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Abstract In every production plant, it is necessary to have

an estimation of production level. Sometimes there are

many parameters affective in this estimation. In this paper,

it tried to find an appropriate estimation of production level

for an industrial factory called Barez in an uncertain

environment. We have considered a part of production line,

which has different production time for different kind of

products, which means both environmental and system

uncertainty. To solve the problem we have simulated the

line and because of the uncertainty in the times, fuzzy

simulation is considered. Required fuzzy numbers are

estimated by the use of bootstrap technique. The results are

used in production planning process by factory experts and

have had satisfying consequences. Opinions of these

experts about the efficiency of using this methodology, has

been attached.

Keywords Production planning � Fuzzy simulation �
Bootstrap technique � Discrete event simulation

Introduction

Production planning is a key area of operations manage-

ment. The plans have to be determined while there is

uncertainty in environmental and system uncertainties,

namely uncertain products demands, processes yields, etc.

This work is trying to solve a production planning problem

in a manufacturing factory where multiple products are

produced simultaneously from different classes of raw

material. Besides, raw materials are non-homogeneous and

have random characteristics. Therefore, the production

ability of every steps, meaning the quantity of products that

can be produced by each process step, are random vari-

ables. Moreover, market demand for products is also

uncertain and non-stationary during the planning horizon.

The problem that we are considering is to find how many

product can be produced.

Mula et al. (2006) have provided a review of literature in

production planning under uncertainty. Stochastic pro-

gramming (Dantzig 1955; Kall and Wallace 1994; Birge

and Louveaux 1997; Kall and Mayer 2005) and robust

optimization (Mulvey et al. 1995) has seen several suc-

cessful applications in production planning. In Escudero

et al. (1993), a multi-stage stochastic programming

approach was used for addressing a MPMP production

planning model with random demand. Bakir and Byrune

(1998) developed a stochastic LP model based on the two-

stage deterministic equivalent problem to incorporate

demand uncertainty in a multi-period multi-product

(MPMP) production planning model. Huang (2005) pro-

posed multi-stage stochastic programming models for

production and capacity planning under uncertainty. Alfieri

and Brandimarte (2005) reviewed multi-stage stochastic

models applied in multi-period production and capacity

planning in the manufacturing systems. Ho and Fang
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(2013) proposed a novel method to determine optimal

capacity allocation under the uncertain demands and to

allocate limited capacity to multiple products with an aim

to maximize profit. Brandmarte (2006) proposed a mathe-

matic programming approach for multi item capacitated lot

sizing with uncertain demand. Khor et al. (2007) proposed

a two-stage stochastic programming model as well as

robust optimization models for capacity expansion plan-

ning in petroleum refinery under uncertainty. Leung and

Wu (2004) proposed a robust optimization model for

stochastic aggregate production planning. Aarabi and

Hasanian (2014) reviewed 58 articles in the field of ‘‘ca-

pacity planning and control’’ published during 2000–2014.

Capacity planning and control are the task of setting the

effective capacity of the operation, so that it can respond to

the demands placed upon it.

Awudu and Zhang (2013) proposed a stochastic linear

programming model for production planning in a biofuel

supply chain under demand and price uncertainties. Deci-

sions such as the amount of raw materials purchased, the

amount of raw materials consumed and the amount of

products produced are considered. Benders decomposition

(BD) with Monte Carlo simulation technique is applied to

solve the proposed model. In Leung et al. (2007) a robust

optimization model was developed to address a multi-site

aggregate production planning problem in an uncertain

environment. Wu (2006) applied the robust optimization

approach to uncertain production loading problems with

import quota limits under the global supply chain man-

agement environment.

Multi production manufacturing makes planning harder

and more complicated methods should be used. Shi et al.

(2011) used mathematical programming to solve an

uncertain multi product problem. But these kinds of

problem while facing with uncertainty usually needs a

robust answer. Graves (2011) reviewed uncertain produc-

tion planning problems. Figueroa-Garcı́a et al. (2012)

modeled and solved a multi period production planning

problem in a fuzzy environment again using mathematical

programming. Zhang et al. (2010) solved a production

planning problem with seasonal variable demand. Mehrjoo

and Bashiri (2013) proposed a robust decision support tool

for detailed production planning based on statistical mul-

tivariate method including principal component analysis

and logistic regression. Zahraee et al. (2014) applied

computer simulation to analysis manufacturing system in

order to improve the productivity. They study a color

manufacturing line as a case study and the basic application

of arena 13.9 software.

The literature in production planning under uncertainty

is vast. Different approaches have been proposed to cope

with different forms of uncertainty. Mula et al. (2006) have

reviewed production planning models under uncertainty

and have presented a brief general classification which is

shown in Table 1.

Galbraith (1973) defines uncertainty as the difference

between the amount of information required to perform a

task and the amount of information already possessed. In the

real world, there are many forms of uncertainty that affect

production processes. Ho (1989) categorizes them into two

groups: (1) environmental uncertainty and (2) system

uncertainty. Environmental uncertainty includes uncertain-

ties beyond the production process, such as demand uncer-

tainty and supply uncertainty. System uncertainty is related

to uncertainties within the production process, such as

operation yield uncertainty, production lead time uncer-

tainty, quality uncertainty, failure of production system and

changes to product structure, to mention some.

Simulation models have been widely used in uncertain

problems. Mula et al. (2006) have classified use of simu-

lation in uncertain production planning problems.

In this paper, we have used Fuzzy numbers to deal with

uncertainty. The integration of fuzzy set theory in discrete

event system simulation to cope with the representation of

qualitative uncertainty has been proposed in Azzaro et al.

(1997), Nguyen and Le (1997) and Grieco et al. (2003). In

Nguyen and Le (1997), fuzzy and temporal logics are com-

bined to establish a temporal logic-based simulation system

that is capable of handling possibilistic values of both system

state variables and event occurrence times. In NotoLaDiega

et al. (2001), the problem of processing fuzzy data within a

discrete event simulation process is discussed and new

methods, able to avoid time paradox problems, are proposed.

Table 1 Classification for the general types of uncertainty models in

manufacturing systems

Conceptual models Analytical models

Yield factors Hierarchy processes

Safety stocks Mathematical programming

Safety lead times LP, MILP, NLP, DP, and MOP

Hedging Stochastic programming

Overplanning Deterministic approximations

Line requirements planning Laplace transforms

Flexibility Markov decision processes

Intelligence artificial based models Simulation models

Expert systems Monte Carlo techniques

Reinforcement learning Probability distributions

Fuzzy set theory Heuristic methods

Fuzzy logic Freezing parameters

Neural network Network modelling

Genetic algorithms Queuing theory

Multi-agent systems Dynamic systems

LP linear programming, MILP mixed linear programming, NLP

nonlinear programming, DP dynamic programming, MOP multi-ob-

jective programming
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The time paradox problem is also considered in Grieco et al.

(2003) in which a proper simulation clock updating proce-

dure is developed. A discrete event simulation model of an

industrial production system using fuzzy concepts to repre-

sent uncertainties in the performance of people (time and

duration of their intervention) is reported in Azzaro et al.

(1997). The work has been focused in semiconductor man-

ufacturing but can be applied to other kinds of batch pro-

cesses presenting similar features. A solution to the problems

related with the management of fuzzy uncertainty in discrete

event simulation is proposed even if the interpretation of the

obtained fuzzy simulation results requires further investi-

gations (e.g. no consideration about time paradox is made).

Recently, fuzzy uncertain durations have been considered in

Zhang et al. (2005). The fuzzy ranking measure is merged

with an activity scanning simulation algorithm for per-

forming fuzzy simulation time advancement and event

selection for simulation experimentation.

Research steps

To obtain an accurate estimate of production level with

fuzzy inputs, we have used fuzzy simulation. The input

parameters are considered fuzzy because of several reasons

such as below:

• Variation in charging times at the beginning of

production line: In the desired production line, several

kinds of commodity are produced and the amount of

each one depends on the demand, which is an uncertain

value.

• Dependent production time: Production time in every

stage of production process depends on what commod-

ity is being produced, and since row material charge to

production line is uncertain, the production time will be

uncertain to.

• Inherent variability of production times: there is a time

variation in every particular action on a particular

product, which is due to nature of actions.

The combination of these phenomena creates an atmo-

sphere that makes it difficult to use commonly used

methods for production planning. To overcome the com-

plexity and diversity in the decision making environment,

simulation tools have been considered, and to incorporate

uncertainty in the decision making process fuzzy simula-

tion is selected as a suitable tool. Next, fuzzy simulation

will be described.

Fuzzy discrete event simulation

In considered part of production line, events occur at discrete

intervals, also to simulate the line we should use discrete

event simulation. Since process times are considered fuzzy,

the simulation method used in this paper is based on entering

fuzzy numbers in discrete event simulation process. So the

combination will be fuzzy discrete event simulation. To do

sowe use a-cuts. In fact, for every a-cut, for lower bound and
upper bound values, we have run the simulation model

(0 B a B 1). Therefore, the result will be an interval con-

taining two values as lower and upper bound for every a-cut.
Now by placing these intervals, one on top of the other, a

fuzzy number will be produced as final result.

Calculating fuzzy numbers by the use of bootstrap

technique

Bootstrap methods are both computer intensive methods

used frequently are applied statistics. The bootstrap is a

type of Monte Carlo method applied based on observed

data (Efron and Tibshirani 1993) Thousands of papers have

been written on the bootstrap in the past 2 decades and it

has found very wide use in applied problems.

The fundamental idea of the model-based sampling

theory approach to statistical inference is that the data arise

as a sample from some conceptual probability distribution.

Uncertainties of our f inferences can be measured if we can

estimate. There are ways to construct a nonparametric f.

estimator of (in essence) from the sample data. The most

fundamental idea of the bootstrap method f is that we

compute measures of our inference uncertainty from that

estimated sampling distribution of f. However, in practical

application, the bootstrap means using some form of

resampling with replacement from the actual data, x, to

generate B bootstrap samples, x*. Often, the data (sample)

consist of n independent units and it then suffices to take a

simple random sample of size n, with replacement, from

the n units of data, to get one bootstrap sample (i.e. ‘‘rep’’).

We will be using fuzzy numbers for process times in

simulation model. In this section, we show how we obtain

these fuzzy numbers from a set of data. Initially, we

assume that we have enough data. Let X be a random

variable with probability density function (or probability

mass function) f(x; h) for single parameter h. Assume that h
is unknown but we have enough random data X1, …, Xn

and we are going to estimate h by these data. Let

Y = u(X1,…, Xn) be a statistic which is used to estimate h.
Given the values of these random variables Xi = xi,

1 B i B n, we obtain a point estimate h* = y = u(x1,…,

xn) for h. It is not expected that this point estimate exactly

equal h so often a (1 - b) 9 100% confidence interval for

h is computed. It is necessary to explain that since a usu-

ally is employed for confidence interval; we are using b
here, and a is reserved for a-cuts of fuzzy numbers. In this

confidence interval, one usually sets b equal to 0.10, 0.05

or 0.01. Usually b is set equal to 0.10, 0.05 or 0.01, but
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here it is proposed to find the (1 - b) 9 100% confidence

interval for all 0.01 B b\ 1. Starting at 0.01 is arbitrary

and one could begin at 0.001 or 0.005, etc. We denote these

confidence intervals as

½h1ðbÞ; h2ðbÞ�; ð1Þ

for 0.01 B b\ 1. Then we have (1 - b) 9 100% confi-

dence interval for h for 0.01 B b B 1. Now, as mentioned

above, place these confidence intervals, one on top of the

other. In this way, we can produce a triangular shaped

fuzzy number h whose a-cuts are the confidence intervals.

We have �h [a] = [h1(a), h2(a)] for 0.01 B a B 1. All that

is needed is to finish the ‘‘bottom’’ of h to make it a

complete fuzzy number. We will simply drop the graph of

h straight down to complete its a-cuts so �h [a] = [h1(0.01),
h2(0.01)] for 0 B a\ 0.01. In this way, we are using more

information in h than just a point estimate, or just a single

interval estimate (Buckley 2005).

The described method can be used only when the data

is sufficiently available. Sometimes it is difficult to have

enough data to calculate confidence intervals. In such

situation, we propose to use bootstrap technique to

obtain enough data. In this way, we can produce enough

reliable data. This method can be used in several

situations:

• when there is no enough good data

• when gathering data are difficult or expensive

and we have used bootstrap technique in this paper because

of both environmental and system uncertainty which makes

gathering and classifying reliable data difficult.

Experimental results

In this section, we are going to solve the existing problem

about production planning in Barez Industrial Group, BIG.

The problem is that there is no estimation of production

ability or number of commodities product in each period.

The answer helps the experts to arrange production and

maintenance policies. We have used fuzzy simulation to

solve the problem and by the use of bootstrap technique we

have guaranteed the robustness of answer.

As mentioned in Sect. 2, there are several reasons for

using fuzzy numbers as process times. In considered pro-

duction line, several products are produced and every pro-

duct has different production times. Amount of production of

all products in every period is not clear and depends on

demand which is completely uncertain. In addition, every

production stage has a non-deterministic time. The combi-

nation of all these issues has created an extremely complex

decision environment which lead us to use fuzzy numbers

and fuzzy simulation to determine the production level. In

this section, we will describe how we used the simulation.

About Barez

Barez industrial group (BIG) was founded in 1984. In

corporation with Continental tires, as the first Iranian

company started to produce freight and bus tires in 1999.

BIG having produced about 40 tons in 2010, is one of the

largest tire manufacturers in the region. BIG products

include passenger tires, light truck tires, truck & bus tires

and agricultural tires.

The considered production line in this paper includes

several steps, which is represented in Fig. 1. These steps

are common between all products but process times vary

depending on product type.

Fuzzy discrete event simulation in Barez

Given the circumstances outlined, Fuzzy simulation

selected as the suitable tool to determine production level.

At first, we need to know time parameters of model. To do

CHARGE ROM - Down MIX ROM - Up

Adding 
CarbonROM - DownMIXROM - Up

Adding Oil ROM - Down MIX ROM - Up -
Down

MIXDischarge & 
ROM - Up

MASTER PRODUCTION PART

CHARGE ROM - Down MIX ROM – Up & 
Down

MIXROM – Up & 
DownMIXROM – Up

& Discharge

FINAL PRODUCTION PART

Fig. 1 Production process
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so, we collected 30 samples of each stage. Thirty samples

are an appropriate number for using in bootstrap technique

(Wilcox 2005). The samples were observed in random

times distributed in whole working hours within a weak.

Using bootstrap technique, confidence intervals for differ-

ent values of a (0 B a B 1), is calculated. Finally, by

putting together the confidence intervals, fuzzy numbers

will be achieved. More details about all process times are

represented in Table 2. Fuzzy numbers are calculated in

triangular form. It is necessary to explain that ROM pro-

cesses are fully automatic and they have a fixed process

time for all products. Some processes are not performed on

some products, so the first number in fuzzy triangular

number of the relevant process is equal to zero.

According to the production process represented in

Fig. 1, we have designed a simulation model in Arena

simulation software. The model is displayed in Fig. 2. We

have used Arena student version to simulate the problem.

Number of replications are calculated based on Kelton and

Law (2000) and Yeh 2002). To simulate a fuzzy model in

Arena, we have used a-cuts. To explain more, for a fixed

alpha, all the fuzzy numbers are cut, (0 B a B 1), and the

simulation is run twice for every a; once for lower bound

and once for upper bound. We know that based on exten-

sion principle, fuzzy inputs will result fuzzy output.

Therefore, by calculating lower bound and upper bound of

output value for all a-cuts we will reach to a fuzzy output

number. This is done by putting together the obtained

lower and upper bounds.

Lower and upper bound value of all fuzzy numbers and

output number is provided in Tables 3, 4 and 5. Several

graphical views of them are also showed in Fig. 3, 4 and 5.

It is important to remember that we have used line equation

of fuzzy numbers left and right side to calculate lower and

upper bound of them for all a-cuts. Line equations are

represented in Table 5. In this paper, the simulation time

was set to 5 9 105 (s). And it costs 127.5 s to run one time

on our computer (IntelR CoreTM2 Quad Q9400, 4 GB

RAM) (Table 6).

As mentioned, to obtain a fuzzy number as final output,

the simulation model is run twice for every a-cuts. Each
run consist of 1000 replication. The results will be put on

together and fuzzy output is generated. We have imple-

mented the mentioned process and the result is represented

in Table 7 and Fig. 6. Since the variables in this model are

time variables, running the simulation by lower bound of

numbers will lead to upper bound of output (Table 8).

As seen above, final output number is in the form of

fuzzy triangular number (418, 1197, 3909). This question

may come that what is the application of this fuzzy output.

To answer the question we should say having a fuzzy

reliable estimate of production level is much better than

Table 2 Process times

Process steps Time Details

1 Master Charge (8.98, 13.05, 17.69)

2 ROM Down 8.88 Fully automatic

3 MIX (0, 21.92, 35) Some products do not have this step, so the first number is zero.

4 ROM Up 3.33 Fully automatic

5 Carbon (0, 5.17, 26.24) Some products do not have this step, so the first number is zero.

6 ROM Down 7.29 Fully automatic

7 MIX (0, 20.96, 40) Some products do not have this step, so the first number is zero.

8 ROM Up 5.12 Fully automatic

9 Oil (0, 13.92, 44.7) Some products do not have this step, so the first number is zero.

10 ROM Down 6.5 Fully automatic

11 MIX (0, 31.96, 80) Some products do not have this step, so the first number is zero.

12 ROM Up & Down 5.34 Fully automatic

13 MIX (0, 45.36, 80) Some products do not have this step, so the first number is zero.

14 Discharge and ROM Up 17.5 Fully automatic

15 Final Charge (16.35, 17.55, 20.31)

16 ROM Down 9.62 Fully automatic

17 MIX (20, 34.5, 80)

18 ROM Up and Down 12.65 Fully automatic

19 MIX (20, 42.68, 60)

20 ROM Up and Down 1.36 Fully automatic

21 MIX (0, 17.5, 25) Some products do not have this step, so the first number is zero.

22 Discharge and ROM Up 17.5 Fully automatic
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having nothing or even an unreliable estimate obtained by

other methods. Also since production is done in an

uncertain environment, every decision-making should be

done by fuzzy methods and this fuzzy output can be

completely useful in such situation. To describe more as an

example, we know maintenance activities of machines in

considered line depends on number of production, so when

the production environment is uncertain the obtained result

of described method can be useful. Similarly, there are

more applications such as calculating costs, payments,

planning for the supply, etc. The result has provided for

experts in Barez company, they have used it in their

Fig. 2 Arena model

Table 3 Fuzzy numbers lower and upper bound

MASTER-Charge MASTER-MIX MASTER-Carbon

8.98 13.05 17.96 0.00 21.92 35.00 0.00 5.17 26.24

Alpha L U Alpha L U Alpha L U

0.001 8.98 17.96 0.001 0.02 34.99 0.001 0.01 26.22

0.10 9.39 17.47 0.10 2.19 33.69 0.10 0.52 24.13

0.20 9.79 16.98 0.20 4.38 32.38 0.20 1.03 22.03

0.30 10.20 16.49 0.30 6.58 31.08 0.30 1.55 19.92

0.40 10.61 16.00 0.40 8.77 29.77 0.40 2.07 17.81

0.50 11.02 15.51 0.50 10.96 28.46 0.50 2.59 15.71

0.60 11.42 15.01 0.60 13.15 27.15 0.60 3.10 13.60

0.70 11.83 14.52 0.70 15.34 25.84 0.70 3.62 11.49

0.80 12.24 14.03 0.80 17.54 24.54 0.80 4.14 9.38

0.90 12.64 13.54 0.90 19.73 23.23 0.90 4.65 7.28

1.00 13.05 13.05 1.00 21.92 21.92 1.00 5.17 5.17
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Table 4 Fuzzy numbers lower and upper bound

MASTER-MIX MASTER-Oil MASTER-MIX

0.00 20.96 40.00 0.00 13.92 44.70 0.00 31.96 80.00

Alpha L U Alpha L U Alpha L U

0.001 0.02 39.98 0.001 0.01 44.67 0.001 0.03 79.95

0.10 2.10 38.10 0.10 1.39 41.62 0.10 3.20 75.20

0.20 4.19 36.19 0.20 2.78 38.54 0.20 6.39 70.39

0.30 6.29 34.29 0.30 4.18 35.47 0.30 9.59 65.59

0.40 8.38 32.38 0.40 5.57 32.39 0.40 12.78 60.78

0.50 10.48 30.48 0.50 6.96 29.31 0.50 15.98 55.98

0.60 12.58 28.58 0.60 8.35 26.23 0.60 19.18 51.18

0.70 14.67 26.67 0.70 9.74 23.15 0.70 22.37 46.37

0.80 16.77 24.77 0.80 11.14 20.08 0.80 25.57 41.57

0.90 18.86 22.86 0.90 12.53 17.00 0.90 28.76 36.76

1.00 20.96 20.96 1.00 13.92 13.92 1.00 31.96 31.96

Table 5 Fuzzy numbers lower

and upper bound
MASTER-MIX FINAL-Charge FINAL-MIX

0.00 45.36 80.00 16.35 17.55 20.31 20.00 34.50 80.00

Alpha L U Alpha L U Alpha L U

0.001 0.05 79.97 0.001 16.35 20.31 0.001 20.01 79.95

0.10 4.54 76.54 0.10 16.47 20.03 0.10 21.45 75.45

0.20 9.07 73.07 0.20 16.59 19.76 0.20 22.90 70.90

0.30 13.61 69.61 0.30 16.71 19.48 0.30 24.35 66.35

0.40 18.14 66.14 0.40 16.83 19.21 0.40 25.80 61.80

0.50 22.68 62.68 0.50 16.95 18.93 0.50 27.25 57.25

0.60 27.22 59.21 0.60 17.07 18.65 0.60 28.70 52.70

0.70 31.75 55.75 0.70 17.19 18.38 0.70 30.15 48.15

0.80 36.29 52.28 0.80 17.31 18.10 0.80 31.60 43.60

0.90 40.82 48.82 0.90 17.43 17.83 0.90 33.05 39.05

1.00 45.36 45.36 1.00 17.55 17.55 1.00 34.50 34.50

Table 6 Fuzzy numbers lower

and upper bound
FINAL-MIX FINAL-MIX

20.00 42.68 60.00 0.00 17.50 25.00

Alpha L U Alpha L U

0.001 20.02 59.98 0.001 0.02 24.99

0.10 22.27 58.27 0.10 1.75 24.25

0.20 24.54 56.54 0.20 3.50 23.50

0.30 26.80 54.80 0.30 5.25 22.75

0.40 29.07 53.07 0.40 7.00 22.00

0.50 31.34 51.34 0.50 8.75 21.25

0.60 33.61 49.61 0.60 10.50 20.50

0.70 35.88 47.88 0.70 12.25 19.75

0.80 38.14 46.14 0.80 14.00 19.00

0.90 40.41 44.41 0.90 15.75 18.25

1.00 42.68 42.68 1.00 17.50 17.50
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Fig. 3 FINAL MIX (20, 34.5, 80)

Fig. 4 FINAL MIX (0, 17.5, 25)

Fig. 5 FINAL MIX (20, 42.68, 60)

Table 7 Line equations

Fuzzy number Line equation

MASTER charge (8.98, 13.05, 17,69)

1 Left Side X = 4.07y ? 8.98

Right side X = -4.64y ? 17.69

2 MASTER MIX (0, 21.92, 35)

Left side X = 21.92y

Right side X = -13.08y ? 35

3 MASTER Carbon (0, 5.17, 26.24)

Left side X = 5.17y

Right side X = -21.07y ? 26.24

4 MASTER MIX (0, 20.96, 40)

Left side X = 20.96y

Right side X = -19.04y ? 40

Table 7 continued

Fuzzy number Line equation

5 MASTER Oil (0, 13.92, 44.7)

Left side X = 13.92y

Right side X = -30.78y ? 44.7

6 MASTER MIX (0, 31.96, 80)

Left Side X = 31.96y

Right side X = -48.04y ? 80

7 MASTER MIX (0, 45.36, 80)

Left side X = 45.36y

Right side X = -34.65y ? 80

8 FINAL Charge (16.35, 17.55, 20.31)

Left side X = 1.2y ? 16.35

Right side X = -2.76y ? 20.31

9 FINAL MIX (20, 34.5, 80)

Left side X = 14.5y ? 20

Right side X = -45.5y ? 80

10 FINAL MIX (20, 42.68, 60)

Left side X = 22.68y ? 20

Right side X = -17.32y ? 60

11 FINAL MIX (0, 45.36, 80)

Left side X = 17.5y

Right side X = -7.5y ? 25

Table 8 Output fuzzy number

Output

Alpha L

U

0.001 417.779

3908.286

0.1 471.9

3609.6

0.2 593.8

3268.2

0.3 681.7

3046.8

0.4 759.6

2775.4

0.5 817.5

2504

0.6 905.4

2212.6

0.7 963.3

1988.2

0.8 1011.2

1689.8

0.9 1128.1

1408.4

1 1197 1197
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decision making process and it has led to good results. The

confirmation letter is presented in Appendix 1.

To verify the simulation model we checked every step

of simulation model by company experts. A comparison

between production process and simulation model (Figs. 1,

2) also shows that the model is verify. To make sure we

examined the model output for reasonableness under a

variety of settings of the input parameters.

To verify the results of simulation, we conducted several

experiments with different observations. After comparing

the results of simulation, it was proved that the application

of simulation truly lead to accurate fuzzy number for

output.

Conclusion

In this paper, we have tried to solve the problem about the level

of production in an uncertain environment in Barez tire pro-

ducing company. In considered production line we were faced

with both kind of environmental and system uncertainty which

made it difficult to solve. To overcome the difficulty and

ambiguity, we used bootstrap technique, to gain robust reliable

data, and fuzzy simulation tomodel and solve the problem.We

obtained a fuzzy number as production level, which is very

reliable and can be used in other decision areas. Barez experts

have used the results and it has led to good consequences in

planning process. The confirmation letter is also attached.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, distri-

bution, and reproduction in any medium, provided you give appropriate

credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.
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See Fig. 7
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