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Abstract
The issue discussed in this paper is a bi-level problem in which two rivals compete in attracting customers and maximizing 
their profits which means that competitors competing for market share must compete in the centers that are going to be located 
in the near future. In this paper, a nonlinear model presented in the literature considering customer preferences is linearized. 
Customer behavior means that the customer patronizes the most attractive (most comfort) location that he/she wants to be 
served among the locations of the first-level decision maker (Leader) and the second-level decision maker (Follower). Four 
types of exact algorithms have been introduced in this paper which include three types of full enumeration procedures and a 
developed branch-and-bound procedure. Moreover, a clustering-based algorithm has been presented that can provide a good 
approximation (a good lower bound) to the mentioned binary problem. For this purpose, the numerical results obtained are 
compared with the results of the full enumeration, heuristic and the branch-and-bound procedure.

Keywords Competitive location–allocation problem · Bi-level programming · Branch and bound · Full enumeration · 
Clustering

Introduction

Location–allocation problem is one of the most important 
issues in industrial engineering, which has many applications 
in the real-world industry; the simplest of location–alloca-
tion models is that a company, assuming that there is no rival 
in the market, wants to set up its own marketplace. In this 
model, the company will establish its center/centers in the 
best possible location by examining the candidate locations 
for deployment. As shown in the left side in Fig. 1, in this 
model, the company only establishes one center and serves 
all customers. The more complex type of this model is that 
the company wants to set up its center/centers on the market, 
knowing that the rival is present in the market or is going 
to locate in the near future. As shown in the right side in 
Fig. 1, in this model, due to rivals, the leading company first 
selects the best location for the establishment of its center/
centers, and the Follower, based on the strategies of the rival 
company (Leader), finds the best place to deploy its center/

centers. The model in this research is a multi-location model 
in a competitive market where the customers select the facil-
ities that are the most attractive. The competitive market and 
the competition used in this research have the main concept 
of the Stackelberg game, which is formulated as a bi-level 
programming model. Customers prefer the closest facility 
and rate the facilities by their distance. The closest facility 
is ranked first, and the furthest is ranked last.

The competitive facility location problem has four main 
characteristics, which help to classify the competitive facil-
ity location problems; these characteristics are (1) compet-
ing area (discrete, continuous, network), (2) the number of 
competitors, (3) pricing policy, and (4) customer behavior 
(Alekseeva et al. 2009). The competitive location problem 
between two rivals is divided into two different categories: 
(1) competitive location with simultaneous entry of two 
rivals and (2) competitive location with consecutive entry 
(Karakitsiou 2015). The model discussed in this paper is a 
competitive location with the consecutive entrance. Gener-
ally, two type of games can happen: (1) cooperative competi-
tive location and (2) noncooperative competitive location. In 
the cooperative competitive location of the two rivals, when 
each of the rivals enters the market, they cooperate with 
each other that means both of them know the strategy of the 
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other; thus, this concludes more profit. The noncooperative 
competitive facility location means that none of the competi-
tors knows anything about the other competitor’s strategy, 
and each of the rivals tries to enter the market earlier than 
the other competitor so that he/she could use the advantages 
of being a Leader in entering the market; thus, he/she could 
make the maximum of market share. The goal of the com-
petitors is to attract the most possible number of custom-
ers and meet their demands. To the best of our knowledge, 
attracting customers depends on many factors like the dis-
tance between customer and facility, size of the facility, qual-
ity of service and the validity and reliability of the facility 
(finally customer rates the facilities by these criteria), which 
all of these mentioned factors have been studied by previous 
researchers. The establishment of a facility as a supplier in 
the market depends on the available customers’ tendency 
information. These preferences will allow competitors to 
locate the most appropriate center/centers to provide cus-
tomer service; thus, mutually the customer will patronize the 
most comfort facility (the facility with the highest rank). In 
this article, a binary bi-level location–allocation model has 
been presented. In the presented model, each of the Leaders 
and Followers tends to maximize its market share and profit.

This research has been investigated in eight sections; in 
the second part of the article, the literature on location–allo-
cation and bi-level programming is reviewed. In “Bi-level 
location--allocation problem” section, the model of the 
bi-level programming for the binary location–allocation 
problem is discussed, in  “Full enumeration methods” sec-
tion, three full enumeration procedures are discussed, and 
in “Finding a feasible solution using clustering algorithm” 
section and “Branch-and-bound procedure” section, we 
have presented a clustering-based algorithm for obtain-
ing a good feasible solution and a developed branch and 
bound for binary bi-level problems, respectively. Finally, 
in “Sensitivity analysis and numerical examples” section 

and “Conclusion” section, the sensitivity analysis and the 
conclusions driven by this article are discussed.

Literature review

Location–allocation problem is one of the most applicable 
and important problems. As seen in the literature, for solv-
ing these types of problems different types of approaches 
like exact, heuristic and meta-heuristics have been used; for 
example, Ostresh (1975) has presented an efficient algo-
rithm for solving the location–allocation problem with two 
centers which have been used by many researchers. In this 
research, the concept of competition has been used for the 
location–allocation problem. Moore and Bard (1990) pre-
sented an exact approach for solving a bi-level program-
ming problem which was capable of solving the mixed-inte-
ger problems. Bard and Moore (1992) presented an exact 
branch-and-bound approach for solving binary bi-level prob-
lems. Hocking (2004) presented an exact method for solving 
bi-level programming problems using the branch-and-bound 
method for binary–binary models.

According to the literature, the first work in the com-
petitive location can be attributed to Laporte et al. (2015). 
Hotelling considered a market with the presence of two com-
petitors with customers distributed uniformly. This is also 
known as the ice cream salesman problem (first introduced 
by Lash in 1954). In competitive environments, the reason 
for competition is to gain market share in order to maximize 
profit. In 1929, Hotelling provided a methodology in which 
each customer would be served by the nearest center. They 
also assumed the assumptions that all centers had the same 
attractions and that the purchasing power of all demand 
points was the same. Drezner (1994) considered the prob-
lem of competing with the definition of the utility function in 
continuous space and considered the level of attractiveness 

Fig. 1  Competitive facility location in case of the presence or absence of rivals
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for each center and took into account the Hotelling model. 
In this model, each customer can patronize a center that is 
more attractive, and merely, the distance to the facility will 
not be the only important criterion for choosing the facility.

Huff (1964) presented a gravity model, according to 
which the probability for a customer wishing to be served by 
a center is a conformity of a function directly proportional 
to the attractiveness and reverse ratio of the distance from 
the customer.

Alekseeva et al. (2009) put forward the P-median problem 
that two decision makers (Leader and Followers) compete 
in attracting customers in a given market. In this case, the 
Leader sets up its facilities and is expected that the Follower 
reacts with the decision to locate its facilities in the market. 
In this article, each of the Leaders and the Followers is try-
ing to maximize market share. The authors introduced the 
problem in two levels as a binary programming problem, and 
they also developed a hybrid memetic algorithm to solve the 
lower-level problem.

Küçükaydin et al. (2011) raised the issue in relation to a 
company that is attempting to enter the market by locating 
a new facility in which rival facilities are located. The goal 
of the new company is to find the location and set up the 
attractiveness for each of the facilities to maximize its profit; 
the present competitor in the market can react to the strategy 
of the new company by adjusting the attractiveness of the 
existing facility/facilities. In this paper, Huff’s gravity-based 
model has been used to model customers behavior. This 
model has been formulated as a mixed-integer nonlinear bi-
level programming problem and has considered the company 
entering the market as a Leader and the rival competitor as 
the Follower. In order to find the optimal solution, this model 
has been transformed into a single-level problem so that it 
can be solved by general optimization methods.

Fernandez et al. (2017) have considered the location–allo-
cation problem in a market with static competition and non-
elastic demand, which means that the competition is already 
present in the market, and a new competitor who wants to 
enter the market looks for locations to deploy its facility 
in the presence of competitors. The problem is modeled in 
binary and partial binary models and solved by the proposed 
algorithm.

In Beresnevs article (2013), the problem of competitive 
location–allocation is considered with a bi-level concept. 
In their paper, each of the Leaders and Followers wants to 
maximize their profit. To solve this problem, a local search 
and a branch-and-bound method based on the bi-level con-
cept are used.

In Qi et al. article (2017), the problem of competitive 
facility location with foresight has been modeled as a bi-
level programming problem. In the mentioned research, 
unlike the classic model this paper considers a new kind of 
customer behavior in which the customers only patronize 

facilities within a range they feel is convenient. To solve this 
model, a two-stage hybrid Tabusearch is used.

In Beresnev and Melnikov article (2018), the research-
ers have modeled a capacitated competitive facility location 
problem between two parties, namely, Leader and Follower, 
trying to maximize their profits by servicing customers. 
The capacity is considered finite, and the problem here is 
to decide where each of the parties opens their facilities and 
how to assign them to service the assigned customers so that 
capacity constraints are satisfied. In the mentioned research, 
the Leaders problem is formulated as an optimistic bi-level 
mixed-integer programming problem; it is shown that it can 
be considered as a problem to maximize a pseudo-Boolean 
function. In order to find an optimal solution for this prob-
lem, they have considered a branch-and-bound algorithm 
where an estimating problem is utilized to calculate an upper 
bound for the objective function.

Nasiri et al. (2018) have introduced the capacitated com-
petitive facility location problem; they have claimed that 
limitation in the capacity of facilities makes it more com-
patible with the real-world situation and the possibility that 
some of the customers do not get serviced increases the 
complexity of the problem. In order to solve and find a near 
optimal solution for this problem, they have developed two 
algorithms, GA and PSO. The results show that it is better 
for each of the Leaders and Followers to consider the com-
petition present in the market; in case of ignoring, the profit 
for both of the Leader and Follower decreases significantly.

The problem discussed in this article is a competitive 
facility location–allocation problem modeled as a binary 
bi-level programming problem. In this article, each of the 
competitors, namely, Leader and Follower, tends to optimize 
their market share. In this paper, the customer preferences 
concept based on distance has been used. A clustering algo-
rithm has been used to obtain an efficient initial solution. 
Full enumeration methods and a branch-and-bound proce-
dure have been introduced for obtaining an exact solution for 
the binary bi-level location–allocation problem (Table 1).

The main contributions of this research are: linearizing 
the nonlinear model presented in the literature. Using the 
clustering-based algorithms in order to solve the bi-level 
location–allocation problem in large-sized problems and 
also using the exact algorithms and enumeration procedures 
to solve the small- and medium-sized problems, respectively, 
in the bi-level location–allocation problem.

Bi‑level location–allocation problem

The model presented in this section is a binary nonlinear 
bi-level programming problem. Bi-level programming prob-
lems can be modeled in different states; the bi-level pro-
gramming problem involves two objective functions, which 
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can have different states depending on the form of the func-
tion of the upper and lower levels. The simplest form of the 
bi-level programming problem is when both of the objective 
functions are linear, but still, the linear–linear form of the bi-
level programming problem is NP-hard (Hansen et al. 1992; 
Ostresh 1975).

The bi-level programming problem can be modeled in 
different types with respect to being linear, nonlinear and 
quadratic. Bi-level programming problems are very sensi-
tive to constraints, so adding even a single constraint in the 
second-level can completely change the solution space. As 
indicated, the model presented in this paper is a nonlinear 
integer programming model that the basic concept of the 
model is taken from Beresnev (2013) and with the help of 
three constraints which will be described below; we have 
been able to linearize the nonlinearity of the model. Thus, 
as known, solving a linear model is much more efficient 
and reliable than solving nonlinear models. Followings are 
assumptions for the considered problem:

1. Each of the customers present in the market has a spe-
cific purchasing power, and no customer is earmarked 
for any facility.

2. A number of candidate points are considered for the 
location of new centers.

3. There are no centers of Leader or Follower present in the 
market.

4. The establishment of each new facility in the market is 
subject to the payment of fixed costs, both for the Leader 
and for the Follower.

5. There is no possibility of changing position and dis-
placement for either Leader or Follower.

6. In this study, there are n demand points (customers) with 
the index j = 1,2, ..., n and m candidate points for the 

establishment of new centers with the index i = 1,2, ..., 
m.

7. The attractiveness of a center for a customer has a 
reverse ratio with distance. The nearest facility gets the 
highest rank, and the furthest facility gets the lowest 
rank.

Parameters considered in this problem are as follows: 

fi:  is the fixed cost for locating Leader’s facility in i.
gi:  is the fixed cost for locating Follower’s facility in i.
pij:  is the profit of serving customer j with facility i.
rij:  is the rank that customer j gives to the facility i.

Decision variables considered in this problem are as 
follows: 

xi:  is 1 if Leader locates its facility at i and 0, otherwise.
xij:  is 1 if customer j is allocated to facility i located by the 

Leader and 0, otherwise.
zi:  is 1 if Follower locates its facility at i and 0, otherwise.
zij:  is 1 if customer j is allocated to facility i located by the 

Follower and 0, otherwise.

Assume that facility i can be opened by both Leader and 
Follower. Therefore, for every i we assume fi and gi as the 
fixed cost for opening facility i by the Leader and the Follower, 
respectively. If for some reason the Leader or the Follower 
cannot open facility i, then we put fi or gi infinite.

Model 1: Nonlinear model

(1)max
xi,xij

{

−
∑

i∈I

fixi +
∑

j∈J

(

∑

i∈I

pijxij

)(

1 −
∑

i∈I

zij

)}

Table 1  Literature review

SA solution algorithms, CT competition type, LS location space, CB customer behavior, H/Mh heuristics or 
meta-heuristics, CA clustering-based algorithms, FE full enumeration procedures, CS commercial solvers, 
Sta static, For with foresight, Dis discrete, Con continuous, Prob probability, Deter deterministic

References SA CT LS CB

H / Mh Exact CA FE CS Sta For Dis Con Prob Deter

Ashtiani et al. (2013) X X X X
Beresnev (2013) X X X X
Redondo et al. (2010) X X X X
Fernández José et al. (2014) X X X X
Biesinger et al. (2015) X X X
Beresnev and Melnikov (2011) X X X X
Fernández et al. (2017) X X X X
Qi et al. (2017) X X X X
Beresnev and Melnikov (2014) X X X X
Beresnev and Melnikov (2018) X X X X
Current study X X X X X X
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The model presented above is the bi-level location–allo-
cation problem; in the illustrated model, the first level or 
Leader controls the decision variables xi and xij , and on the 
other side, the Follower controls the decision variables zi 
and zij . As can be seen, Eq. 1 shows the Leaders objective 
function that seeks to maximize its profit.

Equation 2 shows that the customer is attracted to the 
Leaders facility i if and only if the attractiveness of the 
center i is more attractive than other centers set up by the 
Leader, and if the attraction of the center is desired, it will 
be served by that facility; otherwise, it will be served by 
the other facilities opened by the Leader. In this equation, 
k ∶ i>jk means that out of two open facilities i and k, cus-
tomer j prefers facility i with higher rank.

Equation 3 shows that the jth customer service can only 
occur when the ith center is deployed by the Leader. Equation 4 
shows the Follower’s objective function trying to maximize his/
her profit. Equation 5 shows that if a Leader deploys his/her 
location in i, the Follower will be attracted to the Follower’s 
facility if and only if the attractiveness of the center set by the 
Follower is greater than the degree of attractiveness deployed 
by the Leader; otherwise, if the amount of the attractiveness 
of the center set up by the Leader is greater or equal to the 
amount of attractiveness of the center set up by the Follower, 
then customer j will be attracted to the Leader’s facility i. In this 
equation, k ∶ i≥jk means that out of two open facilities i and 
k, even in case of equal attraction, customer j prefers facility i.

Equation 6 shows that customer j can be serviced by the Fol-
lower only when the center i is deployed by the Follower. Equa-
tion 7 also shows that all the decision variables in this model 
are binary. The model presented above is an integer nonlinear 
programming problem regarded as an NP-hard model in the 
literature. NLP’s are not easy to solve, and the solutions are not 
completely reliable; in order to solve these optimization models 
easier in operations management, we try to linearize them. The 
reason for the nonlinearity of the model presented above is the 
nonlinear term in the Leader’s objective function.

(2)xi +
∑

k∶i>jk

xkj ≤ 1 i ∈ I, j ∈ J

(3)xij ≤ xi i ∈ I, j ∈ J

(4)max
zi,zij

{

−
∑

i∈I

gizi +
∑

(i,j)

pijzij

}

(5)xi +
∑

k∶i≥jk

zkj ≤ 1 i ∈ I, j ∈ J

(6)zij ≤ zi i ∈ I, j ∈ J

(7)xi, xij, zi, zij ∈ {0, 1}

The model presented below is the linearized form of Model 
(1), presented as Model (2). The linearization has been done 
using three equations: Eqs. 13, 14 and 15. Equation 13 shows 
that if a facility is located in location i, customers located in 
that area will be attracted to that facility if the attraction of 
that facility is more than the other facilities located by the 
Follower. Equation 14 shows that if the Follower establishes 
his/her own facility in center i, the customers located at i will 
only be attracted to the Followers facility if the attraction of 
the Followers facility is more than the attraction of the Leaders 
facility. Equation 15 shows that any customer must be served 
by at least one of the Leaders or Followers. These three con-
straints, while maintaining the main conditions of the original 
model, make the model turn into a linear model which helps to 
solve the model in a reasonable time. For this particular model, 
this claim has been shown by solving multiple problems with 
different sizes, and equal solutions have been obtained.

Model 2: Linearized model

Full enumeration methods

The simplest model of the bi-level programming which 
is the linear–linear bi-level programming problem is also 
NP-hard (Hansen et al. 1992; Ostresh 1975), so it is not 

(8)max
xi,xij

−
∑

i∈I

fixi +
∑

(i,j)

pijxij

(9)xi +
∑

k∶i>jk

xij ≤ 1 i ∈ I, j ∈ J

(10)xij ≤ xi i ∈ I, j ∈ J

(11)max
zi,zij

{

−
∑

i∈I

gizi +
∑

(i,j)

pijzij

}

(12)xi +
∑

k∶i≥jk

zkj ≤ 1 i ∈ I, j ∈ J

(13)zi +
∑

k∶i>jk

zkj ≤ 1 i ∈ I, j ∈ J

(14)zi +
∑

k∶i>jk

xkj ≤ 1 i ∈ I, j ∈ J

(15)
∑

i∈I

xij + zij = 1 j ∈ J

(16)zij ≤ zi i ∈ I, j ∈ J

(17)xi, xij, zi, zij ∈ {0, 1}
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simple to find the optimal solution and the exact solu-
tion in a short time, and we need to use algorithms such 
as branch and bound, branch and cut. Now, if one can 
find an initial solution or a suitable lower bound (a good 
approximation) for these algorithms, the search process 
will become much faster. The proposed bi-level model is 
solved using full enumeration methods, clustering (which 
provides a good initial response) and a branch-and-bound 
procedure. The pseudo-code for each of these algorithms 
is explained in the next sections.

The basis of the algorithms used for solving the bi-level 
programming problem is that the priority to take the first 
decision (action) is given to the Leader, the Leader, by look-
ing at its objective function takes the best possible choice, 
based on this decision, the Follower takes its decision trying 
to optimize its objective function, given that, in this article 
our problem is a binary bi-level programming problem, the 
basis used for the full enumeration is that in a number of 
loops (the number of loops is the number of candidate loca-
tions for deployment), all possible states for the deployment 
of the Leader are examined; then, through all these points, 
the point which has the best objective function is chosen 
by the Leader. As illustrated below, for solving the binary 
bi-level location–allocation problem, three full enumeration 
procedures have been presented. These three full enumera-
tion algorithms have a distinguished difference. The differ-
ence is that the first algorithm (FE1) is considered only the 
Leader location to be fixed in the Follower model, while the 
second method (FE2) considers both location and allocation 
variables of the Leader in the Follower model. It should be 
mentioned that the (FE3) procedure empowers the FE1 algo-
rithm by removing some feasible and infeasible solutions, so 
it can reduce the computational time significantly.

Algorithm 1: Full Enumeration 1 procedure (FE1)

Step 0: The Leader’s decision for locating a facility is 
a binary variable. As a result, all possible states for the 
Leader’s location can be calculated.
Step 1: Put the value of the Leader’s solution in step 0 
in the Follower’s model, and the value of the Follower’s 
decision variables ( zi and zij ) can be obtained (X, Z), 
which is a feasible solution to the problem.
Step 2: Among all the solutions, the solution that has 
the best value of the Leader’s objective function is con-
sidered as the optimal solution.

Algorithm 2: Full Enumeration 2 procedure (FE2)

Step 0: The Leader’s decision for locating a facility and 
for allocating customers is binary variables. As a result, 
all possible states for the Leader’s location and allocation 
can be calculated.

Step 1: Put the value of the Leader’s solution in step 0 
in the Follower’s model, and the value of the Follower’s 
decision variables ( zi and zij ) can be obtained (X, Z), 
which is a feasible solution to the problem.
Step 2: Among all the solutions, the solution that has the 
best value of the Leader’s objective function is considered 
as the optimal solution.

Algorithm 3: Full Enumeration 3 procedure (FE3)

Step 0: The Leader’s decision variable is binary. As a 
result, you can calculate all possible states for the Lead-
er’s location.
Step 1: If the number of center(s) built by the Leader is 
less than q center(s) ( 

∑

xi ≤ q ), consider that solution. 
Otherwise, delete that solution. (Assuming that there is 
no competitor in the market, q is the maximum number 
of facilities that a Leader can build without facing any 
disadvantages or loss).
Step 2: Among all the solutions, the solution that has the 
best value of the Leader’s objective function is considered 
as the optimal solution.

Finding a feasible solution using clustering 
algorithm

Given that the more customer is closer to the facility and 
the attractiveness of that facility is higher for the customer, 
the concept of clustering can be used to reduce the size of 
the problem in a way that locations which are closer to each 
other and relatively have similar characteristics are put in a 
cluster. Given the fact that in the bi-level problems, the first 
level decides first, depending on the decisions of the first-
level decision maker, the second level decides and makes its 
decisions. As a result, among the points in a cluster, the first 
level (Leader) selects a place for deployment of its center(s) 
which is more attractive for the customers and also has a 
lower cost for deployment.

Algorithm 4: Clustering procedure

Step 0: Enter the coordinates of the candidate locations 
as inputs and go to the next step.
Step 1: Make the distance matrix (Euclidian) and go to 
the next step.
Step 2: Based on the distance criterion, rank each candi-
date location. Rank the closest facility 1 and so on till the 
last facility. Rate all points and go to the next step.
Step 3: Considering the cost of deployment in i and the 
acquired profit from it, find the maximum number of 
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possible deployments for the Leader without facing any 
disadvantages or loss and set to P and go to the next step.
Step 4: Cluster the candidate points to 1,2, ..., p and go 
to the next step.
Step 5: Get the centers of each cluster (for example, in 
the 7 cluster mode, get the centers for each of the seven 
clusters) among the candidate points; the point with the 
lowest distance to the center of the cluster is set as the 
location of the Leader’s facility. Take the next step.
Step 6: Repeat step 5 for all clusters and get the Leader’s 
location for each of the clusters.
Step 7: Calculate the value of the objective function for 
the solutions given in step 6, and the solution with the 
best value of the Leader’s objective function is considered 
as the Leader’s center.
Step 8: Fix the solutions found at step 7 in the Leader’s 
model and solve the Follower’s model, good initial solu-
tion is obtained.

Branch‑and‑bound procedure

One of the procedures for solving IP problems in an exact 
manner is solving them using algorithms like branch-and-
bound, branch and cut, dynamic programming algorithm. To 
the best of our knowledge, one of the most commonly used 
algorithms for solving the Bi-level programming problems 
as mentioned in the literature is the branch-and-bound algo-
rithm. The main concept of the branch-and-bound algorithm 
used in this paper is taken from Hocking (2004), which has 
shown that this algorithm reaches the optimal solution 
in an absolutely efficient and acceptable time. A branch-
and-bound procedure has been presented in this paper to 
solve the binary Bi-level location–allocation problem. The 
main feature of the proposed branch-and-bound algorithm, 
compared to the classical branch-and-bound scheme, is it 
is not necessary to optimize the model after each branch 
and an approximation is used; thus, compared to the clas-
sical branch-and-bound scheme, the computational time is 
lower. The pseudo-code for the branch-and-bound algorithm 
explained above is presented below:

Algorithm 5: Branch-and-bound procedure

Step 0: Enter the lower bound equal to infinite and the 
marginal of the location and allocation variables. In this 
problem, the marginal of the location and the allocation 
variables are the cost for locating the facility and the 
profit gained from allocating customers, respectively; 
note that costs and profits are represented as negative and 
positive numbers, respectively.
Step 1: Solve Model(1) without Eq. 4 by setting the 
Leader’s variables at binary and relaxing the Follower’s 

variables between 0 and 1, and maximizing the Leader’s 
objective function. Upper bound calculated in this step 
is an upper bound for the Leader.
Step 2: The upper bound calculated in step 1 is set at 
node 0 (the top most node), and the allocation variables 
are set to one and zero, respectively, like the general 
branch-and-bound scheme. In location–allocation prob-
lems, locating has a cost and allocating has profit so 
fathoming only becomes possible if the allocation vari-
ables are set to take value first in the branch and bound.
Step 3: Wherever the value of a variable is fixed to one, 
the marginal value of that variable is added to the upper 
bound, and wherever the variable is fixed to zero, no 
value is added. In each level, the best value is selected 
to continue the branching (best first procedure).
Step 4: Step 3 is continued until the last level is reached 
and the upper bound is calculated. The variables that 
have been fixed are the Leader’s action. These vari-
ables are fixed in the model explained in step 1 and 
the Followers objective function is maximized and the 
Followers variables are executed from the model. This 
solution is a lower bound for the model.
Step 5: Calculate all the nodes and any node having a 
worse lower bound than the best lower bound found will 
be fathomed. The best lower bound found will be the 
solution to the problem.

As explained above, the algorithm used in this paper 
is based on the first allocation and then location concept, 
meaning that the first branches are made on allocation vari-
ables (positive sign variables) and then location variables 
(negative sign variables). The reason is the sign of margin-
als of the variables, because if the branching starts with the 
negative sign variables, the fathoming would not be pos-
sible, but if the branching starts with the positive sign vari-
ables, only at the start of the branching for the negative vari-
ables the fathoming would be possible, but fathoming by 
infeasibility is still possible for both explained procedures.

Sensitivity analysis and numerical examples

In this research, some instances with different sizes have 
been used in order to analyze the algorithms and to test 
the validity of the transformed model in a linear form. The 
instances were adopted based on the reported dataset in 
http://www.math.nsc.ru/AP/bench marks /S.

Linear model validity

In order to verify the validity of the linearized model pre-
sented as Model (1), various sizes of instance introduced 

http://www.math.nsc.ru/AP/benchmarks/S
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have been solved. The remarkable points of this analysis are 
(1) the nonlinear model gets stuck in the local optimal; thus, 
solving it using the linear model obtains the optimal solu-
tion. (2) The linear model is solved at the average of at least 
50% faster than the nonlinear model (Fig. 2 and Table 2).

As shown in Table 2 and Fig. 3, our claim has been proved 
and the linear model while containing the optimal solution 
solves the model at the average of at least 50% faster.

Comparison of branch and bound with FE1 and FE2

The easiest and of course the most overwhelming way to 
solve a bi-level programming problem is solving it using the 
full enumeration methods mentioned in the literature, but as 
mentioned, even for the small-sized problems it takes a lot 
of time to solve that is why researchers in the literature have 
tried to solve these types of problems using any of the exact 
and efficient algorithms like branch and bound and branch 
and cut. In order to solve the bi-level location–allocation 
problem using any of these, they need to be modified and the 
aspects and features of the problem have to be considered, 
and also exact inequalities, bounding and fathoming must be 
applied; thus, the branch-and-bound procedure introduced 
above in this paper is examined and compared with FE1 
and FE2. As shown in Table 3 and Fig. 3, as the number 
of candidate location increases, even though the number of 
variables solved by the proposed branch-and-bound/FE2 
algorithm decreases compared to the FE1 procedure, the 
growth rate for the number of integer problems that need to 
be solved by the branch-and-bound/FE2 algorithm increases 
more than the FE1 approach; thus, it is intelligible that the 
FE1 method compared to the proposed branch and bound/
FE2 is more efficient.

Table 2  Linear model validity Candidate 
locations

FE1 procedure for Model (2) FE1 procedure for Model (1)

LOF FOF Time (s) LOF FOF Time (s) Time 
improve-
ment

5 0 33 5.1 0 33 8.9 0.43
6 0 39 8.4 0 39 19.7 0.57
7 0 51 19.6 0 51 39.9 0.51
8 0 60 34.1 0 60 76.7 0.56
9 1 0 69.2 0 69 168.6 0.59
10 10 0 137.9 0 78 336.9 0.59
11 16 0 375.2 0 84 796.3 0.53
12 11 24 603.6 0 95 1884.4 0.68

Fig. 2  Efficiency of linear model

Table 3  Comparison of branch 
and bound with FE1 and FE2

Candidate 
locations

Maximum number of IPs that could be solved Maximum number of vari-
ables that could be solved 
(at each iteration)

BB (without fathoming) FE1 FE2 BB FE1 FE2

2 64 4 64 6 10 6
3 4096 8 4096 12 21 12
4 1,048,576 16 1,048,576 20 36 20
5 1,073,741,824 32 1,073,741,824 30 55 30
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Comparison of FE1 and FE3 method

As shown in Table 4, solving this problem becomes much 
overwhelming as the size increases, but by using the FE3 
procedure not only it gives the same optimal solution but 
reduces the solution time by the average of at least 20%. In 
Table  4, Leader’s objective function and Follower’s objec-
tive function are presented as LOF and FOF, respectively. As 
shown in Tables 3 and 4, for small- and medium-sized prob-
lems the FE3 procedure has been better than FE1, FE2 and 
the branch-and-bound procedure. With a glance at Fig. 4, 
it could be understood that by increase in the number of 
candidate locations, the difference between solution time for 
the FE1 procedure and solution time for the FE3 procedure 
increases, considering that both reach the optimal solution. 
Thus, it could be understood that using the FE3 procedure 
for these types of problems is more efficient.

Fig. 3  Comparison of the number of variables and the time the problem solves between branch-and-bound and FE1 procedures

Table 4  Comparison of FE1 
and FE3 method

Candidate 
locations

FE3 procedure FE1 procedure Time improve-
ment percentage

LOF FOF Time LOF FOF Time

5 0 33 3.4 0 33 5.1 0.33
6 0 39 5.7 0 39 8.4 0.32
7 0 51 11.8 0 51 19.6 0.40
8 0 60 21.1 0 60 34.1 0.38
9 1 0 43.6 1 0 69.2 0.37
10 10 0 99.1 10 0 137.9 0.28
11 16 0 217.5 16 0 375.2 0.42
12 11 24 402.8 11 24 603.6 0.33

Fig. 4  Solution time comparison for FE1 and FE3 procedures
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Clustering and FE3 method comparison

As shown in Table 5, by increase in the size of the problem, 
the clustering procedure gives a reliable and a good feasible 
solution at a very short time (less than one second); thus, it is 
better to use the clustering procedure for big size problems. 
The feasible solution found by clustering procedure could be 
used as a lower bound on other exact algorithms like branch 
and bound and even as an initial solution for the bi-level 
meta-heuristic procedures (Fig. 5).

Conclusion

In this paper, a nonlinear bi-level location–allocation problem 
considered in the literature was linearized, and to solve the 
problem, four exact procedures and a good heuristic procedure 
were proposed and analyzed. Exact solution approaches include 
three full enumeration-based algorithms as well as a branch-
and-bound-based solution algorithm. The proposed heuristic 
algorithm is based on the clustering method. The mathematical 
model for the problem has been presented in both nonlinear and 
the linear forms, and it is shown that the linearization has been 
very efficient. Considering achieved results from the computa-
tional study, it is demonstrated that in comparison of FE1 and 
FE2 procedure with the branch-and-bound method, the FE1 is 
more efficient; thus, in the following, FE1 procedure is com-
pared with the FE3 procedure and the FE3 procedure solves the 
instances at least 20% faster. Considering these comparisons, 
it is notable that for small- and medium-sized problems it is 
better to use the FE3 algorithm which gives an exact solution 
in an acceptable time. By these explanations, it is tangible that 
in order to solve large-sized problems, there are two options 
left: the FE3 and the heuristic procedure; thus, the FE3 and the 
clustering procedure are compared, and following the results, 
it is more efficient to solve large-sized instances of bi-level 

location–allocation problems with clustering method which 
results in a good efficient solution with good convergence rate 
in a very short time, so it could be concluded that for every 
small- and medium-sized instance, the FE3 procedure gives an 
exact solution in an acceptable time and for large-sized prob-
lems it is better to use the clustering procedure. As a matter of 
future research, it is recommended to: (1) improve the branch-
and-bound algorithm by using the clustering solution as a lower 
bound, (2) use the solution of the clustering algorithm as an 
initial solution for the bi-level meta-heuristic procedures and 
(3) use customer preferences other than the distance preference.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

Table 5  Comparison of FE3 
and clustering method

Candidate 
locations

FE3 procedure Clustering procedure Time (s)

LOF FOF Time (s) Number of 
clusters

LOF FOF

5 6 25 3.4 2 − 8 2 < 1
6 18 1 5.7 4 4 0 < 1
7 28 0 11.8 4 28 0 < 1
8 38 28 21.1 5 19 47 < 1
9 40 0 43.6 5 28 30 < 1
10 30 37 99.1 6 15 15 < 1
11 40 91 217.5 7 28 5 < 1
12 34 60 402.8 7 6 91 < 1

Fig. 5  Solution time for the FE3 procedure

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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