovery rooms each

with k beds and model them as k flow shops. Chaabane

(2004) treats the operating and recovery rooms as a hybrid

flow shop with recirculation. Lakshimi and SivaKumar-

Appa (2013) provided sufficient information to analysts

who are interested in using queuing theory to model a

health care process and who want to locate the details of

relevant models. Alkhabbaz and M’Hallah (2013) propose

a mixed integer program to solve the mathematical model

for the case of a specific health care unit using an off-the-

shelf optimizer to investigate the problem of designing

timetables for nurses working in Kuwaiti health care units

that operate around the clock. However, all these approa-

ches do not account equipment shortage, which is a very

prevalent problem in most of the hospitals (especially

hospitals with financial difficulties). Dexter et al. (1999a, b)

used online and off-line bin-packing techniques to plan

elective cases and evaluated their performances using

simulation. But none of the mentioned papers had noticed

the important role of such unique equipment in hospitals.

The goal of this paper is to develop an optimizationmodel

and algorithms (exact and metaheuristic) for elective and

emergency surgeries planning inORswith uncertain demand

for using a unique equipment. This device is portable and it

can be used for all of the ORs in an operating theater.

C-Arm is one of the expensive devices with difficult

maintenance, so it is most of the time unique in most of the

hospitals, in this case study research, C-Arm is unique.

A mobile C-arm is a medical imaging device that is

based on X-ray technology and can be used flexibly in

various ORs within a clinic. The name is derived from the

C-shaped arm used to connect the X-ray source and X-ray

detector to one another.

Mobile imaging systems are an essential part of every-

day hospital life: Specialists in fields such as surgery,

orthopedics, traumatology, vascular surgery and cardiology

use C-arms for intraoperative imaging.

The devices provide high-resolution X-ray images in

real time, thus allowing the physician to monitor progress

at any point during the operation and immediately make

any corrections that may be required. Consequently, the

treatment results are better and patients recover more

quickly. Hospitals benefit from cost savings through fewer

follow-up operations and from minimized installation

efforts. C-Arm is shown in Fig. 1.
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A C-arm comprises a generator (X-ray source) and an

image intensifier or flat-panel detector. The C-shaped

connecting element allows movement horizontally, verti-

cally and around the swivel axes, so that X-ray images of

the patient can be produced from almost any angle.

The generator emits X-rays that penetrate the patient’s

body. The image intensifier or detector converts the X-rays

into a visible image that is displayed on the C-arm monitor.

The doctor can identify and check anatomical details on the

image such as blood vessels, bones, kidney stones and the

position of implants and instruments at any time.

The problem consists of determining a plan that specifies

the set of elective cases that would be performed in each

period over a planning horizon with considering the uncertain

demand of emergency cases and also uncertain demand for

C-arm as a unique equipment. In this scheduling we should

consider to have no overlap in using this unique equipment for

different surgeries.Overlaps cause cancellation and alsomake

surgeries longer than usual that increase patient related costs.

When this unique equipment is being used for one patient,

other patients should wait for it, this will increase the waiting

time if not scheduled. This waiting time increases the costs of

patient as well as hospital, so we should try to omit these

waiting times. But financial aspects alone are not sufficient in

establishing surgical schedules. We can no longer ignore the

significant place of the people involved in themedical process

execution. Thus, in addition to the usual economic objective

presented in the literature we undertake human dimension.

The surgery plan should minimize costs related to the over-

utilization of ORs and costs related to performing elective

surgery. Although numerous studies show the extreme

importance of accounting uncertainties such as emergency

demand in OR planning and demand for this unique equip-

ment, existing OR planning approaches all use deterministic

optimization models and assume that the hospital uses dedi-

cated ORs to serve emergency patients, or devotes a fixed

portion of OR capacity to perform only the emergency sur-

geries. The main contributions of this paper include (1) a new

OR planning model that explicitly takes into account elective

and emergency patients under uncertainty of using a unique

equipment (C-ARM), (2) model’s Np-hardness causes using

Metaheuristic method for solving the problem in large size

problems. Our OR planning method shows a good reduction

of overall cost. The remainder of this paper is organized as

follows: ‘‘A programming model for scheduling OR elective

operations’’ section presents the planning model for the

problem. In section ‘‘Solution strategy: sample average

approximation’’ sample average approximation is presented

to approximate the problemwith sample sizeN.Metaheuristic

method is introduced in section‘‘The proposed Metaheuristic

method’’; Numerical results of the optimization method are

presented in section‘‘Computational experiments’’. ‘‘Con-

clusions and future research’’ section concludes the paper and

discusses possible extensions of this work.

A programming model for scheduling OR elective

operations

This work concerns the planning of elective surgery at a

hospital surgical suite over a planning horizon H with

considering the constraint of having a unique equipment.

The surgical suite capacity is dedicated to elective cases

that are to be planned in advance; there are N requests for

elective surgery. Each elective case i (i = 1, …, N) has the

following characteristics:

• pi, the time needed for performing elective case i,

which we call operating time, and includes not only the

surgery time but also setup time, cleaning, etc.;

• Bi, the release period

Accurate estimates of operating times are necessary to

have efficient OR planning. Shukla et al. (1990) recommend

using historical information to estimate the operating time of

elective cases. Zhou and Dexter (1998) advocate the use of

log-normal distributions to approximate surgery durations.

Surgeons and OR managers can also provide good estima-

tions of operating times. In this work, we assume that oper-

ating times of all elective cases are known and deterministic,

because all of these data are collected from Isfahan Kashani

Hospital. The release date Bi (i = 1, …, N) is the earliest

period at which elective case i can be performed, it may

represent hospitalization date, date of medical test delivery,

etc. H
0
t counts the opportunities of using C-ARM in eachFig. 1 C-Arm image 1
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period, for example if the period is 8 h 9 60 = 480 min, and

each performance time ofC-ARMin each use is about 20 min

(according to collected data) so Ht
0 is 480/20 = 24 oppor-

tunity for C-ARM performance.

For each elective case i we define a set of costs CEit

(t = Bi, …, H, H ? 1) and CUEit (t = 1, …, H). The CEit

represents the cost of performing elective case i in period

t and CUEit represents the cost of using C-ARM for those

patients that need C-ARM. The period H ? 1 is added to

the planning horizon for cases that are rejected from the

current planning horizon and that will be considered in the

next horizon. The cost structure proposed in this paper is

fairly general. It can represent hospitalization costs (Jebali

et al. 2005; Guinet and Chaabane 2003), penalties for

waiting to get on schedule (Gerchak et al. 1996), optimal

surgery date, patients’ or surgeons’ preferences, and

eventual deadlines. For example, if case i must be per-

formed before period Li, this constraint can be taken in

account by choosing large costs CEit for t[Li.

At the planning level, we are interested in determining a

plan that specifies the set of elective cases to be performed in

each period over the planning horizon. The assignment to a

specificORand the starting time of each case can bemade at a

later stage on a period-to-period basis (Weiss 1990; Denton

and Gupta 2003). We assumed that ORs are identically

equipped, each surgical case can be assigned to any OR, and

only the total available capacity of all ORs (Operating theater

capacity) is accounted. LetTtbe the total available regularOR

capacity in period t in operating theater. If planned elective

cases exceed this regular capacity, overtime costs are incur-

red. Let COt be the cost per unit of overtime in period t.

Decision variables

Xit = {0,1} with Xit = 1 if elective case i is performed in

period t and 0 otherwise with Xi,H?1 = 1 if elective case

i is rejected in the current planning horizon.

yijt = {0, 1} with yijt = 1 if elective case i is performed

with C-ARM in J and period t.

Mathematical model

MinimizeJðxÞ ¼
XN

i¼1

XHþ1

T¼Bi

CEitxit þ
XH

t¼1

COtOt

þ
XN

i¼1

XH00t

j¼1

XH

t¼1

CUEijtyijt ð1Þ

subject to Ot ¼
XN

i¼1

PiXit � Tt

 !þ" #

; 8t ¼ 1; . . .;H

ð2Þ

XHþ1

T¼Bi

xit ¼ 1 8i ¼ 1; . . .;N ð3Þ

Xit ¼ 0; 1f g; 8i ¼ 1; . . .;N; 8 0 ¼ 1; . . .;H þ 1 ð4Þ

yijt � xit 8i ¼ 1; . . .;N; t ¼ 1; . . .;H; j ¼ 1; . . .;H
0

t ð5Þ

XH
0
t

j¼1

yijt ¼ qixit 8i ¼ 1; . . .; N; t ¼ 1; . . .;H ð6Þ

ðmi þ 1Þyijt � yilt � j� lð Þyijt � yilt 8i ¼ 1; . . .;N;

t ¼ 1; . . .;H; l ¼ 1; . . .;H0
t � 1; j ¼ lþ 1; . . .;H0

t

ð7Þ

j� lð Þyijt � yilt �ðmi þ 1Þ � ðqi � 1Þ 8i ¼ 1; . . .;N;

t ¼ 1; . . .;H; l ¼ 1; . . .;H0
t � 1; j ¼ lþ 1; . . .;H0

t

ð8Þ

yijt ¼ f0; 1g ð9Þ

The objective function (1) minimizes the expected

overtime costs as well as elective cases related costs

(waiting time costs, hospitalization costs, C-ARM perfor-

mance cost, etc.). Constraints (2) estimate the expected

overtime Ot in each period.

Constraints (3) ensure that each elective case is assigned

once and only once. Constraints (4) are the integrity

Constraints. Constraint (5) ensures that if patient i is not

assigned, C-ARM will not be assigned to him/her, also.

Constraint (6) is number of C-ARM performance for

patient i. Constraints (7, 8) ensure that the interval duration

(when C-ARM has been free after first performance for one

patient to the next performance for mentioned patient) has

a certain limitation.

Emergency cases stochastic model

This model can be extended to consider emergency

patients. Emergency cases arrive randomly and have to be

performed on the day of arrival. With considering emer-

gency cases, planning problem becomes a stochastic

problem. Emergency cases arrive randomly and must be

served immediately on the day of their arrival. Equiva-

lently, emergency cases arriving in a given time period

are performed in the same period whatever the available

capacity. Let Wt be the total OR time needed for emer-

gency cases arriving in period t. It is a stochastic

parameter.

wt: Capacity needed for emergency cases of period t

wt is capacity needed for emergency cases of period t.

The average daily capacity E [Wt] needed for emergency

cases depends on the number of available ORs, because Wt

is normally distributed, mean and deviation standard of

normal distribution is used.

272 J Ind Eng Int (2015) 11:269–279

123



MinimizeJðxÞ ¼
XN

i¼1

XHþ1

T¼Bi

CEitxit þ
XH

t¼1

COtOt

þ
XN

i¼1

XH00t

j¼1

XH

t¼1

CUEijtyijt ð10Þ

Subjected to Ot ¼ Ewt Wt þ
XN

i¼1

PiXit � Tt

 !þ" #

; 8t

¼ 1; . . .;H

ð11Þ
XHþ1

T¼Bi

xit ¼ 1 8i ¼ 1; . . .;N ð12Þ

Xit ¼ 0; 1f g; 8i ¼ 1; . . .; N; 8 0 ¼ 1; . . .;H þ 1 ð13Þ

yijt � xit 8i ¼ 1; . . .;N; t ¼ 1; . . .;H; j ¼ 1; . . .;H
0

t ð14Þ

XH
0
t

j¼1

yijt ¼ qixit 8i ¼ 1; . . .;N; t ¼ 1; . . .;H ð15Þ

ðmi þ 1Þyijt � yilt � j� lð Þyijt � yilt 8i ¼ 1; . . .;N;

t ¼ 1; . . .;H; l ¼ 1; . . .;H0
t � 1; j ¼ lþ 1; . . .;H0

t

ð16Þ

j� lð Þyijt � yilt �ðmi þ 1Þ � ðqi � 1Þ 8i ¼ 1; . . .;N;

t ¼ 1; . . .;H; l ¼ 1; . . .;H
0

t � 1; j ¼ lþ 1; . . .;H
0

t ð17Þ

yijt ¼ f0; 1g ð18Þ

The objective function (10) minimizes the expected

overtime costs as well as elective cases related costs

(waiting time costs, hospitalization costs, C-ARM perfor-

mance cost, etc.). Constraints (11) estimate the expected

overtime Ot in each period.

Constraints (12) ensure that each elective case is

assigned once and only once. Constraints (13) are the

integrity Constraints. Constraint (14) ensures that if patient

i is not assigned, C-ARM will not be assigned to him, also.

Constraint (15) is number of C-ARM performance for

patient i. Constraints (16, 17) ensure that the interval

duration (when C-ARM has been free after one perfor-

mance for one patient to the next performance for that

patient) has a certain limitation.

The elective case planning model (10–18) is a stochastic

combinatorial problem and its NP-hardness is proved by

Lamiri et al. (2008) and the NP-hardness remains true even

for the two-period problem.

Surgeon’s coefficient factor stochastic model

In such kind of operations where C-ARM is needed, for

having a better prediction of length of operations, we

introduce a coefficient factor for surgeons in using this

equipment. Most of the time it depends on surgeon’s

experience, i.e., talented and experienced surgeons are more

talented in using this equipment and they find the target

easier and sooner, in this case study this equipment was used

for the same part of the same operation by three surgeons, the

recorded durations were 10, 17 and 23 min. It is obvious that

for having a more precise scheduling we should introduce a

coefficient factor for surgeons in using this equipment.

di: C-ARM performance duration, it is assumed to be

factor of K (surgeon’s coefficient factor)

For (J) constraints (16, 17) change to the following

constraints;

ðmi þ diÞyijt � yilt � j� lð Þyijt � yilt 8i ¼ 1; . . .;N;

t ¼ 1; . . .;H; l ¼ 1; . . .;H0
t � 1; j ¼ lþ 1; . . .;H0

t

ð19Þ

j� lð Þyijt � yilt �ðmi þ diÞ � ðqi � 1Þ 8i ¼ 1; . . .;N;

t ¼ 1; . . .;H; l ¼ 1; . . .;H
0

t � 1; j ¼ lþ 1; . . .;H
0

t ð20Þ

Solution strategy: sample average approximation

The models presented in (2.4 and 2.5) are stochastic and

strongly Np-hard (Lamiri et al. 2008). We propose a

solution strategy for these stochastic models. By Shapiro

et al. (2002), the optimal solution of the SAA problem

provides an exact optimal solution of the true J (i.e., model

1–9) with probability one (w.p 1) for a sample size N that is

large enough. Moreover, Shapiro and Homem-de-Mello

(2001) show that the probability of providing an exact

optimal solution of the true problem approaches one

exponentially fast as N tends to infinity. These results

imply that a good approximate solution can be obtained

with a relatively small sample size. The following mathe-

matical model describes the SAA problem of the J with

sample size N. N independent random samples W1t, …, Wnt

are generated for each random variable Wt, t 2 (1, …, H),

and the mathematical expectations in the objective function

(1) are approximated by their sample averages (empirical

means). Consequently, the true problem (J) can be

approximated by a sample average approximation (SAA):

J� ¼ MinimizeJðxÞ

¼
XN

i¼1

XHþ1

T¼Bi

CEitxit þ
XH

t¼1

COtOt þ
XN

i¼1

XH00t

j¼1

XH

t¼1

CUEijtyijt

ð21Þ

Subject to Otk [Wtk þ
XN

i¼1

piXit � tt; 8t ¼ 1; . . .;H;

8k ¼ 1; . . .:;K; ð22Þ

Ot ¼
Pk

k¼1 Otk

K
; 8t ¼ 1; . . .:;H; ð23Þ
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XHþ1

t¼bi

Xit ¼ 1; 8i ¼ 1; . . .;N; ð24Þ

Binary variablesð Þ Xit ¼ 0; 1f g 8i ¼ 1; . . .;N;

8t ¼ 1; . . .;H þ 1
ð25Þ

Real variablesð Þ Otk � 0; 8t ¼ 1. . .;H 8k ¼ 1; . . .;K;

ð26Þ

yijt � xit 8i ¼ 1; . . .;N; t ¼ 1; . . .;H; j ¼ 1; . . .;H0
t ð27Þ

XH0
t

j¼1

yijt ¼ qixit 8i ¼ 1; . . .;N; t ¼ 1; . . .;H ð28Þ

ðmi þ diÞyijt � yilt � j� lð Þyijt � yilt 8i ¼ 1; . . .;N;

t ¼ 1; . . .;H; l ¼ 1; . . .;H0
t � 1; j ¼ lþ 1; . . .;H0

t

ð29Þ

j� lð Þyijt � yilt �ðmi þ diÞ � ðqi � 1Þ 8i ¼ 1; . . .;N;

¼ 1; . . .;H; l ¼ 1; . . .;H0
t � 1; j ¼ lþ 1; . . .;H0

t ð30Þ

The proposed Metaheuristic method

The planning problems can be solved by lingo optimization

method (exact solution), but cannot be found in a reason-

able amount of time for problems of large size. Therefore,

Metaheuristic methods seem to be an interesting choice to

be investigated. In this paper, we propose DE [differential

evolution (DE)] algorithm. DE is used for multidimen-

sional real-valued functions but does not use the gradient of

the problem being optimized, which means DE does not

require for the optimization problem to be differentiable as

is required by classic optimization methods such as gra-

dient descent and quasi-Newton methods. DE can therefore

also be used on optimization problems that are not even

continuous, are noisy, change over time, etc. Rocca et al.

(2011). DE optimizes a problem by maintaining a popu-

lation of candidate solutions and creating new candidate

solutions by combining existing ones according to its

simple formulae, and then keeping whichever candidate

solution has the best score or fitness on the optimization

problem at hand. In this way the optimization problem is

treated as a black box that merely provides a measure of

quality given a candidate solution and the gradient is

therefore not needed. Variants of the DE algorithm are

continually being developed in an effort to improve opti-

mization performance. Many different schemes for per-

forming crossover and mutation of agents are possible in

the basic algorithm given above; see, e.g., (Storn 1996).

More advanced DE variants are also being developed with

a popular research trend being to perturb or adapt the DE

parameters during optimization, see, e.g., Price et al.

(2005), Liu and Lampinen (2005), Qin and Suganthan

(2005), Civicioglu (2011) and Brest et al. (2006).

A basic variant of the DE algorithm works by having a

population of candidate solutions (called agents). These

agents are moved around in the search space by simple

mathematical formulae to combine the positions of existing

agents from the population. If the new position of an agent

is an improvement it is accepted and forms part of the

population, otherwise the new position is simply discarded.

The process is repeated and by doing so it is hoped, but not

guaranteed, that a satisfactory solution will eventually be

discovered.

Formally, let f : Rn ? R be the cost function which

must be minimized or fitness function which must be

maximized. The function takes a candidate solution as

argument in the form of a vector of real numbers and

produces a real number as output which indicates the fit-

ness of the given candidate solution. The gradient of f is not

known. The goal is to find a solution m for which

f(m) B f(p) for all p in the search space, which would mean

m is the global minimum. Maximization can be performed

by considering the function h: = –f instead.

Let x [ Rn designate a candidate solution (agent) in the

population. The basic DE algorithm can then be described

as follows:

• Initialize all agents x with random positions in the

search space.

• Until a termination criterion is met (e.g., number of

iterations performed, or adequate fitness reached),

repeat the following:

For each agent x in the population do:

• Pick three agents a, b, and c from the population at

random, they must be distinct from each other as well

as from agent x

• Pick a random index R [ {1,…,n} (n being the

dimensionality of the problem to be optimized).

• Compute the agent’s potentially new position y = [y1,

…, yn] as follows:

• For each i, pick a uniformly distributed number

ri : U(0,1)

• If ri\CR or i = R then set yi = ai ? F 9 (bi - ci)

otherwise set yi = xi

• In essence, the new position is outcome of binary

crossover of agent x with intermediate agent

z = a ? F 9 (b - c).

• If f(y)\ f(x) then replace the agent in the population

with the improved candidate solution, that is, replace

x with y in the population.
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• Pick the agent from the population that has the highest

fitness or lowest cost and return it as the best found

candidate solution.

Computational experiments

This section presents numerical results of the ‘‘exact’’

(lingo) and Metaheuristic (DE) optimization method. All

solution methods have been implemented in MAT-

LAB2009. The numerical experiments are carried out on a

0.8 GHz IV Pentium, and running Windows XP. For

models (2.4 and 2.5) the capacity Wt used by emergency

surgery in each period is a stochastic parameter normally

distributed.

Case study

Kashani hospital is one of the greatest Isfahan’s non-profit

hospitals, with 500 beds and 40 ORs. One of the greatest

problems that Kashani hospital is facing is shortage in some

expensive equipment, like C-ARM. This equipment is

unique and most of the time scheduling of this equipment is

really challenging and critical for the hospital. In this paper

we attempt to schedule one of the unique equipment in

operating theater, which is very useful for most of the

operations. Scheduling prevents cancellations caused by

overlaps in different surgeries, increases the amount of sur-

gery operations, and omits gapes and spare times. Sometimes

some operations are emergency and any kind of delay in

these casesmay lead to death of the patient. This aspect of the

problem is more important than the financial aspect, and is

the most important reason in scheduling this problem.

Different solution methods were experimented to solve

this problem and make an improvement in operating the-

ater. The numbers of periods H are different and are shown

in Tables 1, 2 and 3. The aggregated ORs’ regular capacity

Tt in a period t depends on the number of available ORs

(i.e. the problem size) and the regular capacity of each OR

in period t. In this case study according to the collected

data from Isfahan Kashani hospital, it is found that regular

capacity of each OR in period t is 8 h, and the number of

available ORs is same in all periods over the planning

horizon. The aggregated regular capacity is then Tt =

number of available ORs 9 8 h. Then, for a problem with

8 ORs, for example, the ORs’ regular capacity will be 64 h.

Durations of elective surgery are randomly and uni-

formly generated from the interval 0.5 to 3 h. From col-

lected data, it is shown that duration of each C-ARM

performance for most of the operations is 20 min,

depending on the type of surgery, we may use this equip-

ment for several times. For example for most of the spinal

operations C-ARM is used for four times and each per-

formance duration is about 10 min, so, qi = 4 and

K = 10 min. The average daily capacity E[Wt] needed for

emergency cases depends on the number of available ORs,

because Wt is normally distributed, mean and deviation

standard of normal distribution is used.

Data are collected for 125 patients from Kashani hos-

pital in Isfahan in 30 days. CEit Distribution and CUEit

Distribution are shown in ‘‘Appendix in Table 4’’, and Cot
has an average in these 30 days Cot = 500.

It is obvious that CUEit is independent from CEit for

each patient.

The number of elective cases is determined such that the

workload of ORs due to elective cases is s % of the regular

capacity of the entire planning horizon. In these experi-

ments we consider problems with s equal to 85 and 100 %.

The workload of ORs due to emergency surgeries is 15 %

of the regular capacity of the entire planning horizon. So,

when s = 85 %, elective cases and emergency surgeries

sum up to an average of 100 % regular capacity of the

ORs, and when s = 100 % elective and emergency sur-

geries sum up to 115 % of ORs’ regular capacity. If it is

not explicitly mentioned s is supposed to be equal to 85 %.

CUEit = (Dj ? utility cost ? maintenance cost ?

Operator salary ? interest rate of C-arm First cost) for

patient i in period t.

where;

Dj 1=N(P - S)

Dj Depreciation expense on j year

N Number of age

P First cost

S Salvage value

CEit = (Drug ? hospital staff (Surgeon, nurse, opera-

tors…) ? clinical services (patient preparation, clinical

tests….) ? the tariff treatment charge) for patient i’ in

period t.

If case i must be performed before period Li, this con-

straint can be taken in account by choosing large costs CEit

for t[ Li.

To take into account cases with Bi = 1 that were

postponed from the previous plan, we introduced a new

variable B0
i, the effective earliest period of case i (or

effective release period). B0
i can take negative values.

The earliest dates Bi were generated in two steps as fol-

lows. First, we generated for each case i the effective

earliest date B0
i. The B0

is are integer numbers randomly

selected from the set {_2, …, 5}. Then, cases with zero or

negative B0
i will have Bi equal to 1, while the others will

have Bi equal to B0
i (Bi = 1 if B0

i \ 1; Bi = B0
i otherwise).

The CEit are assumed to be increasing in t for every i

penalty cost:

J Ind Eng Int (2015) 11:269–279 275

123



CEit t � B0
i

� �
� c for t¼Bi . . .BHþ1:

In this subsection we compare exact and Metaheuristic

method on testing problems generated according to the

scheme presented in the previous section with real costs

collected data.

For DE algorithm, (max iteration parameter is set to

150) for each scenario, Table 1 presents results concerning

the performance of the different optimization methods, for

model 2.3. and the results for models 2.4 and 2.5 are pre-

sented in Tables 2 and 3 respectively.

Results of SAA optimization method and DE are com-

pared and traditional scheduling costs are shown in

Tables 1, 2 and 3, also. It is obvious that exact solution has

more precise results; but as it is shown in the Tables 1, 2

and 3, SAA is not a good choice for large size problems. As

Table 1 Computational results

of SAA and DE for elective

patients

Test problem Traditional

scheduling costs

SAA CPU

(Lingo)

DE CPU

(MATLAB)

GAP

I = 5, T = 1 7,124 6,361 326 6,361 4.09 0

I = 8, T = 2 10,802 9,009.3 1,030 9,009 6.19 0

I = 15, T = 4 17,972 15,210 3,992 15,231 6.4 0.14

I = 20, T = 4 22,509 19,205 6,826 19,239 13.79 0.18

I = 25, T = 5 26,363 – – 22,925 21.32 NA

I = 30, T = 6 33,879 – – 29,982 18.45 NA

I = 35, T = 7 38,470 – – 35,050 26.01 NA

I = 40, T = 8 45,943 – – 41,390 27.78 NA

I = 45, T = 9 49,787 – – 45,261 28.82 NA

I = 50, T = 10 56,419 – – 51,290 30.37 NA

Table 2 Computational results

of SAA and DE for elective and

emergency patients

Test problem Traditional

scheduling costs

SAA CPU

(Lingo)

DE CPU

(MATLAB)

GAP

I = 5, T = 1 6,708 6,098 421 6,098 4.09 0

I = 8, T = 2 9,239 8,399 1,261 8,399 6.19 0

I = 15, T = 4 14,792 13,570 3,992 13,751 11.14 0.514

I = 20, T = 4 20,924 19,041 7,291 19,197 15.1 0.818

I = 25, T = 5 27,076 24,516 23,452 24,750 21.78 0.954

I = 30, T = 6 33,133 – – 30,286 29.63 NA

I = 35, T = 7 38,250 – – 35,060 34.21 NA

I = 40, T = 8 44,633 – – 40,948 40.2 NA

I = 45, T = 9 49,074 – – 45,147 48.63 NA

I = 50, T = 10 55,462 – – 51,259 64.05 NA

Table 3 Computational results

of SAA and DE for elective and

emergency patients with

considering surgeon’s

coefficient factor

Test problem Traditional

scheduling costs

SAA CPU

(Lingo)

DE CPU

(MATLAB)

GAP

I = 5, T = 1 6,708 5,034 394 5,034 3.95 0

I = 8, T = 2 9,239 8,917 1,954 8,917 8.01 0

I = 15, T = 4 14,792 14,582 4,712 14,616 7.51 0.231

I = 20, T = 4 20,924 19,590 10,862 19,827 11.91 1.21

I = 25, T = 5 27,076 24,599 26,452 24,984 17.21 1.564

I = 30, T = 6 33,133 – – 29,831 26.86 NA

I = 35, T = 7 38,250 – – 35,793 30.01 NA

I = 40, T = 8 44,633 – – 40,148 39.95 NA

I = 45, T = 9 49,074 – – 47,092 53.38 NA

I = 50, T = 10 55,462 – – 5,1528 69.02 NA
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most of the hospital’s policies are on long-term scheduling,

we are forced to have long-term scheduling so we propose

to implement Metaheuristic algorithm. Deviations are also

shown in Tables 1, 2 and 3. These Tables 1, 2 and 3 yield a

good reduction of ORs cost. As the performances of

Metaheuristic (DE) method deteriorate; deviations to the

best solution increase.

Figure 2 demonstrates how the objective values of the

SAA and DE change. As the number of ORs (problem size)

increases, performances of Metaheuristic (DE) method

deteriorate; deviations to the best solution increase and

Figs. 2, 3 and 4 summarize corresponding results in detail.

In Fig. 2 we have SAA cost just for 4 days, and in Figs. 3

and 4 we have SAA cost just for 5 days. Exact method

(SAA) is not implementable for long periods. As hospital

policies are for long periods scheduling, we are forced to

have a program for long period scheduling. So we propose

a Metaheuristic algorithm for long scheduling policies.

Conclusions and future research

In this paper we studied and supervised Kashani hospital

Operating Theater and identified one important problem, we

took it under consideration and collected data for 6 months.

Then several optimization methods were proposed and com-

pared for the elective surgery planning problem when OR

capacity is shared among elective and emergency surgery and

there is a unique equipment in hospital for operating theater.

The planning problem has been formulated as a stochastic

optimization problem. An ‘‘exact’’ solution method was pre-

sented and was compared with Metaheuristic method.
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Exact method is very useful for small population, but

does not work properly for large size problems. As our

paper is a case study paper, we proved that by implementing

this stochastic model in Isfahan kashani Hospital, we will

have a good reduction in overall cost. According to our

experiments, if it is possible for hospitals to have short

horizon planning, exact method is a very useful optimiza-

tion method, and it shows that; it is a very good idea to take

into account the emergency cases and also take into account

surgeons coefficient factor in using this unique equipment

for having better prediction in length of operations. The

planning model proposed in this work is useful for hospitals

using a ‘‘blocked’’ advance scheduling system, which

reserve blocks of OR time to surgical specialties. Each

specialty serving elective and emergency surgery demand

can use the proposed model for the planning of electives’

cases. Extension of the model to take into account various

real-world constraints such as limited overtime capacity,

assignment of patient to ORs, different types of ORs, ran-

dom operating time is a direction of future research.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

Appendix

See Table 4.
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