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Abstract DEA models help a DMU to detect its (in-)ef-

ficiency and to improve activities, if necessary. Efficiency

is only one economic aim for a decision-maker; however,

up- or downsizing might be a second one. Improving

efficiency is the main topic in DEA; the long-term strategy

towards the right production size should attract our atten-

tion as well. Not always the management of a DMU pri-

marily focuses on technical efficiency but rather is

interested in gaining scale effects. In this paper, a formula

for returns to scale (RTS) is developed, and this formula is

even applicable for interior points of technology. Particu-

larly, technical and scale inefficient DMUs need sophisti-

cated instruments to improve their situation. Considering

RTS as well as efficiency, in this paper, we give an advice

for each DMU to find an economically reliable path from

its actual situation to better activities and finally to most

productive scale size (mpss), perhaps. For realizing this

path, we propose an interactive algorithm, thus harmoniz-

ing the scientific findings and the interests of the man-

agement. Small numerical examples illustrate such paths

for selected DMUs; an empirical application in theatre

management completes the contribution.

Keywords Data envelopment analysis � Returns to scale �
Efficiency � Upsizing/downsizing � mpss

Introduction

The relations between efficient vectors of inputs and out-

puts for a given technology picture production functions,

Shephard (1970), the characteristics of which predomi-

nantly are determined by their substitutionalities, and their

returns to scale (RTS). The homogeneity of such a pro-

duction function depends on the change, i.e., reaction of

outputs with radial changes of inputs. Production theory

distinguishes three forms of such reactions:

• constant RTS,

• decreasing RTS, and

• increasing RTS.

There is a great variety of methods to estimate such

functional dependencies, cf. Coelli et al. (2005).

Data envelopment analysis (DEA) as a nonparametric

approach permits the approximation of the efficient

boundary of technologies. This approximation takes place

via gathered data of inputs and outputs for the so-called

decision-making units (DMUs), that is, classical DEA;

numerous theoretical papers and applications prove its

value, see, for instance, Bashiri et al. (2013), Shokrollah-

pour et al. (2016) and Ziari (2016) or for a overwhelming

survey Emrouznejad and Yang (2017).

Already in their pioneering work, the authors in Banker

et al. (1984) also tackled the problem of the DMUs’ RTS.

They proved the sign of a variable u in the so-called

multiplier form of input-oriented DEA to indicate the RTS

situation—rather than the RTS measure—of a DMU, and

they restricted their analyses to efficient rather than

& Andreas Dellnitz

andreas.dellnitz@fernuni-hagen.de

Wilhelm Rödder

wilhelm.roedder@fernuni-hagen.de

Andreas Kleine

andreas.kleine@fernuni-hagen.de

1 Department of Operations Research, FernUniversität in

Hagen, Hagen, Germany

2 Department of Quantitative Methods, FernUniversität in

Hagen, Hagen, Germany

123

J Ind Eng Int (2018) 14:501–510

https://doi.org/10.1007/s40092-017-0233-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s40092-017-0233-7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40092-017-0233-7&amp;domain=pdf
https://doi.org/10.1007/s40092-017-0233-7


inefficient units, only. Roughly speaking, we have con-

stant/non-decreasing/non- increasing RTS iff optimal u ¼/

= /5 0. These results were generalized in Banker and

Thrall (1992) or Sahoo et al. (2016) for efficient production

points with variable u’s, i.e., non-unique RTS situations.

The authors in Førsund (1996), Førsund and Hjalmarsson

(2004), Førsund et al. (2007), and Fukuyama (2000)

advanced the RTS context by models of neoclassical pro-

duction theory and developed equations of scale elasticity

for efficient and non-efficient DMUs; an overview and a

discussion regarding the concept of RTS are provided in

Tone and Sahoo (2003) or Jahanshahloo and Soleimani-

Damaneh (2004). In the present paper, we give an elegant

and comprehensible proof and an easy interpretation of

such scale elasticity, for efficient and non-efficient DMUs.

Generally speaking, there are several ways for classifying a

DMU’s RTS situation in DEA—either envelopment or

multiplier form driven ways. However, the RTS measure is

based on an optimal solution of the multiplier form; in this

sense, the above-mentioned authors provide equivalent

representations of the respective formula for calculating

such scale elasticities.

A DMU which is informed about its relative inefficiency

wants to react by input reduction, output increase, or both:

Classical DEA theory recommends to proceed against the

boundary of technology; for some activity planning proce-

dures cf. Du et al. (2010), Du and Liang (2012), Homay-

ounfar et al. (2014), Zhang et al. (2015) and Tohidi and

Khodadadi (2013). DEA software supports such instructions

and helps the user to take respective actions. In all these

calculations, scale elasticities are not taken into account.

However, the additional knowledge of scale elasticities

should encourage the DMUs also to make use of scaling

effects. Consequently, if a DMU wants to maintain its BCC

efficiency, then for increasing RTS it should upsize its pro-

duction as any increasing inputs result in disproportionally

higher increase of outputs. Decreasing RTS rather recom-

mends downsizing due to lower disproportionality. Therefore,

each DMU pursues two objectives: improvement of effi-

ciency and upsizing or downsizing production. Mostly if not

always the way to technology boundary is hard to realize.

Labour law or social restrictions might forbid such rigid

alterations. Is there a more convenient way towards the right

production size and efficiency? It is, and the hitherto neces-

sary information is available even for interior points of

technology.

For the combination of efficiency and scaling improve-

ment, we develop an (input-oriented) interactive algorithm,

thus harmonizing scientific findings and managerial interests

of the DMU under consideration. Stepwise it improves its

efficiency and its scale size and hence runs through a path

from its original activity towards mpss, if possible. The

DMU’s awareness of inefficiency sometimes demands

unrealistic input reduction. Rather it—the DMU—might

communicate its disposition for a more reasonable reduction

and the algorithm should respect this information.

Not always realizing the path from the actual activity of

the DMU to most productive scale size (mpss) is an easy

job. An impressive example for a vulnerable theatre

scenery illustrates this issue.

The paper is organized as follows. In the second section,

we present preliminaries of DEA. In the next section, two

forms of activity changes are given, one maintaining BCC

efficiency and one maintaining CCR efficiency. The fol-

lowing section is dedicated to situations of non-unique

RTS. The next section provides the central topic of this

paper: an interactive and iterative algorithm towards mpss.

In the following section, an empirical example illustrates

the new method. For 30 German theatres, efficiencies and

RTS are calculated, and for a selected theatre, the proposed

method is outlined. The last section contains a short resume

and delineates prospects of further research.

Preliminaries

Koopmans’s activity analyses are the roots of DEA, cf.

Koopmans (1951). Activities are processes which trans-

form objects in other objects. If such objects are material

or immaterial goods, such a process by definition is a

production process, cf. Frisch (1965), p. 3. The set of all

such processes is the production possibility set or tech-

nology T, for short. The activity over a certain time

period transforms the input x 2 RM
þ into the output y 2

RS
þ and thus characterizes the performance of a DMU,

such as a project, a corporation, or even a non-profit

utility. Once a technology is determined, DEA theory

allows for the efficiency measurement of any activity. We

restrict our attention to input-oriented efficiency measures

and omit output orientation, cf. Banker et al. (1984),

however. Partial inefficiencies which might occur with

radial input reduction will not be considered here, either;

the reader is referred to Charnes and Cooper (1984) or

again Banker et al. (1984).

The authors in Charnes et al. (1978), following Debreu

(1951), and Farell (1957) developed linear optimization

problems (LOPs) measuring efficiency.

For each DMU, k solve

min hk

s.t.: hkxk �
X

j
kkjxj = 0

X
j
kkjyj = yk

with kkj = 0 8j; hk free

and --- for constant returns to scale (CRS) ð1:1Þ
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X
j
kkj ¼ 1 for variable returns to scale (VRS). ð1:2Þ

(1.1) and (1.2) are called envelopment form of DEA. If the

optimal hk is equal to 1 DMU, k is efficient and inefficient,

otherwise.

The dual problems of (1.1) and (1.2) are (2.1) and (2.2),

again LOPs.

max gk ¼ uTk yk þ uk

s.t.: vTk xk ¼ 1

uTk yj þ uk � vTk xj 5 0 8j
uk; vk = 0

and uk ¼ 0 for CRS ð2:1Þ

uk free for VRS. ð2:2Þ

Such weights vk and uk of inputs and outputs often are

called virtual prices. Neither are they preassigned nor

market-based, they just are a suitable means for each

DMU k to stress its own efficiency. This attitude is

called ’self-appraisal’. Already in their pioneering work,

Banker et al. (1984) demonstrate that for an efficient

activity ðxk; ykÞ, the optimal value of uk in (2.2) indicates

constant, non-decreasing, or non-increasing RTS, though

the authors refer to the sign of the respective variable uk,

only, and do not fully exploit the information from an

optimal solution u�k ; v�k ; u�k ; g�k . More on that in the next

section.

In the DEA literature, models (1.1), (2.1) and (1.2), (2.2)

often are named by the acronyms CCR and BCC, due to

their creators Charnes, Cooper, Rhodes and Banker,

Charnes, Cooper, respectively. Whenever convenient, we

follow such practice.

Activity changes

Activity change under constant BCC efficiency

Let u�k ; v�k ; u�k ; g�k be an optimal solution of (2.2). Then,

we have

u�Tk yk þ u�k
v�Tk xk

¼ g�k ;

and we assume the optimal solution to be unique, first, cf.

Banker et al. (1984), p. 1086. Multiplying by the denom-

inator and reordering terms yield the following equation:

u�Tk yk þ u�k � g�k v
�T
k xk ¼ 0: ð3Þ

Theorem 1 For the equation u�Tk yk þ u�k � g�k v
�T
k xk ¼ 0

and a radial change xk ! ð1þ dÞxk and a radial change

yk ! ð1þ ekÞyk, the equation u�Tk ð1þ ekÞyk þ u�k � g�k v
�T
k

ð1þ dÞ xk ¼ 0 holds iff

ek ¼ d
u�Tk yk þ u�k

u�Tk yk
: ð4Þ

Proof

u�Tk ð1þ ekÞyk þ u�k � g�k v
�T
k ð1þ dÞxk ¼ 0

() ð1þ dÞ ½u�Tk yk þ u�k � g�k v
�T
k xk�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ 0

þu�Tk ð1þ ekÞyk

¼ d u�k þ u�Tk ð1þ dÞyk
() u�Tk yk þ u�Tk ekyk ¼ u�Tk yk þ d u�k þ u�Tk yk

� �

() d
u�Tk yk þ u�k

u�Tk yk
¼ ek:

h

Theorem 1 determines the necessary radial change of

output with a radial change of input so as to maintain

efficiency g�k constant. Equation (4) provides the respective

relation between input/output changes. Please note that

ek ¼ d
u�Tk yk þ u�k

u�Tk yk
¼ d

g�k
g�k � u�k

:

Therefore, the comprehensible result of theorem 1 corre-

sponds to the well-known scale elasticity measure of Før-

sund et al. (2007). From this equation and from Eq. (4), it

is obvious which role u�k plays in this context.

Conclusion 1

– jekj ¼ jdj for u�k ¼ 0; y changes radially to the same

amount as x does () constant RTS

jekj[ jdj for u�k [ 0; y changes radially to a greater

amount than x does () increasing RTS

jekj\jdj for u�k\0; y changes radially to a smaller

amount than x does () decreasing RTS.

– All statements are valid for an efficient (g�k ¼ 1) as well

as for an inefficient (g�k\1) DMU k.

Perhaps, the second bullet point needs some attention.

Equation (3) is valid at (in-)efficiency level g�k ; execution

of input projection xk ¼ g�k xk results in

u�Tk yk þ u�k � v�Tk xk ¼ 0: ð30Þ

RTS for this equation obviously is the same as for (3). If

g�k\1, (3) characterizes RTS (directly) for an interior point

of technology, see also Dellnitz (2016), whereas ð30Þ
determines the same RTS for the respective boundary

point; see also, e.g., Fukuyama (2000). In the remainder of

this contribution, we make use of this fact: moving in the

interior of technology is possible without projection on the

boundary!
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The measure of RTS for an activity ðxk; ykÞ is
u�T
k
ykþu�

k

u�T
k
yk

,

rather than u�k . This measure is not only a function of u�k , but

also of prices u�k and outputs yk. For equivalent equations,

confer again Førsund et al. (2007). The authors in Podinovski

et al. (2009) grabbed this question again and simplified

mathematical derivations for either case, envelopment, and

multiplier form, the so-called direct and indirect approach.

Next, we study Eq. (3) again, but with varying inputs

and outputs rather than the fix activity of DMU k. The

respective hyperplane in RMþS reads

u�Tk yþ u�k � g�k v
�T
k x ¼ 0: ð5Þ

We call (5) DMU k’s hyperplane at (in-)efficiency level g�k .
The following generalization of theorem 1 is

straightforward:

Corollary 1 For the equation u�Tk yþ u�k � g�k v
�T
k x ¼ 0

and a radial change x ! ð1þ dÞx and a radial change

y ! ð1þ ekÞy, the equation u�Tk ð1þ ekÞyþ u�k � g�k v
�T
k

ð1þ dÞ x ¼ 0 holds iff

ek ¼ d
u�Tk yþ u�k

u�Tk y
: ð6Þ

Moving on such a hyperplane means moving under con-

stant BCC efficiency. As soon as input projection of the

virtual activity ðx; yÞ falls on another facet of technology

than that of ðxk; ykÞ, efficiency will change, of course. More

on that in Sect. ‘‘Improving scale size and efficiency: an

interactive approach’’ or for calculating efficiency stability

regions, see, for example, Zamani and Borzouei (2016).

Activity change under constant CCR efficiency

Starting from (1.2), we now study simultaneous activity

change for DMU k from xk to xk=r and from yk to yk=r.

This transformation and multiplication by r[ 0 results in

the following equation:

min hk

s.t.: hkxk �
X

j

mkj � r � xj = 0

X

j

mkj � r � yj = yk

X

j

mkj ¼ 1

mkj = 0 8j; hk free;

ð7Þ

and with k0kj ¼ mkj � r, we get the linear program (8) with

parameter r on the right-hand side:

min hk

s.t.: hkxk �
X

j

k0kj � xj = 0

X

j

k0kj � yj = yk ð8Þ
X

j

k0kj ¼ r

k0kj = 0 8j; hk free:

Interesting enough, the parametrization of activity ðxk; ykÞ
by ðxk=r; yk=rÞ is equivalent to reciprocal sensitivity

analysis of the right-hand side of the convexity restriction

in (1.2); let ½r�; rþ� be the stability region. Activity change

beyond these limits would make the input projection of

ðxk=r; yk=rÞ fall off the actual facet of technology. Running
on a trajectory ðxk; ykÞ=r lets DMU k’s CCR efficiency

unchanged, of course. Note that r[ 1 implies in down-

sizing and r\1 in upsizing of DMU k’s activity.

In this section, two forms of activity changes were

proposed:

– maintaining BCC efficiency in Sect. ‘‘Activity change

under constant BCC efficiency’’ and

– maintaining CCR efficiency in Sect. ‘‘Activity change

under constant CCR efficiency’’.

How to combine these transformations for creating a path

towards mpss, i.e., improving BCC efficiency and CCR

efficiency or productivity, respectively, is topic of the

algorithmic interactive approach in Sect. ‘‘Improving scale

size and efficiency: an interactive approach’’.

Before doing so, however, we need some statements on

non-unique RTS. Sometimes a DMU must decide under

aggravated conditions whether it should expand or reduce

activity. In those cases, non-unique RTS play a decisive

role.

Non-unique RTS

The authors in Banker and Thrall (1992), Golany and Yu

(1997) study the consequences of a non-unique solution u�k ,

v�k , u
�
k , g

�
k of problem (2.2), and specially focus on the non-

uniqueness of u�k . The former authors seek for geometrical

characterizations of efficiency points and then calculate

intervals for u�k , cf. Banker and Thrall (1992), p. 82 equa-

tions (7) and (8). We follow their reasoning and generalize.

Solve again
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g�k ¼ max gk ¼ uTk yk þ uk

s.t.: vTk xk ¼ 1

uTk yj þ uk � vTk xj 5 0 8j
uk; vk = 0 and uk free.

Apply g�k and solve (9), cf. Mardani Shahrbabak and

Noura (2011):

uþk ¼ sup uk and u�k ¼ inf uk

s.t.: vTk xk ¼ 1

uTk yj þ uk � vTk xj 5 0 8j
uTk yk þ uk ¼ g�k
uk; vk = 0 and uk free.

ð9Þ

Let uþk , v
þ
k , u

þ
k and u�k , v�k , u�k be the corresponding

optimal solutions of (9). Equation (4) of Corollary 1 allows

for the following generalization:

eþk ¼ d
uþT
k yk þ uþk
uþT
k yk

and e�k ¼ d
u�T
k yk þ u�k
u�T
k yk

: ð10Þ

The numerator in (10) in each case equals g�k , but is

composed differently. The respective changes from (xk; yk)

to ð1þ dÞxk and ð1þ e�k Þyk must be feasible in T, of

course.

Conclusion 2 If 0\u�k 5 uk 5 uþk , then for all uk

increasing RTS prevail at (xk; yk ); if u�k 5 uk 5 uþk \ 0,

then decreasing RTS. The case u�k 5 05 uþk yields

decreasing, increasing and specially constant RTS. This

property remains valid for all activities ðx; yÞ 2 T located

on the hyperplane at efficiency level g�k like in (5).

Example For the activities of 7 DMUs, we have the data

in Table 1. Table 2 contains the optimal weights, effi-

ciencies, and RTS of the DMUs; the shaded area in Fig. 1

shows the respective technology. In addition, Fig. 1 illus-

trates non-unique RTS.

It shows that DMU 1 under model (2.2) performs with

efficiency g�1 ¼ 1. Problem (9) yields u�1 ¼ 7
8
and uþ1 ¼ 1.

For the equation 1 ¼ u1�1þu1
v1�2 or u1 � 1þ u1 � v1 � 2 ¼ 0,

respectively, we consider the solutions

u1 ¼
7

8
; u1 ¼

1

8
; v1 ¼

1

2
;

u1 ¼ 1; u1 ¼ 0; v1 ¼
1

2
;

u1 ¼ 0; u1 ¼ 1; v1 ¼
1

2
:

The second case is degenerated and the third one violates

the inequalities in (9) for DMU 2 to DMU 5. The only

hyperplane which permits activity changes, feasible in T, is

the one with u1 ¼ 7
8
. It contains DMU 2, ditto with g�2 ¼ 1.

DMU 6 under model (2.2) performs with efficiency

g�6 ¼ 3
4
. Problem (9) yields a unique u�6 ¼ uþ6 ¼ 7

12
. The

dashed line captioned with u6 ¼ 7
12

in Fig. 1 shows the

hyperplane of DMU 6 at efficiency level g�6. From equation

g�6 ¼ u6�2þu6
v6�3 or u6 � 2þ u6 � 3

4
� v6 � 3 ¼ 0, respectively, we

get: u6 ¼ 1
12
, v6 ¼ 1

3
. The hyperplane of DMU 6 which is

illustrated in Fig. 1 is the equation 1
12
yþ 7

12
� 3

4
� 1
3
x ¼ 0.

Note that the slope of this equation is 3—whereas with

0:1 � 1=12�2þ7=12
1=12�2 ¼ 0:45, the RTS is 45% for a 10% increase.

DMU 6 operates under strictly increasing RTS. �

Table 1 Inputs/outputs of

seven DMUs
DMU 1 DMU 2 DMU 3 DMU 4 DMU 5 DMU 6 DMU 7

Input 2 5
2

5 8 8 3 3

Output 1 3 7 9 8 2 1
2

Table 2 Efficiency, optimal

weights, and RTS of seven

DMUs

g�k vþk , u
þ
k , u

þ
k

v�k , u�k , u�k eþk ¼ d
uþT
k

ykþuþ
k

uþT
k

yk
e�k ¼ d

u�T
k

ykþu�
k

u�T
k

yk

DMU 1 1 1
2
, 0, 1 1

2
, 1
8
, 7
8

eþ1 ¼ d � 1 e�1 ¼ d � 8
DMU 2 1 2

5
, 1
10
, 7
10

2
5
, 1
4
, 1
4

eþ2 ¼ d � 10
3

e�2 ¼ d � 4
3

DMU 3 1 1
5
, 1
8
, 1
8

1
5
, 2
7
, �1 eþ3 ¼ d � 8

7
e�3 ¼ d � 10

21

DMU 4 1 1
8
, 1
5
, � 2

3
1
8
, 1, �1 eþ4 ¼ d � 16

27
e�4 ¼ d1�1

1 ¼: d � 0
DMU 5 13

16
1
8
, 3
16
, � 11

16
1
8
, 3
16
, � 11

16
eþ5 ¼ d � 13

24
e�5 ¼ d � 13

24

DMU 6 3
4

1
3
, 1
12
, 7
12

1
3
, 1
12
, 7
12

eþ6 ¼ d � 9
2

e�6 ¼ d � 9
2

DMU 7 2
3

1
3
, 0, 2

3
1
3
, 0, 2

3
eþ7 ¼ d � 1 e�7 ¼ d � 1
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Improving scale size and efficiency: an interactive
approach

From Eqs. (2.2) and (4), DMU k calculates its relative

efficiency and its RTS. Even if the respective activity is an

interior point of technology, the DMU knows the exact rate

of radial output/input change to keep BCC efficiency

constant, cf. Eq. (30) and the subsequent text. But what

must be done to improve productivity and simultaneously

make the right scaling decision? After all, Eq. (4) is a

recommendation of upsizing or downsizing production, see

Conclusion 1. However, how far should this production

sizing go. Banker (1984) formulated the concept of mpss

activity. An activity has most productive scale size, when

CCR and BCC efficiency coincide and are equal to 1. The

author showed a way for each DMU how to reach this goal

in one step without taking interactive communication with

a DMU into account.

Here, the situation is different: How can even an inef-

ficient DMU find its way stepwise to mpss avoiding this

lack? Before giving a general answer to this question, we

study the example again.

Example (continued).

First, we focus on DMU 5. It might pursue two

objectives

– downsize activities due to decreasing RTS; as

uþ5 ¼ u�5 ¼ � 11
16
\0,

– improve efficiency from actual g�5 ¼ 13
16
.

The two arrows in Fig. 2 give an idea of possible activity

changes.

If DMU 5 runs on the dotted line, it realizes downsizing

on its (in-)efficiency hyperplane, i.e., with constant BCC

efficiency. It should stop when its input projection falls on

another facet of technology and check its situation with

respect to new weights.

So far downsizing; and next the goal efficiency

improvement. We propose an interactive step. DMU 5

must find out its input reduction potential: What is the

minimal input portion just to meet the benchmark ~y5?

Choose a number g�5 5 f5 5 1, such that x̂5 ¼ ~x5 � f5 suffices
to produce ~y5. Make (x̂5; ŷ5 ¼ ~y5) the new activity. For

f5 ¼ g�5, DMU 5 becomes efficient, and for f5 ¼ 1, it has no

input reduction potential at all. For g�5\f5\1, it remains

inefficient, but improves efficiency from g�5 to
g�
5

f5
. In Fig. 2,

f5 ¼ g�5 even makes it a mpss.

Now, consider DMU 6. A first iteration step concerning

upsizing yields input ~x6 ¼ 10
3

and output ~y6 ¼ 3. For an

exemplary demonstration, we assume a radial input

reduction factor f6 ¼ 17
20

resulting in x̂6 ¼ ~x6 � 1720 ¼ 17
6
and

ŷ6 ¼ ~y6 ¼ 3. This activity is a start point for a second

iteration. A second upsizing results in ~x6 ¼ 17
3
and ~y6 ¼ 7,

and a second reduction step with f6 ¼ 15
17

yields (x̂6 ¼ 5; ŷ6
= 7). In addition, this makes DMU 6 mpss.

1

2

3

4

5

6

7

8

9

−1

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 x

y

DMU 1

DMU 2

DMU 3

DMU 4

DMU 5

DMU 6

DMU 7

u1 = 0

u1 = 1 u1 = 7
8 u6 = 7

12

Fig. 1 Family of hyperplanes for DMU 1 and hyperplane of DMU 6

at efficiency 3
4

1

2

3

4

5

6

7

8

9

−1

1

2

3

4

5

6
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Whether or not DMU 6 finally reaches mpss obviously

depends on its readiness for respective input reductions. In

this case, the iterative procedure results in scale efficiency

1 and even mpss.�

Running on BCC efficiency hyperplanes has two flaws:

1. u�Tk yk might be 0 and this makes
u�T
k
ykþu�

k

u�T
k
yk

indefinite, cf.

Theorem 1. Consider DMU 7: Its input projection falls

on the vertical facet with u�7 ¼ 0. Consequently, RTS

becomes indefinite, and hence, Eq. (6) is undefined. In

such cases, the ideal path on BCC-(in-)efficiency

hyperplanes, as was demonstrated for DMUs 5 and 6,

is blocked.

2. Assume that DMU 7—besides the above-mentioned

problem—succeeded in realizing activity (3, 1), see

Fig. 1. Its efficiency remains 2
3
, but now, Eq. (6)

permits different weight systems for this efficiency.

Which of these weight systems DMU 7 should select

for further activity change remains an open question.

In addition, this problem worsens, the more BCC

efficiency hyperplanes pass through (3, 1). For high-

dimensional DEA, this causes a severe problem.

We overcome these flaws by a three-step procedure.

1. Solve (1.2) with optimal value of objective function h�k .
2. Parameterize the 1 in the convexity restriction of (1.2).

Let ½r�; rþ� be the range of this sensitivity analysis.

Make ðx̂k; ŷkÞ� ¼ ðxk; ykÞ=r� like in (8) and respective

comments. Mind the fact that the scaling direction, r�

or rþ, depends on the RTS, including 1 and 0, cf.

Table 2.

3. Solve (1.2) for ðx̂k; ŷkÞ with optimal efficiency ĥ�k .

Make ð~xk; ~ykÞ ¼ ðx̂k � ĥ�k=h
�
k ; ŷkÞ. This step traces

ðx̂k; ŷkÞ back to BCC-(in-)efficiency hyperplane of

DMU k at level h�k!
The following algorithm formalizes our explanations so

far; for the stop criterion, we need both, the optimal CCR

and BCC efficiency: g��k and g�k .

To make the steps of the algorithm more transparent, we

illustrate the first two iteration steps of DMU 7 in Fig. 3.

DMU 7 is of particular interest, because its input projection

has an infinite scale elasticity. Therefore, we apply an

activity change under constant CCR efficiency like in Sect.

‘‘Activity change under constant CCR efficiency’’ (step

12). Then, step 14 traces back this activity to the prior BCC

efficiency. Step 15 reflects the DMU’s disposition for input

reduction. The continuing process of activity changes as

indicated in Fig. 3 follows the same reasoning.

This algorithm is only one possible stepwise approxi-

mation of mpss, of course. So the order of scale-sizing and

efficiency improvement might change, so up- and down-

sizing might be decomposed in smaller layers, etc. How-

ever, each specification of such an algorithm must

comprise

– up- or downsizing with constant efficiency,

– interactive efficiency improvement,

to pursuit the DMU’s two objectives.

So far the algorithm. How a DMU in the medium or in

the long term can realize such alterations of its activities is

due to its economical environment and its change man-

agement. These questions are beyond of the scope of this

paper.
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Interactive improvement of activities in theatres

A rich theatre scenery is considered the basis of a broad

cultural supply for the society, worldwide. The German

theatre landscape follows this tradition. Therefore, in the

season 2013/14, 142 public theatres attracted 21 million

visitors offering more than 67,000 events.

Nevertheless, in times of budgets in deficit in almost all

countries, the cost performance ratio of such activities is a

major challenge for local authorities and politicians. There

are some studies about this question, in which DEA plays a

decisive role, cf. Tobias (2003), Marco-Serrano (2006),

Kleine and Hoffmann (2013). What are desired outputs of a

theatre, what the respective inputs, and for which

homogenous subgroup of all theatres does such an effi-

ciency measurement make sense. For our purpose, we

consider two inputs:

– number of seats

– personnel expenses (million euro)

and three outputs: number of

– events

– productions

– visitors

as the database for DEA among 30 so-called three division

theatres which offer drama, music, and dance perfor-

mances. In Table 3, we show inputs and outputs for the

season 2013/14—data from the German Stage Association,

Deutscher Bühnenverein (2013)—together with respective

CCR and BCC efficiencies plus RTS characteristics—IRS,

CRS, and DRS—for these 30 theatres. All findings are

results of standard DEA software. Note that each theatre is

labelled by its city code.

Table 3 Inputs/outputs,

efficiencies, and RTS of 30

theatres

DMU Seats Pers. exp. Events Prod. Visitors g��k g�k RTS

BI 3622 18.351 631 35 221,051 0.8940 1 DRS

C 2792 24.683 785 75 193,889 0.8370 1 DRS

CB 1236 17.791 431 43 121,126 0.7760 0.7810 DRS

CO 1661 11.495 413 37 88,178 0.8350 0.9040 IRS

DA 1674 27.752 644 51 236,710 0.8640 0.8860 DRS

DE 1645 15.476 922 51 150,798 1 1 CRS

DO 2856 31.868 672 54 231,292 0.6200 0.6400 DRS

G 2049 15.277 759 59 135,465 1 1 CRS

GI 1098 11.693 432 40 117,475 1 1 CRS

H 2361 49.844 1261 81 409,431 1 1 CRS

HBV 803 12.006 532 37 128,535 1 1 CRS

HD 4831 19.143 1144 48 212,407 1 1 CRS

HZ 940 6.843 243 21 94,447 1 1 CRS

KA 1923 39.899 971 70 315,162 0.9660 0.9910 DRS

KI 3744 25.201 807 46 225,099 0.7160 0.7700 DRS

KL 933 16.106 485 30 119,520 0.7960 0.8610 IRS

KO 3208 12.432 270 25 85,860 0.5790 0.6220 IRS

KS 3812 26.958 700 47 222,660 0.6350 0.6960 DRS

MD 1455 22.422 895 67 172,226 0.9990 1 DRS

MS 1230 13.104 569 43 138,680 0.9920 0.9930 IRS

MZ 1286 18.251 525 44 195,519 0.9860 1 DRS

OL 2258 20.646 734 54 179,742 0.7890 0.8160 DRS

OS 2170 15.335 649 47 171,159 0.9400 0.9870 DRS

PF 2375 10.613 422 27 128,899 0.9330 0.9600 DRS

R 1688 15.315 605 33 164,773 0.9010 0.9380 DRS

S 5236 81.157 809 64 491,316 0.5820 1 DRS

SB 2874 25.029 573 26 188,917 0.5910 0.6320 DRS

SN 2821 18.772 810 72 193,132 1 1 CRS

WI 2926 29.215 918 72 340,817 0.9590 1 DRS

WU 2120 13.481 429 30 129,125 0.7450 0.7680 DRS

508 J Ind Eng Int (2018) 14:501–510

123



We then choose a special member of the group, namely

the theatre of the town of Oldenburg and submit it to the

process explained in foregoing sections. Theatre OL starts

with 2258 seats, 20.646 mio. personnel expenses, and

realizes 734, 54, and 179,742 units of the three outputs. Its

relative CCR efficiency is 0.789 and its BCC efficiency

amounts to 0.816. For the optimal price system, we have

u�OL ¼ �0:07, thus plighting under-proportional loss of

outputs when reducing inputs. Furthermore, we presume an

input reduction factor fOL ¼ 0:98. With these parameters,

Oldenburg theatre from planning period to planning period

would run through input/output sceneries, and CCR-,

BCC-, and scale efficiencies (SE) like in Table 4 (rounded

values).

From this table, we learn that the reduction process of

activities for Oldenburg’s public would be very painful.

First, reducing activities stepwise by rþ ¼ 1:0703,

1.0773, 1.0856, and 1.0956 plus input reduction of

ð1� 0:98Þ � 100 ¼ 2% in each step means an irresponsi-

ble sellout of cultural quality in town. And such a sellout

very likely will cause an angry protest in Oldenburg’s

population. Even worse, this reduction does not make OL

theatre efficient at all. All together, this strenuous effort

over 4 planning periods results in 88.45% CCR and BCC

efficiency and a 100% scale efficiency. However, mpss is

still far away....

Data envelopment analysis is a suitable instrument for a

DMU to detect its weaknesses and its improvement

potentials. Whether or not a DMU can realize such findings

depends on the surrounding conditions and the DMU’s

change management, however. Whether or not a theatre

like the one in Oldenburg will follow recommendations to

reduce activities is by no means a DEA question but rather

a political issue. We hope that the audience in this town

will have many years of vivid sensations with its theatre.

Conclusion and the road ahead

In this contribution, radial returns to scale are measured for

all DMUs along their respective (in-)efficiency hyper-

planes. This measure involves not only the variable u but

also outputs and their corresponding virtual prices. The

measure is valid for efficient and inefficient activities and

can be applied even to cases with non-unique u’s. In other

words: even for an interior point of the technology, unique

and non-unique returns are measurable without any pro-

jection upon the technology boundary. This measure for

each DMU is a handy instrument to evaluate consequences

of radial upsizing and downsizing. Each time, such upsiz-

ing or downsizing is realized, the DMU might again check

its efficiency and its returns to scale and take action to

improve its situation. In this paper, we propose an algo-

rithm to support DMUs in finding an economically reliable

path towards mpss. This algorithm interactively commu-

nicates with the decision-maker to avoid unrealistic steps

of activity improvements. In an application, such steps

might be modified due to environmental conditions. These

modifications are a worthwhile focus for future research.

Cross-efficiencies are considered an interesting

approach to evaluate DMUs’ efficiencies from the point of

view of other DMUs. Whenever a supervising institution

dismisses self-appraisal as a valid concept, crosswise

evaluations might help to find a peer, a weight system

acceptable for all DMUs. Earlier and recent DEA literature

reports on such peer-appraisal concepts confer, e.g., Doyle

and Green (1994), Rödder and Reucher (2012). Once such

a concept is accepted and a peer is selected, his weight

system not only appraises all DMUs efficiencies but

becomes the transfer price system of the whole group. Do

there exist cross-RTS similar to cross-efficiencies and

which consequences do such cross-RTS have upon a

DMUs scale-sizing. Such questions could be the issue of

further research.
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