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Abstract The demand forecasting is essential for all

production and non-production systems. However, nowa-

days there are only few researches on this area. Most of

researches somehow benefited from simulation in the

conditions of demand uncertainty. But this paper presents

an iterative method to find most probable stochastic

demand point with normally distributed and independent

variables of n-dimensional space and the demand space is a

nonlinear function. So this point is compatible with both

external conditions and historical data and it is the shortest

distance from origin to the approximated demand-state

surface. Another advantage of this paper is considering n-

dimensional and nonlinear (nth degree) demand function.

Numerical results proved this procedure is convergent and

running time is reasonable.

Keywords Uncertainty � First-order Taylor series

expansion � State space models � Most probable point �
Forecasting practice � Demand forecasting

Introduction

Forecasting can be defined as the art of predicting the

occurrence of events before they actually take place

(Archer 1980). Forecasting provides some information

about the uncertain future for example regarding demand.

Prediction of demand is one of most important problems

for managers and planners. Extensive and successive

changes in various aspects of the global economy in recent

decades have caused prediction and its quality to be of the

most critical basics of excellence of the organization.

Answer to the following questions recognizes contribution

of demand forecast among prediction problems:

How much should be produced? How much of the

resources and capacity is required? How are products

produced in production planning? How much funding is

required in operations?

Because of the importance of such questions, most

large firms have to forecast future demand for their pro-

ducts. Planning results would be closer to reality consid-

ering demand as a random variable. In the case where the

demand is a random variable, the problem is very complex

and few works have been done in this field. Most of

practical results are limited to a particular cost structure

(Gupta 1977). In this paper, we present an iterative

method for prediction of demand with normally distrib-

uted and independent variables of n-dimensional space

and the demand space is a nonlinear function, in general.

In the proposed method, demand has arbitrary pricing

structure.

The remainder of this paper is organized as follows. In

‘‘Literature review’’, the related literature is reviewed. In

‘‘Assumptions and notations’’, assumptions and notations

are introduced. ‘‘Problem description’’ and ‘‘A proposed

algorithm’’ give problem description for a simple problem

and results are developed for n-dimensional and nonlinear

demand-state function. The performance of the proposed

iterative procedure is validated with randomly generated

experimental data in ‘‘Numerical example’’. Finally,

‘‘Conclusions and future works’’ is devoted to conclusions

and directions for future research.
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Literature review

Graves (1980) studies the multi-product production cycling

problem which is concerned with the determination of a

production–inventory policy for a single capacitated pro-

duction facility dedicated to produce a family of products.

He presented a heuristic method for this problem assuming

stochastic demand. He assumed that demand is character-

ized by a known stationary distribution function. Bitran and

Yanasse (1984) provided a heuristic method for multi-

period production planning with capacity constraints and

service level constraints. They developed probabilistic

models to deterministic approximation (non-randomized)

that for examples with a high service level has relatively

small error. In their model, the stochastic problem is

transformed into a deterministic one by replacing the ran-

dom demand with its average values. Khang and Fujiwara

(1993) in their method applied previous technique of Bitran

and Yanasse (1984), significantly. They formulated the

problem with uncertain demand as a network flow. In their

study, a deterministic approximation is obtained from the

probable problem which can be solved using network flow

methods.

Sox and Muckstadt (1996) proposed a model and an

approximate method of solving for the multi-product and

multi-level production planning problem with finite hori-

zon, capacity constraints and random demand. The model

includes the linear inventory and backorder costs in

objective function but the setup costs and times are not

considered. The cumulative distribution of demand per

period must be considered in their model. Demand of each

period is not brought in their model separately. Cumula-

tive distribution of demand in beginning of the planning

horizon to each period is required. Although their pro-

posed technique is an approximate method but in com-

parison with the previous methods, it could be operated in

the reasonable runtime for the instances with large number

of products and periods. They decomposed the problem

and found near-optimal solution using the Lagrangian

model.

Haneveld (1988) and Peters et al. (1977) considered the

production planning problem with limited production

capacity and random demand for multiple products for-

mulated as a stochastic programming. Their approach is

discretization of probability distribution to formulate the

problem as a linear model that can be solved with linear

programming algorithm in large scale.

Yokoyama (1999) proposed a method to deal with ran-

dom demand. In his study, it is assumed that the demand in

each period is independent and probability distribution is

specified. His/her investigated problem is a single product

and single level. The objective function is to minimize the

expected value of total production costs, inventory costs,

backorder and setup costs. In this study, a computational

method has been developed using the branch and bound

method. Melo and Dellaret (1996) presented production

strategies for a stochastic lot-sizing problem with constant

capacity. The objective is minimizing expected cost. The

costs include setup costs, inventory costs and backorder

costs. Brandimarte (2006) considered a stochastic version

of the classical multi-item capacitated lot-sizing problem.

He studies stochastic demand by scenario trees and dis-

cretization of probable values. In this model, a scenario is a

sequence of tree nodes and a scenario is a deterministic

parameter equivalent to stochastic parameter. The com-

plexity of problem increases as the number of scenarios

grows. So the model is solved using a heuristic method in

large-scale dimensions.

Ma et al. (2013) proposed three forecasting techniques

which would be chosen by the retailer to minimize the sum

of the bullwhip effect on product orders and inventory under

different weightings in a two-level supply chain. In this

study, the observations were used to develop managerial

insights regarding choosing an appropriate forecasting

technique after considering certain distinct characteristics

of the product. Kim (2013) modeled a bilateral contract with

order quantity flexibility. Under the contract, the buyer

places orders in advance for the predetermined horizons and

makes minimum purchase commitments. In this study, for

demand forecasting in a supply chain, two techniques were

considered i.e., the exponentially weighted moving average

and the minimum mean square error.

Zheng et al. (2010) presented a solution method using

application of the Black–Scholes model incorporating

stochastic processes used in financial engineering for

option pricing. Indulkar and Ramalingam (2013) proposed

a Monte Carlo analysis for forecasting the load of plug-in

electric vehicles. This study applied the Monte Carlo

method and considering the associated ranges of the vari-

ous parameters and variables, the range of the load was

forecasted. Christ (2011) developed an overarching linear

basis function model to forecast demand. In this study, in

order to ensure that all relevant demand drivers were

included, the model was validated following a typical

frequentist interpretation. Finally, the appropriate tests

were extended for Bayesian learning.

Massy (1976) proposed the stochastic evolutionary

adoption model. In this study, several methods were out-

lined for estimating the proposed model’s parameters from

panel data. Furthermore, a simulation procedure was also

considered in order to project the results into a total market

forecast. Jaipuria and Mahapatra (2014) proposed an inte-

grated approach of discrete wavelet transforms (DWT)

analysis and artificial neural network (ANN) denoted as

DWT-ANN for demand forecasting. In this study, the

proposed model was tested and validated by conducting a
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comparative study between Autoregressive Integrated

Moving Average (ARIMA) and proposed DWT-ANN

model using a data set from open literature.

All other papers considered uncertain demand and

applied the concept of service level. Three types of service

levels are introduced in the literature review of probabi-

listic demand (Tempelmeier 2011).

– a service level: it is a service-level constraint to limit

the total expected backlog relative to the maximum

possible total expected backlog. The overall objective

is to minimize the expected costs due to setups,

inventory and overtime (Helber et al. 2012).

– b service level (or ‘‘fill rate’’): it is the fraction of the

demand per cycle that is met immediately, i.e., without

backlogging. This makes it difficult to simultaneously

determine production quantities. Furthermore, the b
service level does not reflect the waiting time of the

customer (Helber et al. 2012).

– c service level: The attractive feature of this measure is

that it reflects backlog and hence, to some extent the

waiting time of the customers. It can be defined either

(as above) for a specific period t, or as an average over

the entire planning horizon. However, for a particular

period the expected demand may be smaller than the

expected backlog or even be zero. Therefore, this

measure can be negative or even undefined (if the

expected demand is zero) (Helber et al. 2012).

Assumptions and notations

The assumptions underlying the subsequent analysis

include the following:

– Demand-state equation consists of two parts, first part

indicates the impact of various factors on demand (such

as economic or social indicators, or environmental

factors and etc.) and second part achieved from demand

is estimated using previous data.

– Demand formulation is a linear or nonlinear and n-

dimensional equation.

– The demands in the separate discrete periods (e.g.,

days, weeks) are independent, normally distributed,

variables but not necessarily have the same means and

standard deviations.

– Demand in each period is independent of other periods.

The following notations, arranged alphabetically, will be

used:

gð:Þ : Linear or nonlinear n-dimensional function that is

the difference between the anticipated demand for

the various conditions and historical data

Ið:Þ : A linear or nonlinear n-dimensional function that

indicates the impact of various factors on demand

(such as economic or social indicators, or

environmental factors and etc.)

hð:Þ : Anticipated demand of historical data

xi : Independent and normally distributed random

variable in dimension i

li : Mean value of the variable xi

ri : Standard deviation of the variable xi

x�i : Most probable demand point in the dimension i

Problem description

Demand is forecasted by various factors (e.g. currency,

seasonal variations and etc.). On the other hand demand

can also before casted using historical data. Predicted

demand is matched with the environmental and historical

data if the difference between these two predictions is zero.

However, due to the stochastic variables, such prediction is

very complicated. Therefore, a method to find the most

probable point is provided in this paper.

First, a linear equation with two variables will be con-

sidered for simplicity and then the results are extended to

the general case.

g Xð Þ ¼ I x1ð Þ � h x2ð Þ ¼ x1 � x2 ð1Þ

The above two random variables are assumed to be

independent and normally distributed. The mean values of

x1and x2 are l1 and l2, respectively. And r1 and r2 are

standard deviations of these variables. In the proposed

procedure, the vector X is transformed into the independent

standardized normal vector, U.

Our aim was to find the point with the highest proba-

bility density or maximum likelihood.

Demand space and g(X) = 0 lie in the coordinate system

as shown in Figs. 1 and 2.

Figures 3 and 4 show transformation of variables to U-

space system.

It is proved that due to the rotational symmetry of the

second-moment representation of the standardized normal

distribution Z, the geometrical distance from the origin in

Z-space to any point on f(Z) = 0 is simply the number of

standard deviations from the mean value point in X-space

to the corresponding point on f(X) = 0 (Choi et al. 2007).

Since the point that has most probability is the point that

has the minimum standard deviation (Wallace 2005), the

most probable point has minimum geometrical distance

from the origin in U-space to any point on g(U) = 0.

Suppose function g(.) in Eq. (1) with two variables x1

and x2. Transform the variables into standard normalized

random variables u1 and u2:
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ui ¼
xi � lxi

rxi

ð2Þ

Figure 5 shows geometrical interpretation of the most

probable point in a two-dimensional space and function g(.)

expressed in Eq. 1. Figure 6 shows this interpretation in a

three-dimensional graph.

g u1; u2ð Þ ¼ rx1
:u1 þ lx1

� �
� rx2

:u2 þ lx2

� �
¼ 0 ð3Þ

g u1; u2ð Þ ¼ rx1
:u1 � rx2

:u2lx1
þ lx1

� lx2

� �
¼ 0 ð4Þ

P� x�1; x�2
� �

¼ 0 � rx1
þ lx1

� �
; 0 � rx2

þ lx2

� �� �
ð5Þ

These calculations are complicated for n-dimensional

and nonlinear problem. So we proposed an iterative method

in this paper to facilitate this computation.

In general, the independent variables can be assumed to

be normally distributed in a multi-dimensional space. The

demand surface is a nonlinear function of these variables:

g Xð Þ ¼ g x1; x2; . . .; xnð ÞT
n o

ð6Þ

The variables are transformed to a standard normalized

form by Eq. (2). Demand-state surface with n-dimensional

and independent, normally distributed random variables

X is

g Xð Þ ¼ g x1; x2; . . .; xnð ÞT
n o

¼ 0 ð7Þ

This demand-state function can be linear or nonlinear.

Based on the transformation given in Eq. (2), the demand-

state function given in Eq. (7) is transformed into

Fig. 1 Demand space and g(X) = 0 in the 3D coordinate system

Fig. 2 Demand space and

g(X) = 0 in the 2D coordinate

system
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g Uð Þ ¼ g rx1
:u1 þ lx1

; rx2
:u2 þ lx2

; . . .; rxn
:un þ lxn

� �T
n o

¼ 0

ð8Þ

p� is the point of intersection between vector comes

from origin O and demand-state surface g(U) = 0. Dis-

tance from the origin to the p� point is the shortest

distance.

First-order Taylor series expansion for g(U) in the p� in

the U-space is:

g Uð Þ ¼ g p�ð Þ þ
Xn

i¼1

ogðp�Þ
oui

:ðui � p�Þ ð9Þ

From Eq. (2)

ogðUÞ
oui

¼ ogðXÞ
oxi

rxi
ð10Þ

Consider a two-variable function represented in Fig. 7.

According to Fig. 7 and basic concepts of mathematics:

OP:rg Up�
� �

¼ g Up�
� �

)OP ¼ ~gðUp�Þ
rgðUp�Þ

ð11Þ

cos u1 ¼ �
ogðp�Þ
ou1

rgðUp�Þ
�� �� ð12Þ

cos u2 ¼ �
ogðp�Þ
ou2

rgðUp�Þ
�� �� ð13Þ

u�
1 ¼ OP � cos u1 ð14Þ

Fig. 3 Transformation and most probable point in 3D U-space

Fig. 4 Transformation and

most probable point in 2D

U-space
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u�
2 ¼ OP � cos u2 ð15Þ

Extending Eqs. (11)–(15) to general case gives the fol-

lowing relations:

OP ¼ gðUp� Þ
rgðUp� Þ

¼
g p�ð Þ �

Pn
i¼1

ogðp�Þ
oui

:p�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ogðp�Þ
oui

� 	2
r ð16Þ

cos ui ¼ �
og p�ð Þ
oui

rg Up�
� ��� �� ¼ �

ogðX�Þ
oxi

rxiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ogðX�Þ
oxi

rxi

� 	2
r ð17Þ

ui ¼
x�i � lxi

rxi

¼ OP � cos ui ð18Þ

x�i ¼ lxi
þ OP � cos ui � rxi

i ¼ 1; 2; . . .; n ð19Þ

A proposed algorithm

The main steps of the proposed iterative method to forecast

the demand are:

1. Define the appropriate demand-state function of

Eq. (6).

2. Set the mean value point as an initial point, i.e.,

xi;1 ¼ lxi
; i ¼ 1; 2; . . .; n. Here xi;k is the ith element in

the vector Xk of the kth iteration.

3. Compute the gradients of the demand-state function at

this point.

Fig. 5 Geometrical

interpretation of the most

probable point in a two-

dimensional space

Fig. 6 Most probable point in g(U) = 0 surface with two variables
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4. Compute the initial OP and its direction cosine.

5. Compute a new point Xk and Uk (Eqs. 19 and 18),

function value, and gradients at this new point.

6. Compute the OP using Eq. (16) and the direction

cosine variables from Eq. 17.

7. Repeat steps 5–7 for GE (maximum replications

determined by the user) times.

8. When GE is greater than a specific number or g(X) is

close to zero sufficiently, stop iterations.

9. Compute the coordinates of the point Xk or most

probable point ðX�Þ; that has the smallest absolute

value of the demand-state function.

Several nonlinear and multi-dimensional examples have

been solved with this procedure. Most of the examples will

converge to a special point.

Numerical example

The demand function is

g x1; x2; x3ð Þ ¼ x3
1 þ x3

2 � x3

where x1, x2 and x3 are the random variables with normal

distributions with means l1 ¼ 10; l2 ¼ 2; l3 ¼ 10 and

standard deviations r1 ¼ 2; r2 ¼ 0:5; r3 ¼ 3, respectively

(in 1,000 units). Find most probable demand point using

proposed iterative method.

Set the mean point as an initial point and the required

convergence tolerance e ¼ �0:00001. In the following

demand-state function value and its gradients in initial

point are computed.

g X1ð Þ ¼ x3
1 þ x3

2 � x3 ¼ 103 þ 23 � 10 ¼ 998

og

ox1

jl1
¼ 3l2

1 ¼ 300

og

ox2

jl2
¼ 3l2

2 ¼ 12

og

ox3

jl3
¼�1

OP1 ¼
gðX1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ogðl1;l2;l3Þ
ox1

r1

� 	2

þ ogðl1;l2;l3Þ
ox2

r2

� 	2

þ ogðl1;l2;l3Þ
ox3

r3

� 	2
r

OP1 ¼
998

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
300� 2ð Þ2þ 12� 0:5ð Þ2þ ð�1Þ� 3ð Þ2

q ¼ 1:6632

cos/i ¼�
og
oxi
jli

ri
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ogðl1;l2;l3Þ

ox1
r1

� 	2

þ ogðl1;l2;l3Þ
ox2

r2

� 	2

þ ogðl1;l2;l3Þ
ox3

r3

� 	2
r

cos/1 ¼�0:9999

cos/2 ¼�0:0099

cos/3 ¼ 0:0050

Applying Eqs. (18) and (19), anew point is computed.

x12 ¼ l1 þ OP1r1 cos /1 ¼ 10 þ 1:6632 � 2 � �0:9999ð Þ ¼ 6:6737

x22 ¼ l2 þ OP1r2 cos /2 ¼ 2 þ 1:6632 � 0:5 � �0:0099ð Þ ¼ 1:9917

x32 ¼ l3 þ OP1r3 cos /3 ¼ 10 þ 1:6632 � 3 � 0:0050ð Þ ¼ 10:0249

u12 ¼ x12 � l1

r1

¼ 6:6737 � 10

2
¼ �1:6631

u22 ¼ x22 � l2

r2

¼ 1:9917 � 2

0:5
¼ �0:0166

u32 ¼ x32 � l3

r3

¼ 10:0249 � 10

3
¼ 0:0083

The next iteration includes the calculation of the

demand-state function and its gradient in the X2

Fig. 7 p* in a two-variable

demand function
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Again applying Eqs. (18) and (19) another new point,

X3, is computed:

x13 ¼ l1 þ OP1r1 cos /1 ¼ 10 þ 2:7671 � 2 � �0:9997ð Þ ¼ 4:4676

x23 ¼ l2 þ OP1r2 cos /2 ¼ 2 þ 2:7671 � 0:5 � �0:0223ð Þ ¼ 1:9692

x33 ¼ l3 þ OP1r3 cos /3 ¼ 10 þ 2:7671 � 3 � 0:0112ð Þ ¼ 10:0932

u13 ¼ x12 � l1

r1

¼ 4:4676 � 10

2
¼ �2:7662

u23 ¼ x22 � l2

r2

¼ 1:9692 � 2

0:5
¼ �0:0616

u33 ¼ x32 � l3

r3

¼ 10:0932 � 10

3
¼ 0:0311

Table 1 represents the iteration results. The iteration

stops after 17 repetitions. Results of more than 75 numer-

ical examples showed this procedure reaches to a reason-

able answer in a short time.

So the predicted demand is x3;17 ¼ 11618:4 and

~D ¼ x1;17
3 þ x2;17

3 ¼ 1:93293 þ 1:63833 ¼ 11618:7

Conclusions and future works

This paper proposed an iterative method to forecast the

demand. Demand predicted by this procedure can be

Table 1 Iteration results in the proposed method

Iteration No. Notations

gðXkÞ OPk cos /1 cos /2 cos /3 x1k x2k x3k u1k u2k u3k

3 86.7124 3.4888 -0.9985 -0.0484 0.025 3.0326 1.9153 10.2618 -3.4836 -0.1692 0.0872

4 24.6575 3.9268 -0.9936 -0.099 0.054 2.1964 1.8054 10.6363 -3.9017 -0.3891 0.2121

5 5.8454 4.1114 -0.9809 -0.1656 0.1016 1.9339 1.6593 11.2539 -4.033 -0.6812 0.4179

6 0.5484 4.1331 -0.975 -0.1794 0.1303 1.9396 1.6291 11.6163 -4.0301 -0.7417 0.5387

7 0.0047 4.1332 -0.9764 -0.1722 0.1297 1.928 1.6441 11.6091 -4.0359 -0.7117 0.5363

8 0.00188 4.1332 -0.9753 -0.1773 0.1311 1.9371 1.6335 11.6267 -4.0314 -0.7328 0.5422

9 0.001 4.1332 -0.9761 -0.1735 0.1301 1.9302 1.6413 11.6129 -4.0348 -0.7173 0.5376

10 0.00057 4.1332 -0.9756 -0.1763 0.1309 1.9353 1.6356 11.6234 -4.0323 -0.7289 0.5411

11 0.00031 4.1332 -0.976 -0.1743 0.1303 1.9315 1.6398 11.6157 -4.0342 -0.7203 0.5386

12 0.00017 4.1332 -0.9757 -0.1758 0.1308 1.9343 1.6367 11.6214 -4.0328 -0.7267 0.5405

13 0.00009 4.1332 -0.976 -0.1747 0.1304 1.9323 1.639 11.6172 -4.0339 -0.722 0.5391

14 0.00005 4.1332 -0.9758 -0.1755 0.1307 1.9338 1.6373 11.6203 -4.0331 -0.7255 0.5401

15 0.00003 4.1332 -0.9759 -0.1749 0.1305 1.9326 1.6386 11.618 -4.0337 -0.7229 0.5393

16 0.00002 4.1332 -0.9758 -0.1754 0.1306 1.9335 1.6376 11.6197 -4.0333 -0.7248 0.5399

17 0.00001 4.1332 -0.9759 -0.175 0.1305 1.9329 1.6383 11.6184 -4.0336 -0.7234 0.5395

g X1ð Þ ¼ x3
1 þ x3

2 � x3 ¼ 6:67373 þ 1:99173 � 10:0249 ¼ 295:1173

og

ox1

jl1
¼ 3l2

1 ¼ 133:6148
og

ox2

jl2
¼ 3l2

2 ¼ 11:9006
og

ox3

jl3
¼ �1

OP2 ¼
g X2ð Þ �

P3
i¼1

ogðX2Þ
oxi

riui2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ogðl1;l2;l3Þ

ox1
r1

� 	2

þ ogðl1;l2;l3Þ
ox2

r2

� 	2

þ ogðl1;l2;l3Þ
ox3

r3

� 	2
r

OP2 ¼ 295:1173 � 133:6148 � 2 � �1:6631ð Þð Þ � 11:9006 � 0:5 � �0:0166ð Þð Þ � ð �1ð Þ � 3 � 0:0083Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
133:6148 � 2ð Þ2þ 11:9006 � 0:5ð Þ2þ ð�1Þ � 3ð Þ2

q

OP2 ¼ 2:7671

cos /i ¼ �
og
oxi

jli
ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ogðl1;l2;l3Þ

ox1
r1

� 	2

þ ogðl1;l2;l3Þ
ox2

r2

� 	2

þ ogðl1;l2;l3Þ
ox3

r3

� 	2
r

cos /1 ¼ �0:9997 cos /2 ¼ �0:0223 cos /3 ¼ 0:0112
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compatible with both external conditions and historical

data. Demand-state surface is n-dimensional and linear or

nonlinear function. All variables are independent and

normally distributed with specified means and standard

deviations.

In reviewing the literature, it was observed that papers

dealt with uncertain demand benefited from simulation,

frequently. But in this paper we proposed a procedure to

find most probable demand point. The numerical results

indicated that run time of the presented method is short,

sufficiently.

The main conclusions of this paper can be summarized

as follows:

– Proposed iterative method predicts demand with nth

degree and n-dimensional equation for any integer

n [ 1.

– Demand-state equation consists of two parts, first part

indicates the impact of various factors on demand (such

as economic or social indicators, or environmental

factors, etc.) and second part achieved from demand is

estimated using previous data. Demand-state function

is subtraction of these two parts.

– Demand forecasted by this method is compatible with

both external conditions and historical data.

– Numerical results showed proposed method converge

to the specified answer in a short time.

Normally distributed variables were considered in this

paper, considering other statistical distributions for vari-

ables of demand function is recommended for future

research. To apply the proposed method to find the most

probable point in uncertain process times in the production

problems is another area for future studies.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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