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Abstract

This paper studies the operating characteristics of an MX/Hk/1 queueing system under multiple vacation policy. It is
assumed that the server goes for vacation as soon as the system becomes empty. When he returns from a vacation
and there is one or more customers waiting in the queue, he serves these customers until the system becomes
empty again, otherwise goes for another vacation. The breakdown and repair times of the server are assumed to
follow a negative exponential distribution. By using a generating function, we derive various performance indices.
The approximate formulas for the probability distribution of the waiting time of the customers in the system by
using the maximum entropy principle (MEP) are obtained. This approach is accurate enough for practical purposes
and is a useful method for solving complex queueing systems. The sensitivity analysis is carried out by taking a
numerical illustration.

Keywords: Batch arrival; k-type hyper-exponential distribution; State-dependent rates; Maximum entropy principle;
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Background
Server vacation models are useful for queueing systems
in which the server wants to utilize his idle time for dif-
ferent purposes. The vacation mechanism considered in
this paper is termed as ‘multiple vacation policy’. That
is, the server upon returning from a vacation leaves
immediately for another one if the system is empty at
that moment. Applications of the server with multiple
vacation models can be found in manufacturing systems,
designing of computer and communication systems, etc.
Queueing systems with multiple server vacations have
attracted the attention of numerous researchers. Baba (1986)
studied batch-arrival MX/G/1 queueing systems with
multiple vacations. A discrete-time Geo/G/1 queue with
multiple vacations was studied by Tian and Zhang (2002).
An MX/G(a,b)/1 queue with multiple vacations including
closedown time has been studied by Arumuganathan and
Jeykumar (2004). Kumar and Madheswari (2005) analyzed
a Markovian queue with two heterogeneous servers and
multiple vacations. By using the matrix geometric method,
they derived the stationary queue length distribution
and mean system size. Wu and Takagi (2006) investigated
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an M/G/1 queue with multiple vacations and exhaustive
service discipline such that the server works with different
rates rather than completely stopping the service during
vacation. Ke (2007) studied an MX/G/1 queueing system
under a variant vacation policy where the server takes at
most j vacations. He derived the system size distribution
as well as waiting time distribution in the queue. Ke and
Chang (2009) considered an MX/(G1,G2)/1 retrial queue
with general retrial times, where the server provides two
phases of heterogeneous service to all customers under
Bernoulli vacation schedules. They constructed the math-
ematical model and derived the steady-state distribution
of the server state and the number of customers in the
system/orbit. Ke et al. (2009) studied the vacation policy
for a finite buffer M/M/c queueing system with an un-
reliable server. Threshold N-policy for an MX/H2/1 queue-
ing system with an un-reliable server and vacations was
studied by Sharma (2010). Moreover, Singh et al. (2012)
investigated an M/G/1 queueing model with vacation
and used the generating function method for obtaining
various performance measures. Very recently, an un-
reliable bulk queue with state-dependent arrival rates was
examined by Singh et al. (2013).
Queueing models with an un-reliable server under mul-

tiple vacation policy are more realistic representation
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of the systems. The service of the components may be
interrupted when the operator encounters unpredicted
breakdowns, and it is to be immediately recovered with a
random time. When the repair is completed, the server
immediately returns for service. Wang et al. (1999) ex-
tended Wang's model to the N-policy for an M/H2/1
queueing system and focused on single-arrival Erlangian
service time queueing model with an un-reliable server.
Wang et al. (2004) considered an M/Hk/1 queueing
system with a removable and un-reliable server under
N-policy and presented the optimal operating policy.
Wang (2004) considered an M/G/1 queue with an un-
reliable server and second optional service. Using the
supplementary variable method, he obtained transient
and steady-state solutions for both queueing and reliability
measures of interest. Ke (2005) studied a modified T
vacation policy for an M/G/1 queueing system where an
un-reliable server may take at most J vacations repeat-
edly until at least one customer appears in the queue
upon returning from vacation, and the server needs a
startup time before starting each of his service periods.
Li et al. (2007) proposed a single-server vacation queue
with two policies, working vacation and service inter-
ruption. Choudhury and Deka (2008) studied an M/G/1
retrial queue with an additional second phase of op-
tional service subject to breakdowns occurring ran-
domly at any instant while serving the customers.
Further, Wang and Xu (2009) obtained the solution of
an M/G/1 queue with second optional service and ser-
ver breakdown using the method of functional analysis.
The work on an M/G/1 queue with second optional ser-
vice and server breakdown has been done by Choudh-
ury and Tadj (2009). They derived the Laplace-Stieltjes
transform of busy period distribution and waiting time
distribution. Further, an un-reliable server queue with
multi-optional services and multi-optional vacations
was analyzed by Jain et al. (2013).
Approximate results of many complex queueing models

have been developed by several authors by applying the
technique of maximum entropy principle. Jain and Singh
(2000) used the principle of maximum entropy to analyze
the optimal flow control of a G/G/c finite capacity queue.
Jain and Dhakad (2003) provided the steady-state queue
size distribution of an MX/G/1 queue using the maximum
entropy approach in which the constraints are expressed
in terms of mean arrival rates, mean service rates, and
mean number of customers in the system. Further, Ke
and Lin (2006) employed the principle of maximum
entropy to derive the approximate formulas for the
steady-state probability distributions of the queue length.
Ke and Lin (2008) suggested the maximum entropy
principle to examine the MX/G/1 queueing system in
different frameworks. Omey and Gulck (2008) did max-
imum entropy analysis of an MX/M/1 queueing model with
multiple vacations and server breakdowns. Wang and
Huang (2009) analyzed a single removable and un-reliable
server M/G/1 queue under the (p,N)-policy. They did the
maximum entropy analysis to obtain the approximate for-
mulas for the probability distributions of the number of
customers and the expected waiting time in the system.
Maximum entropy approach has been applied for an
un-reliable server vacation queueing model by Jain et al.
(2012).
The main objective of our study is to develop an

MX/Hk/1 queueing model with an un-reliable server
under multiple vacation policy. In this paper, an MX/Hk/1
queue has been analyzed including more features,
namely (1) bulk arrival, (2) server breakdown, and (3)
multiple vacation. The various approximate results for
waiting time distribution have been analyzed using the
maximum entropy principle which was not considered
in the previous study. Now, we cite a real-life situation
of a given model wherein all the features are encoun-
tered simultaneously. To highlight the application, we
cite an example of production of heat transfer equip-
ment. In the production of these equipment, the raw
material of these equipment arrives in group (batch ar-
rival). The production of these equipment has been
done by the machine in phases (called k-type hyper-
exponential distribution). During the production, the
production of the equipment may be interrupted due to
some machinery faults called server breakdown. After
interruption in the service, the machine is immediately
sent for repairing. After repairing, the machine renews
and works as a new one. As the raw material of these
equipment is finished, the operator may take multiple
vacations till the raw material arrives again. More realis-
tic assumptions incorporated in our model provide a
new dimension in the area of queueing systems.
Our main objective of this paper is to develop an

MX/Hk/1 queueing model with an un-reliable server
under multiple vacation policy. Further, we intend to
determine the approximate results for the steady-state
probability distributions of the queue length using the
maximum entropy approach. The rest of the paper is
organized as follows. In the ‘Model description’ section,
we describe the model and construct the steady-state
equations governing the model. Afterwards, in the
‘Probability generating function’ section, we obtain the
queue size distribution by using the probability gener-
ating function technique. In the ‘Performance mea-
sures’ section, we derive various performance indices.
The principle of maximum entropy is described in the
‘Maximum entropy principle’ section to establish the
approximate results for the expected system size and
expected waiting time. In the ‘Numerical illustration
and sensitivity analysis’ section, numerical illustrations
and sensitivity analysis are presented to validate the

http://www.jiei-tsb.com/content/9/1/36


Jain et al. Journal of Industrial Engineering International Page 3 of 112013, 9:36
http://www.jiei-tsb.com/content/9/1/36
analytical results. Finally, conclusion has been drawn
in the ‘Conclusion’ section.

Model description
Consider a single un-reliable, removable server queue
with state-dependent rates. We assume that the states
of the system are described by the triplet (i,j,n), where
i = 0, 1,…, k; j = V, B, D; and n = 0, 1, 2,…. Here i = 0
denotes that the customer is not in service, and i = 1,
2,…, k denotes that the customer is in the ith phase
service; j = V, B, D represents that the server is on
vacation, busy, and under repair after failure, respect-
ively; and n denotes the number of customers present
in the system. The service time is assumed to follow the
k-type hyper-exponential distribution. It is assumed that
μi (i = 1, 2,…, k) is the service rate of ith phase service.
Let the probability that the next customer to enter in

the service is of type i be qi (i = 1, 2,…, k) and
Xk
i¼1

qi ¼ 1:

Other assumptions made to construct the mathematical
model are as follows:

� The customers arrive in batches according to the
Poisson process with state-dependent arrival rate λj
given by

λj ¼
λ0; if the server isonvacation
λ1; if the server is turnedonand is inoperation
λ2; if the server is turnedonand isunder repair

8<
:

Let A be the random variable denoting the batch
G0;V zð Þ ¼
X∞

znP0;V nð Þ; zj j≤1 ð7Þ
size, and then the batch size distribution is given by

cj ¼ Pr A ¼ j½ �; j ¼ 1; 2;…; d

Furthermore, the generating function for the batch

size distribution is A zð Þ ¼
X∞
j¼1

cjz
j. It follows that E

(A) = A′(1) and E[A(A − 1)] = A″(1).
� When the breakdown occurs, the server is unable to

render service to the customers, but after completing
repair provided by a repairman, it works as efficiently
as before the failure. The life time and repair time of
the server are negative exponentially distributed with
mean 1/α and 1/β, respectively.

� The customers are served according to the first
come, first served (FCFS) discipline.
n¼0

Gi;B zð Þ ¼
X∞
n¼1

znPi;B nð Þ; 1≤i≤k; zj j≤1 ð8Þ

Gi;D zð Þ ¼
X∞
n¼1

znPi;D nð Þ; 1≤i≤k; zj j≤1 ð9Þ
Let us denote the steady-state probabilities depicting
the system status as follows:

� P0,V(n): Probability that there are n (n = 0, 1,…)
customers in the system and the server is on vacation.
� Pi,B(n): Probability that there are n (n = 1, 2,…)
customers in the system and the customer in
service is in phase i (i = 1, 2,…, k), when the server
is turned on and is in busy state.

� Pi,D(n): Probability that there are n (n = 1, 2,…)
customers in the system and the customer in
service is in phase i (i = 1, 2,…, k), when the server
is turned on and is in a breakdown state.

The steady-state equations governing the model are
given as follows:

λ0 þ νð Þ P0;V nð Þ ¼ λ0
Xn
k¼1

P0;V n−kð Þck ; n≥1 ð1Þ

λ0P0;V 0ð Þ ¼
Xk
j¼1

μjP0;V 1ð Þ ð2Þ
λ1 þ αþ μið ÞPi;B 1ð Þ ¼ qi
Xk
j¼1

μjPj;B 2ð Þ þ βPi;D 1ð Þ; 1≤i≤k

ð3Þ

λ1 þ αþ μið ÞPi;B nð Þ ¼ qi
Xk
j¼1

μjPj;B nþ 1ð Þ þ βPi;D nð Þ

þλ1
Xn−1
k¼1

Pi;B n−kð Þck ; n≥2; 1≤i≤k

ð4Þ

λ2 þ βð ÞPi;D 1ð Þ ¼ αPi;B 1ð Þ; 1≤i≤k ð5Þ

λ2 þ βð ÞPi;D nð Þ ¼ αPi;B nð Þ þ λ2
Xn−1
k¼1

Pi;D n−kð Þck ; n≥2; 1≤i≤k

ð6Þ
Probability generating function
In this section, we present the probability generating
function (PGF) technique to obtain the analytical solu-
tion of Equations 1 to 6. Let us define the following par-
tial generating functions:
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Lemma 1. The expressions for the partial generating
functions are obtained as follows:

G0;V zð Þ ¼ 1
1−ρνA zð Þ P0;V 0ð Þ ð10Þ

Gi;B zð Þ ¼ Ni zð Þ
D zð Þ P0;V 0ð Þ; i ¼ 1; 2;…; k ð11Þ

Gi;D zð Þ ¼ α

λ2 þ β−λ2A zð Þð ÞGi;B zð Þ; 1≤i≤k ð12Þ

where

ρν ¼
λ0

λ0 þ ν
;D zð Þ ¼

Yk
i¼1

θi zð Þ þ
Xk
i¼1

qiμi
Yk
j≠i

θj zð Þ
" #

Ni zð Þ ¼
Yk
j≠i

θj zð Þqiλ0z;

θi zð Þ ¼ λ1zA zð Þ− λ1 þ αþ μi þ
αβ

λ2C zð Þ−λ2−βð Þ
� �

z

� �
; i ¼ 1; 2;…; k

Proof. For proof, see ‘Proof of Lemma 1’ in the Appendix.
Lemma 2. The probability P0,V(0) is

P0;V 0ð Þ ¼ 1
1−ρν

þ
Xk
i¼1

ρiqi 1þ α
β

� �h
iβ− λ1βE A½ � þ αλ2E A½ �ð Þ

Xk−1
i¼1

1
μi

i

λ1βE A½ � þ αλ2E A½ �ð Þ
Xk
i¼1

qi
μi
−β

" #
2
66664

3
77775

−1

ð13Þ
Also, the stability condition is given by

α

β
<

1−λ1E A½ �ð Þ
Xk
i¼1

qi
μi

λ2E A½ �
Xk
i¼1

qi
μi

ð14Þ

Proof. For proof, see ‘Proof of Lemma 2’ in the Appendix.
Theorem 1. The probability generating function of the

number of customers in the system is given by

G zð Þ ¼ 1
1−ρνC zð Þ þ

Xk
i¼1

1þ α

λ2 þ β−λ2C zð Þð Þ
� �

Ni zð Þ
D zð Þ

" #
P0;V zð Þ

ð15Þ
Proof. For proof, see ‘Proof of Theorem 1’ in the Appendix.

Performance measures
In order to predict the system characteristics under vari-
ant circumstances, it is worthwhile to explore key aspects
by establishing analytical formulae. In this section, some
performance measures in terms of steady-state probabil-
ities are obtained. The long-run probabilities of the server
being on vacation, busy, and breakdown are denoted by
PV, PB, and PD, respectively. Thus, we obtain

PV ¼
X∞
n¼1

znP0;V nð Þ ¼ G0;V 1ð Þ0;V 0;V ¼ 1
1−ρν

P0;V 0ð Þ

ð16Þ

PB ¼
X∞
n¼1

Xk
i¼1

znPi;B nð Þ ¼
Xk
i¼1

Gi;B 1ð Þ

¼
Xk
i¼1

ρiqi 1þ α
β

� �
iβ− λ1βE A½ � þ αλ2E A½ �ð Þ

Xk−1
i¼1

1
μi

" #

λ1βE A½ � þ αλ2E A½ �ð Þ
Xk
i¼1

qi
μi
−β

" # P0;V 0ð Þ

ð17Þ

PD ¼
X∞
n¼1

Xk
i¼1

znPi;D nð Þ ¼
Xk
i¼1

Gi;D 1ð Þ

¼
Xk
i¼1

αρiqi 1þ α
β

� �
iβ− λ1βE A½ � þ αλ2E A½ �ð Þ

Xk−1
i¼1

1
μi

" #

β λ1βE A½ � þ αλ2E A½ �ð Þ
Xk
i¼1

qi
μi
−β

" # P0;V 0ð Þ

ð18Þ

Theorem 2. The expected number of customers in the
system (LN) is given by

LN ¼ G′ 1ð Þ ¼
"

ρνE A½ �
1−ρν
� 	2

þ
Xk
i¼1

"
ðαþ βÞðN″

i 1ð ÞD′ 1ð Þ−N ′
i 1ð ÞD″ 1ð Þ

2βD′ 1ð Þ2

þN ′
i 1ð Þλ2E A½ �
D′ 1ð Þβ2

##
P0;V 0ð Þ

ð19Þ

where

N ′
i 1ð Þ ¼

Yk
j≠i

1ð Þiþ1λ0μjqi 1−
Xk
i¼1

ai

 !
; i ¼ 1; 2;…; k
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N″
i 1ð Þ ¼ −1ð Þiqiλ0

"
b
Xk−1
i¼1

Y
j ¼ 1
j≠i

k−1

μj

þ2
Yk−1
i¼1

μi
Xk−1
i¼1

ai−
Xk−1
i¼1

ai
X
j ¼ 1
j≠i

k−1

aj

8>><
>>:

9>>=
>>;
#
;

i ¼ 1; 2;…; k

D0 1ð Þ ¼
Yk
i¼1

μi
Xk
i¼1

aiqi; i ¼ 1; 2;…; k

D″ 1ð Þ ¼ b
Xk
i¼1

qi
Yk
j≠i

μj−2
Yk
i¼1

μiai
Xk
i¼1

1−qi
ai

; i ¼ 1; 2;…; k

ai ¼ λ1E A½ � þ δ

μi
−1; i ¼ 1; 2;…; k; δ ¼ αλ2E A½ �

β

b ¼ 2λ1E A½ � þ 2δ þ E A A−1ð Þ½ � λ1 þ α

β
λ2

� �
−
2
α
δ2

Proof. For proof, see ‘Proof of Theorem 2’ in the
Appendix.

Maximum entropy principle
Exact probabilities of the system states of an MX/Hk/1
queueing system with multiple vacations and an un-reliable
server have not been found earlier to the best information
of the authors. In order to evaluate approximate results for
the steady-state probabilities, we employ the maximum en-
tropy approach. It is well established that the principle of
maximum entropy can be used for estimating probabilistic
information measures which is further used to obtain the
queue size distribution of various complex queueing sys-
tems in different frameworks. In order to obtain the steady-
state probabilities P0,V(n), Pi,B(n), and Pi,D(n) by using the
principle of maximum entropy, we formulate the maximum
entropy model as follows.

The maximum entropy model
Following El-Affendi and Kouvatsos (1983), the entropy
function y can be mathematically formulated as

y ¼ −
X∞
n¼0

P0;V nð Þ logP0;V nð Þ−
X∞
n¼0

Xk
i¼1

Pi;B nð Þ logPi;B nð Þ

−
X∞
n¼0

Xk
i¼1

Pi;D nð Þ logPi;D nð Þ

ð20Þ
subject to the following constraints:

1. Normalizing condition

X∞
n¼0

P0;V nð Þ þ
X∞
n¼1

Xk
i¼1

Pi;B nð Þ þ
X∞
n¼1

Xk
i¼1

Pi;D nð Þ ¼ 1

ð21Þ

2. The probability that the server being busy

X∞
n¼1

Xk
i¼1

Pi;B nð Þ ¼
Xk
i¼1

Gi;B 1ð Þ ¼
Xk
i¼1

Ai ð22Þ

3. The probability that the server is in a breakdown state

X∞
n¼1

Xk
i¼1

Pi;D nð Þ ¼
Xk
i¼1

Gi;D 1ð Þ ¼
Xk
i¼1

Ei ð23Þ

4. The expected number of customers in the system

X∞
n¼0

nP0;V nð Þ þ
X∞
n¼1

Xk
i¼1

nPi;B nð Þ þ
X∞
n¼1

Xk
i¼1

nPi;D nð Þ ¼ LN

ð24Þ

where Ai =Gi,B(1), Ei =Gi,D(1), (1 ≤ i ≤ k), and LN are given
by Equations 17, 18, and 19, respectively.
After introducing Lagrange's multipliers corresponding to

constraints (21) to (24), we construct Lagrange's function as

y ¼ −
X∞
n¼0

P0;V nð Þ logP0;V nð Þ−
X∞
n¼0

Xk
i¼1

Pi;B nð Þ logPi;B nð Þ

−
X∞
n¼0

Xk
i¼1

Pi;D nð Þ logPi;D nð Þ

−θ1
X∞
n¼0

P0;V nð Þ þ
X∞
n¼1

Xk
i¼1

Pi;B nð Þ þ
X∞
n¼1

Xk
i¼1

Pi;D nð Þ−1
" #

−
Xk
i¼1

ηi
X∞
n¼1

Pi;B nð Þ−Ai

" #
−
Xk
i¼1

ξ i
X∞
n¼1

Pi;D nð Þ−Ei

" #

−ξkþ1

X∞
n¼0

nP0;V nð Þ þ
X∞
n¼1

Xk
i¼1

nPi;B nð Þ þ
X∞
n¼1

Xk
i¼1

nPi;D nð Þ−LN
" #

ð25Þ
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where θ1, ηi (1 ≤ i ≤ k) and ξi (1 ≤ i ≤ k + 1) are Lagrange's
multipliers corresponding to constraints (21) to (24),
respectively.

The maximum entropy analysis
The maximum entropy results are obtained by taking the
partial derivatives of y w.r.t. P0,V(n), Pi,B(n), and Pi,D(n) and
equating to zero. Thus, we get

∂y
∂P0;V nð Þ ¼ − logP0;V nð Þ−1−θ1−ξkþ1n ¼ 0 ð26Þ

∂y
∂Pi;B nð Þ ¼ − logPi;B nð Þ−1−θ1−ηi−ξkþ1n

¼ 0; 1≤i≤k ð27Þ

∂y
∂Pi;D nð Þ ¼ − logPi;D nð Þ−1−θ1−ξ i−ξkþ1n

¼ 0; 1≤i≤k ð28Þ
From Equations 26 to 28, we get

P0;V nð Þ ¼ e− 1þθ1ð Þe−ξkþ1n; n ¼ 0; 1;… ð29Þ

Pi;B nð Þ ¼ e− 1þθ1þηið Þe−ξkþ1n; n
¼ 1; 2;…; 1≤i≤k ð30Þ

Pi;D nð Þ ¼ e− 1þθ1þξ ið Þe−ξkþ1n; n
¼ 1; 2;…; 1≤i≤k ð31Þ

Denote φ1 ¼ e− 1þθ1ð Þ;ψi ¼ e−ηi ; 1≤i≤k and δi ¼ e−ξ i ;
1≤i≤k þ 1:
Then, Equations 29 to 31 can be written as

P0;V nð Þ ¼ φ1δ
n
kþ1; n ¼ 0; 1;… ð32Þ

Pi;B nð Þ ¼ φ1ψiδ
n
kþ1; n ¼ 1; 2;…; 1≤i≤k ð33Þ

Pi;D nð Þ ¼ φ1δiδ
n
kþ1; n ¼ 1; 2;…; 1≤i≤k ð34Þ

On substituting the values of P0,V(n), Pi,B(n), and Pi,D(n)
from Equations 32 to 34 into Equations 21 to 23, we
obtain

X∞
n¼0

φ1δ
n
kþ1 ¼

φ1

1−δkþ1
¼ 1−

Xk
i¼1

Ai þ Eið Þ ð35Þ

X∞
n¼1

φ1ψiδ
n
kþ1 ¼

φ1ψiδkþ1

1−δkþ1
¼ Ai; 1≤i≤k ð36Þ
X∞
n¼1

φ1δiδ
n
kþ1 ¼

φ1δiδkþ1

1−δkþ1
¼ Ei; 1≤i≤k ð37Þ

It follows from Equations 35 to 37 that

φ1 ¼ 1−ρð Þ 1−δkþ1ð Þ ð38Þ

ψi ¼
Ai

1−ρð Þδkþ1
; 1≤i≤k ð39Þ

δi ¼ Ei

1−ρð Þδkþ1
; 1≤i≤k ð40Þ

where ρ ¼
Xk
i¼1

Ai þ Eið Þ:
On substituting the values of φ1, ψi and δi(1 ≤ i ≤ k)

from Equations 38 to 40 into Equation 24 and after doing
some algebraic manipulations, we obtain

δkþ1 ¼ LN−ρ
1þ LN−ρ

ð41Þ

On substituting the values of φ1, ψi, andδi from
Equations 38 to 40 into Equations 32 to 34 and using
Equation 40, we finally get

P0;V nð Þ ¼ 1−ρ
1þ LN1−ρ

� �
LN−ρ

1þ LN−ρ

� �n

; n

¼ 0; 1;… ð42Þ

Pi;B nð Þ ¼ Ai

1þ LN1−ρ

� �
LN−ρ

1þ LN−ρ

� �n−1

; n

¼ 1; 2;…; 1≤i≤k ð43Þ

Pi;D nð Þ ¼ Ei

1þ LN1−ρ

� �
LN−ρ

1þ LN−ρ

� �n−1

; n

¼ 1; 2;…; 1≤i≤k ð44Þ

The expected waiting time in the system

Let WS and Ŵ S denote the exact and the expected wait-
ing time in the system, respectively. Then,

WS ¼ LN
λeff

ð45Þ

where λeff = [λ0PV + λ1PB + λ2PD]E[A].
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Following the work of Wang et al. (2007), the approxi-
mate expected waiting time in the system is given by the
approximate expected waiting time in

Ŵ S ¼
Xk
i¼1

X∞
n¼1

nqi
μi

þ 1
ν
þ qi
2μi

E A2

 �
E A½ � −1

� �� �
P0;V nð Þ

þ
Xk
i¼1

X∞
n¼0

nqi
μi

þ qi
2μi

E A2

 �
E A½ � −1

� �� �
Pi;B nð Þ

þ
Xk
i¼1

X∞
n¼0

nqi
μi

þ 1
β
þ qi
2μi

E A2

 �
E A½ � −1

� �� �
Pi;D nð Þ

ð46Þ

Substituting the values of P0,V(n), Pi,B(n) and Pi,D(n) from
Equations 42 to 44 into Equation 46, the approximate
expected waiting time in the system is given by

Ŵ S ¼
1−
Xk
i¼1

Ai−
Xk
i¼1

Ei

ν

þ
Xk
i¼1

qi
μi

LN þ 1
2

E A2

 �
E A½ � −1

� �� �
þ

Xk
i¼1

Ei

β
ð47Þ

Numerical illustration and sensitivity analysis
In this section, we present a numerical simulation by tak-
ing the illustration of production of heat transfer equip-
ment (HTE) discussed in the ‘Background’ section. For
developing the code of computational program, we have
used the ‘MATLAB’ software. For computation purposes,
we assume that the raw materials arrive in batches of fixed
batch size k = 3. The arrival rates are chosen as λ1 = 0.5,
λ2 = 0.9, and λ3 = 0.7. The service times of the machine
when producing these equipment are μ1 = 1, μ2 = 2, and
μ3 = 3. The processing of the equipment may be inter-
rupted with rate α = 0.8 and again becomes available for
processing with rate β = 2. Further, the server may go for
multiple vacations with rate v = 0.09. The expected num-
ber of these equipment in the system is obtained by using
Equations 1 to 19 as LN = 36.
Now, we present the numerical results to demonstrate

the effects of different parameters on various performance
indices. The accuracy of numerical results is examined by
comparing the exact waiting time (WS) obtained in the
‘Maximum entropy principle’ section using the probability
generating function approach with the approximate
waiting time (Ŵ S ) obtained by the maximum entropy
principle (MEP) of the MX/HK/1 queueing system under
multiple vacation policy. Relative percentage error is
tabulated for this purpose. The variations of different
parameters on the average queue length are shown in
Figures 1 and 2 graphically.
Table 1 summarizes the numerical results for long-run

fraction of time of the server being in different states by
varying the parameters λ, μ, α, β, and v for two different
cases of qi (case 1: (q1, q2, q3) = (0.6, 0.3, 0.1) and case 2:
(q1, q2, q3) = (0.7, 0.2, 0.1)). For the sake of convenience,
we choose the default parameters λ1 = 0.9, λ2 = 0.8,
λ3 = 0.7, μ = 1, μ1 = 1 μ, μ2 = 2 μ, μ3 = 3 μ, α = 0.2, β = 1,
and v = 0.9. It is noticed that PV shows a decreasing
trend with respect to the increasing values of λ, α,
and v, but an increasing trend has been found with other
parameters for both cases. Similarly, PB and PD increase
as we increase the values of λ, α, and v and decrease
with increasing values of μ and β for both cases. Table 2
presents the comparison between WS and Ŵ S for case 1:
(q1, q2, q3) = (0.5, 0.1, 0.4) and case 2: (q1, q2, q3) = (0.4, 0.3,
0.3). We fix default parameters for numerical results
summarized in Table 2 as λ1 = 0.8, λ2 = 0.7, λ3 = 0.6, μ = 1,
μ1 = 1 μ, μ2 = 2 μ, μ3 = 3 μ, α = 0.2, β = 3, and v = 0.01. For
both cases, WS increases as we increase the values of λ1
and α but decreases with increasing values of λ0, μ, β,
and v. As we increase the values of λ1, μ, β, and v, it is
seen that Ŵ S decreases but increases with λ0 and α for
both cases. It can be observed easily from Table 2 that the
relative percentage error varies from 0 % to 3 % which is
reasonably less.
Figure 1a,b,c depicts the effect of different parameters

on average queue length for various sets of heterogeneous
arrival rate (λ0 = 1.8λ, λ1 = 0.5λ, λ2 = 0.6λ) shown by discrete
lines and homogeneous arrival rate (λ0 = λ1 = λ2 = λ) shown
by continuous lines. We observe that the average queue
length is higher for the heterogeneous arrival rate in
comparison to the homogeneous arrival rate on increas-
ing the breakdown rate of the server. The queue length
shows a gradual decreasing trend on increasing the re-
pair rate and the vacation rate. Further, Figure 2a,b,c
visualizes the effect of batch size on the average queue
length. It is observed that the average queue length reveals
an increasing trend with increasing values of α and β while
shows a decreasing trend with increasing values of v. The
tractability of numerical results shows that our model can
be easily implemented for the quantitative assessment of
the performance of many real-time congestion systems.
Methods
In this paper, an MX/Hk/1 queue under multiple vaca-
tions and an un-reliable server with varying arrival rates
is studied. The probability generating function technique
is used to determine various performance measures in
explicit form. Then, MEP is further employed to compare
the approximate results with exact results. For validating the
analytical results, the sensitivity analysis is also carried out.
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(c)
Figure 2 Average queue length vs. (a) α, (b) β, and (c) v for
different batch sizes.

(c)

(b)

(a)

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5

=.9 (homo)
=.9 (hetro)
=.8 (homo)
=.8 (hetro)

0
10
20
30
40
50
60

1 2 3 4 5

L N

L N

(homo)
=.9 (hetro)
=.8 (homo)
=.8 (hetro)

0

10

20

30

40

50

0.1 0.2 0.3 0.4 0.5

L N

=.9 (homo)
=.9 (hetro)
=.8 (homo)
= .8 (hetro)

Figure 1 Average queue length vs. (a) α, (b) β, and (c) v for
homogeneous and heterogeneous arrival rates.
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Table 1 Effect of various parameters on long-run fraction
of time of the server being in different states

Case 1:
(q1, q2, q3) = (0.6, 0.3, 0.1)

Case 2:
(q1, q2, q3) = (0.7, 0.2, 0.1)

PV PB PD PV PB PD

λ 0.700 0.997 0.002 0.001 0.909 0.090 0.018

0.725 0.948 0.051 0.010 0.852 0.147 0.029

0.750 0.896 0.103 0.020 0.790 0.209 0.041

0.775 0.840 0.159 0.031 0.725 0.274 0.054

0.800 0.781 0.218 0.043 0.657 0.342 0.068

μ 1.000 0.226 0.773 0.154 0.187 0.812 0.162

1.050 0.412 0.587 0.117 0.342 0.657 0.131

1.100 0.586 0.413 0.082 0.489 0.510 0.102

1.150 0.742 0.257 0.051 0.623 0.376 0.075

1.200 0.878 0.121 0.024 0.742 0.257 0.051

α 0.100 0.947 0.052 0.005 0.848 0.151 0.015

0.200 0.810 0.189 0.037 0.688 0.311 0.062

0.300 0.650 0.349 0.104 0.509 0.490 0.147

0.400 0.479 0.520 0.208 0.323 0.676 0.270

0.500 0.308 0.691 0.345 0.144 0.855 0.427

β 1.000 0.810 0.189 0.037 0.688 0.311 0.062

1.250 0.868 0.131 0.021 0.755 0.244 0.039

1.500 0.904 0.095 0.012 0.798 0.201 0.026

1.750 0.929 0.070 0.008 0.827 0.172 0.019

2.000 0.947 0.052 0.005 0.848 0.151 0.015

v 0.100 0.955 0.044 0.008 0.916 0.083 0.016

0.200 0.921 0.078 0.015 0.858 0.141 0.028

0.300 0.895 0.104 0.020 0.815 0.184 0.036

0.400 0.874 0.125 0.025 0.782 0.217 0.043

0.500 0.856 0.143 0.028 0.755 0.244 0.048

Table 2 Comparison between the exact and the
approximate results of waiting times

Case 1:
(q1, q2, q3) = (0.5, 0.1, 0.4)

Case 2:
(q1, q2, q3) = (0.4, 0.3, 0.3)

WS ŴS % error WS ŴS % error

λ0 0.600 103.237 101.411 1.769 103.058 101.424 1.586

0.700 102.776 101.480 1.261 102.622 101.490 1.103

0.800 102.430 101.548 0.861 102.295 101.556 0.723

0.900 102.160 101.615 0.533 102.041 101.621 0.411

1.000 101.945 101.683 0.256 101.837 101.686 0.148

λ1 0.600 101.947 101.616 0.324 101.821 101.622 0.196

0.700 102.054 101.616 0.428 101.931 101.621 0.303

0.800 102.160 101.615 0.533 102.041 101.621 0.411

0.900 102.267 101.615 0.637 102.151 101.620 0.519

1.000 102.374 101.615 0.742 102.261 101.620 0.626

μ 1.000 102.160 101.615 0.533 102.041 101.621 0.411

2.000 101.006 100.803 0.201 100.920 100.805 0.114

3.000 100.659 100.534 0.124 100.596 100.536 0.059

4.000 100.491 100.400 0.090 100.441 100.401 0.039

5.000 100.391 100.320 0.071 100.350 100.321 0.028

α 0.100 102.068 101.552 0.505 101.951 101.556 0.388

0.200 102.160 101.615 0.533 102.041 101.621 0.411

0.300 102.254 101.681 0.561 102.132 101.688 0.434

0.400 102.350 101.748 0.588 102.224 101.757 0.457

0.500 102.447 101.817 0.615 102.318 101.828 0.479

β 1.000 102.543 101.887 0.640 102.412 101.900 0.500

2.000 102.254 101.680 0.560 102.131 101.688 0.434

3.000 102.160 101.615 0.533 102.041 101.621 0.411

4.000 102.114 101.584 0.519 101.996 101.588 0.399

5.000 102.087 101.565 0.511 101.969 101.569 0.392

v 0.010 102.160 101.615 0.533 102.041 101.621 0.411

0.012 82.475 81.499 1.183 82.319 81.508 0.984

0.015 69.456 68.088 1.969 69.264 68.100 1.679

0.017 60.246 58.509 2.882 60.018 58.524 2.489

0.020 53.416 51.326 3.913 53.153 51.341 3.407

Jain et al. Journal of Industrial Engineering International Page 9 of 112013, 9:36
http://www.jiei-tsb.com/content/9/1/36
Results and discussion
The role of queueing analysis based on MEP lies in the
fact that it helps basically system designers and man-
agers to take decisions based on the performance indices
determined using the probability distribution of the system
size in terms of available information by MEP approach.
The numerical illustration presented demonstrates that
maximum entropy analysis is a simple approach to deal
with complex scenarios for real-life congestion situations
and can be easily applied to complex queueing scenarios
for which performance measures are not easily obtained by
using a classical approach. Based on the numerical experi-
ment and sensitivity analysis carried out, we overall con-
clude that the comparative analysis of approximate results
with exact results has demonstrated that the results ob-
tained by MEP are reasonably good. The average queue
length is higher for heterogeneous arrival rate in com-
parison to homogeneous arrival rate. The trends are
more perceptible for larger batch size, which is quite ob-
vious as the congestion increases significantly if the
batch size of arriving customers is large.

Conclusion
In this paper, an MX/Hk/1 queue with multiple vacations
and an un-reliable server has been studied in order to
facilitate various performance indices in explicit form
by using an analytical approach based on the generating
function method and maximum entropy principle. The
incorporation of some more realistic features such as
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multiple vacations, un-reliable server, and batch arrival
makes our model closer to real-life congestion situations.
This model depicts many real-time embedded systems,
namely production system, computer system, data com-
munication system, etc. The numerical results and sen-
sitivity analysis obtained provide an insight into how
the system can be made more efficient by controlling
the sensitive parameters. The queueing model studied
can be further extended by taking the concept of k-phase
optional repair. The concept of working vacation,
N-policy, and multi-repair can also be included which is
the topic of our future research work.

Appendix
Proof of Lemma 1
Multiplying Equation 1 by appropriate powers of z and
then summing over n, we get

λ0 þ ν−λ0A zð Þð ÞG0;V zð Þ ¼ λ0 þ νð ÞP0;V 0ð Þ ð48Þ

Substituting ρν ¼ λ0
λ0þν in Equation 48, we have

G0;V zð Þ ¼ 1
1−ρνA zð Þ P0;V 0ð Þ ð49Þ

Multiplying Equation 2 by qiz, Equation 3 by z2, and
Equation 4 by zn+1 and then adding these equations term
by term for all possible values of n, finally, we obtain

λ1zA zð Þ− λ1 þ αþ μið Þz½ �Gi;B zð Þ

þ qi
Xk
j¼1

μjGj;B zð Þ þ βzGi;D zð Þ

¼ qizλ0P0;V 0ð Þ0;V 0;V ; 1≤i≤k ð50Þ
After multiplying Equation 5 by z and Equation 6 by

zn and then adding these equations term by term for all
possible values of n, thus, we obtain

λ2 þ βð ÞGi;D zð Þ ¼ αGi;B zð Þ
þ λ2A zð ÞGi;D zð Þ; 1≤i≤k ð51Þ

Using Equation 51, we have

Gi;D zð Þ ¼ α

λ2 þ β−λ2A zð Þð ÞGi;B zð Þ; 1≤i≤k ð52Þ

Now put i = 1 in Equation 50 and using Equation 52
into Equation 50, we have

λ1zA zð Þ− λ1 þ αþ μ1 þ
αβ

λ2A zð Þ−λ2−βð Þ
� �

z þ q1μ1

� �
G1;B zð Þ

þq1
Xk
j¼2

μjGj;B zð Þ ¼ q1zλ0P0;V 0ð Þ

ð53Þ
Again put i = 2 in Equation 50 and using Equation 52
into Equation 50, we obtain

q2μ1G1;B zð Þ þ λ1zA zð Þ− λ1 þ αþ μ2 þ
αβ

λ2A zð Þ−λ2−βð Þ
� �

z þ q2μ2

� �
G2;B zð Þ

þ q2
Xk
j¼3

μjGj;B zð Þ ¼ q2zλ0P0;V 0ð Þ

ð54Þ
Similarly, repeating this process for i = k, we get

qk
Xk−1
j¼1

μjGj;B zð Þ

þ λ1zA zð Þ− λ1 þ αþ μk þ
αβ

λ2A zð Þ−λ2−βð Þ
� �

z þ qkμk

� �
Gk;B zð Þ

¼ qkzλ0P0;V 0ð Þ

ð55Þ
We use Cramer's rule to solve Equations 53 to 55.

Now we get

Gi;B zð Þ ¼ Ni zð Þ
D zð Þ P0;V 0ð Þ; i ¼ 1; 2;…; k ð56Þ

Proof of Lemma 2
Using Lemma 1, we obtain

G0;V 1ð Þ ¼ limz→1G0;V zð Þ ¼ 1
1−ρν

P0;V 0ð Þ ð57Þ

Gi;B 1ð Þ ¼ limz→1Gi;B zð Þ

¼
ρiqi iβ− λ1βE A½ � þ αλ2E A½ �ð Þ

Xk−1
i¼1

1
μi

" #

λ1βE A½ � þ αλ2E A½ �ð Þ
Xk
i¼1

qi
μi
−β

" # P0;V 0ð Þ; i ¼ 1; 2;…; k

ð58Þ

Gi;D 1ð Þ ¼ limz→1Gi;D zð Þ ¼ α

β
Gi;B 1ð Þ; i

¼ 1; 2;…; k ð59Þ

where ρi ¼ λ0
μi
:

The L-Hospital rule has been applied to compute the
above results.
To determine P0,V(0), we use the normalizing condi-

tion given by

G 1ð Þ ¼ G0;V 1ð Þ þ
Xk
i¼1

Gi;B 1ð Þ þ Gi;D 1ð Þ� 	 ð60Þ

On substituting the values of G0,V(1), Gi,B(1), and Gi,D

(1) from Equations 57 to 59 into Equation 60, we obtain
the value of P0,V(0).
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For finding the result of the stable condition, we use
the condition

0 < P0;V 0ð Þ < 1: ð61Þ
Using Equation 13 into Equation 61, we have

0 < λ1βþ αλ2ð ÞE A½ �
Xk
i¼1

qi
μi
−β < 1: ð62Þ

After some algebraic manipulations, Equation 62 provides
the result given in Equation 14.

Proof of Theorem 1
In order to prove Equation 15, we have

G zð Þ ¼
X∞
n¼0

znP0;V nð Þ þ
X∞
n¼1

Xk
i¼1

znPi;B nð Þ

þ
X∞
n¼1

Xk
i¼1

znPi;D nð Þ

¼ G0;V zð Þ þ
Xk
i¼1

Gi;B zð Þ þ Gi;D zð Þ
 � ð63Þ

On substituting the values of G0,V(z), Gi,B(z), and Gi,D(z)
from Lemma 1 into Equation 63, we get Equation 15.

Proof of Theorem 2
The average system size is computed using

LN ¼ limz→1G
′ zð Þ:

The L-Hospital rule is applied twice to compute the
results given in Equation 19.
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