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Abstract In this paper, a hybrid meta-heuristic algorithm,

based on imperialistic competition algorithm (ICA), har-

mony search (HS), and simulated annealing (SA) is pre-

sented. The body of the proposed hybrid algorithm is based

on ICA. The proposed hybrid algorithm inherits the advan-

tages of the process of harmony creation in HS algorithm to

improve the exploitation phase of the ICA algorithm. In

addition, the proposed hybrid algorithm uses SA to make a

balance between exploration and exploitation phases. The

proposed hybrid algorithm is compared with several meta-

heuristic methods, including genetic algorithm (GA), HS,

and ICA on several well-known benchmark instances. The

comprehensive experiments and statistical analysis on

standard benchmark functions certify the superiority of the

proposed method over the other algorithms. The efficacy of

the proposed hybrid algorithm is promising and can be used

in several real-life engineering and management problems.

Keywords Meta-heuristics � Imperialistic competition

algorithm � Harmony search � Simulated annealing �
Optimization

Introduction

Meta-heuristic algorithms are assumed as powerful tools

for solving various optimization problems. They have been

widely used to deal with complicated problems in different

areas of science and engineering (Goldberg 1989). There

are several methods to solve optimization problems, a great

deal of them based on traditional mathematical program-

ming (Goldberg 1989). These methods require several

conditions that cannot be met by a lot of real-world opti-

mization problems (Goldberg 1989). Moreover, a lot of

real-world problems are hard to solve using limited amount

of time resources.1 Although traditional mathematical

programming methods are good at dealing with small

instances of such problems, they are not well posed for

large-scale instances of NP-hard problems.

Traditional optimization methods usually require some

assumptions to work properly. These assumptions are

about continuity of solution space and differentiability of

the objective function. Fortunately, meta-heuristic methods

are not limited by such assumptions. We are usually

seeking an optimum or even proper values for non-differ-

entiable measurement functions in real-world problems.

Moreover, calculating partial derivatives may be so hard

and computationally expensive for multivariate functions

in real-life problems. Searching discrete solution space is

another challenge in real-world problems. All the afore-

mentioned issues are assumed to be proper reasons to

pursue the researchers to develop and apply meta-heuristic

algorithms for real-life and NP-hard problems.

There are lots of meta-heuristic algorithms, which work

with different mechanisms and inspired from various nat-

ural, social, economical, political, cultural, mechanical, and

physical concepts. Among them, Tabu search (TS) (Glover

1989, 1990), simulated annealing (SA) (Kirkpatrick et al.& Amir-Reza Abtahi
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1 These types of problems are called non-deterministic polynomial

hard (NP-hard), which cannot be solved using a polynomial

algorithm. In such problems, the required time for solving the

problem increases exponentially as the dimension of the problem

grows.
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1983), genetic algorithm (GA) (Holland 1975), particle

swarm optimization (PSO) (Eberhart and Kennedy 1995),

ant colony optimization (ACO) (Colorni et al. 1991), arti-

ficial bee colony (ABC) (Karaboga and Basturk 2008),

harmony search (HS) (Geem et al. 2001), and imperialistic

competition algorithm (ICA) (Atashpaz-Gargari and Lucas

2007) have been successfully applied to various engineer-

ing, and management problems.

HS and ICA have been brilliantly used to solve various

real-world problems (Geem 2006; Niknam et al. 2011;

Talbi 2009; Kaveh and Talatahari 2010; Mohammadi-

Ivatloo et al. 2012). The HS algorithm is based on the

process of improvisation in the musical performance and

ICA is inspired by economical, social, and cultural evolu-

tion of imperialists and their colonies. Although the ICA

algorithm has successfully been applied to various prob-

lems, it suffers from lack of proper information flow

between various empires. This will cause a considerable

performance reduction of the ICA whenever the solution

space contains several high-quality regions (i.e., multi-

modal objective functions). In this paper, a hybrid algo-

rithm is proposed based on ICA, SA, and HS to overcome

the aforementioned pitfall. The proposed hybrid algorithm

serves several properties which improve its performance.

To test the performance of the proposed hybrid algorithm,

several well-known and standard benchmark instances are

chosen and a comparative analysis is accomplished. The

comprehensive experiments on the well-known benchmark

instances certify the superiority of the proposed hybrid

algorithm in comparison with the other meta-heuristic

algorithms.

The remaining part of this paper is organized as follows.

A literature of recent applications of meta-heuristics

methods, including GA, SA, ICA, and HS, are represented

in ‘‘Literature on recent applications of meta-heuristics’’.

The next section deals with the ‘‘Basics and fundamental of

ICA, SA, and HS’’. The proposed hybrid algorithm is

developed in the ‘‘Proposed algorithm’’. Benchmark

instances and experimental results are presented and dis-

cussed in ‘‘Benchmark functions and experimental

results’’, respectively. The conclusion remarks are drawn in

‘‘Conclusions’’.

Literature on recent applications of meta-
heuristics

This section aims to take a short look at various applica-

tions of meta-heuristic methods for solving a broad range

of engineering problems. Meta-heuristic methods have

been widely used in almost all areas in engineering. There

are many real-life engineering problems, including struc-

tural design, shape optimization, building design, energy-

efficient design, scheduling, planning, and many others,

which have been addressed using meta-heuristics (Yang

2010; Chen and Wang 2004). We focus on the applications

of GA, SA, ICA, and HS to make a brief sense of their

success story in engineering problems.

Applications of genetic algorithm (GA)

Genetic algorithm was initially proposed by Holland

(1975). GA has been widely used to solve various opti-

mization problems in different branches of engineering,

and it is known as a successful tool to deal with complex

real-world problems. Das et al. (2012) employed GA to

sample the optimal set of local regions from which an

optimal feature set can be extracted. The proposed method

has been evaluated using data set of handwritten Bangla

digits, and the results certified that the GA-based region

sampling outperforms several existing methods. Bateni

et al. (2012) proposed a hybrid GA—finite difference to

estimate soil thermal properties using land surface tem-

perature. It has been shown that the proposed method was

capable of accurately estimating soil thermal properties.

Qu et al. (2013) proposed an improved version of GA used

for global path planning of multiple mobile robots. The

proposed method resulted in an optimal or near-optimal

collision-free path, and simulations demonstrated the effi-

ciency of the proposed method. Yang and Koziel (2011)

provided a detailed description of application of GA for

various engineering problems such as estimation of input

parameters in environmental emergency modeling, simu-

lation of behavior of concrete materials, and network

optimization. Rabbani et al. (2016) proposed a multi-ob-

jective version of GA for line balancing in assembly lines.

The proposed method compared with a particle swarm

optimization method (PSO). The operation of GA outper-

forms PSO in many large-scale problems. Mehmanpazir

and Asadi (2016) used GA as a rule-filtering tool and

tuning mechanism for membership function in designing

an evolutionary fuzzy expert system. The results showed

that the proposed expert system with GA provided more

accuracy in stock price forecasting problems.

Applications of simulated annealing (SA)

Simulated annealing is a local search method inspired by

the physical annealing process (Kirkpatrick et al. 1983).

SA was employed to address various optimization prob-

lems in different branches of engineering. Zhang et al.

(2013) applied SA to the robot path planning problem. The

study focused on three classes of paths, namely polyline,

Bézier curve, and spline interpolated curve. The experi-

mental results showed the capability of SA in finding near-

optimal solutions. Saraiva et al. (2011) formulated the
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scheduling problem of generator maintenance actions as a

mixed integer optimization problem. The objective func-

tion was to minimize the operation cost along the

scheduling period plus a penalty on energy not supplied.

SA was used to solve the problem. The empirical study

demonstrated that the SA was able to find low-cost main-

tenance schedules with short computation times.

Tsang and Wiese (2010) used SA to predict RNA sec-

ondary structure. The prediction accuracy of the proposed

method, SARNA-Predict, was compared to eight state-of-

the-art RNA prediction algorithms. Experiments on 33

individual known structures from 11 RNA classes

demonstrated that SARNA-Predict can outperform the

eight state-of-the-art RNA prediction algorithms in terms

of prediction accuracy.

Jafari and Salmasi (2015) applied SA in the nurse

scheduling problem. The results of experiments showed

that SA algorithm provides more accurate solutions. Also,

the applied SA offers meaningfully better solutions in a

reasonable time compared to other methods.

Applications of harmony search (HS)

The harmony search algorithm was inspired by the musical

process of searching for a perfect state of harmony (Geem

et al. 2001). HS has been widely used to deal with complex

real-world optimization problems (Geem 2006). Del Ser

et al. (2012) applied HS to the spectrum channel allocation

problem. The experimental results certified that the pro-

posed method achieves near-optimum spectral channel

assignments at a low computational cost, and also it out-

performed genetically inspired allocation algorithms for

the set of simulated scenarios. Diao and Shen (2012) used

HS to deal with feature selection problem in which a subset

of relevant features is selected for model construction. The

superiority of the proposed approach was shown over

several different methods, including hill climbing, GA, and

particle swarm optimization (PSO).

Imperialistic competition algorithm (ICA)

Imperialistic competition algorithm was originally inspired

from the political behavior of imperialists (Atashpaz-Gar-

gari and Lucas 2007). Yousefi et al. (2012) utilized ICA to

optimize a cross-flow plate fin heat exchanger. The ability

of ICA to optimize the total weight and total annual cost

was demonstrated using a case study. Moreover, in com-

parison with GA, ICA showed lower computational com-

plexity and higher accuracy. Niknam et al. (2011) applied

ICA to a K-means clustering algorithm. The experimental

results on several datasets demonstrated the performance of

the proposed method over several clustering algorithms,

including, ACO, PSO, SA, GA, TS, honey bee mating

optimization, and K-means clustering.

Basics and fundamental of ICA, SA, and HS

As the proposed hybrid method is based on ICA, SA, and

HS, so in this section the basics and fundamental of these

methods are briefly revisited.

Concept of imperialistic competition algorithm

Imperialistic competition algorithm was originally inspired

from the political behavior of imperialists (Atashpaz-Gar-

gari and Lucas 2007). ICA starts with an initial population,

which are named countries. Some of the best countries in

the initial population are selected as imperialists, and the

remaining countries form the colonies of these imperialists.

Each imperialist with its colonies is called an empire.

After creation of the initial empires, colonies start

moving toward their relevant imperialists. This movement

takes place based on a process called assimilation policy.

Figure 1 shows a colony movement toward its relevant

imperialist.

Figure 1 depicts the process of assimilation, where xðtÞ is

the position of a colony at time step t; yðtÞ the position of

the corresponding imperialist of x at time step t; h, the
deviation degree, is a random number with uniform dis-

tribution on the interval ½�c; c�; dðxðtÞ; yðtÞÞ the distance

between xðtÞ and its imperialist position at time step t, i.e.,

yðtÞ; l, the distance between xðtÞ and xðtþ1Þ, is a random

variable with uniform distribution on the interval

½0; b� dðxðtÞ; yðtÞÞ�:
As a result of the assimilation process, each colony

moves l units with a h angle deviation from the vector

which connects the colony to its imperialist. Since in each

empire the imperialist is the most powerful country, during

the assimilation process a country may change its role from

Fig. 1 Movement of a colony toward its imperialist during the

assimilation process
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imperialist to colony, and vice versa. It should be noted that

the power of a country is calculated based on its fitness

function value. For any optimization problem, the fitness

function is defined to show the quality of a given solution

(country). In the next step imperialistic competition takes

place. First, the total power of each empire is calculated as

follows:

Power ðEÞ ¼ Fitness ðimperialistEÞ þ d�
X

c2E
fitness ðcÞ;

ð1Þ

where E is an empire, c a colony of E, and d a real number

in the interval ð0; 1Þ. The empire with the lowest power

value and consequently its weakest colony is chosen. Then,

all empires compete in a process to take possession of the

chosen colony. Each empire has a chance to win the

imperialistic competition proportional to its power. It

should be noted that the imperialistic competition gradually

results in a decrease in the power of weaker empires and an

increase in the power of more powerful ones. When an

empire lost all its colonies, its imperialist is assigned to

another empire as a colony.

Revolution strategy, as another step of ICA, is applied to

a certain percentage of countries belonging to each empire.

In this strategy, some cultural, social, and political ele-

ments of a country, i.e., components of a solution, are

changed randomly. The algorithm continues till a termi-

nation condition is met. In each iteration assimilation,

imperialistic competition and revolution strategy are used.

The flowchart of ICA algorithm is depicted in Fig. 2.

Concept of simulated annealing

Simulated annealing is a local search method inspired by

the physical annealing process (Kirkpatrick et al. 1983).

SA, while exploring solution space, offers the possibility to

accept less fitted solutions in a controlled way to escape

from local optima. More precisely, let f(x) be the objective

function for a minimization problem, xt the solution at time

step t, f ðxtÞ the value of the objective function for xt, and

NðxtÞ the set of all immediate neighbors of xt. Also, let

y 2 NðxtÞ and Dðy; xtÞ ¼ ðf ðyÞ � f ðxtÞÞ. The SA algorithm

selects the next solution, i.e., xtþ1, according to the fol-

lowing formula:

xtþ1¼
y D £ 0

y D[ 0 and Uð0; 1Þ\e
�Dðy;xt Þ

Tt

xt D[ 0 and Uð0; 1Þ[ e
�Dðy;xt Þ

Tt

8
><

>:
; ð2Þ

where Uð0; 1Þ is a uniformly distributed random number in

the interval ð0; 1Þ, and Tt is the temperature at time step t.

If f ðyÞ � f ðxtÞ, i.e., y is a better solution in comparison to

xt, then xtþ1 ¼ y. Otherwise, y could also be accepted as

xtþ 1, with a probability of p ¼ e
�Dðy;xt Þ

Tt . The acceptance

probability p is influenced by two factors, Dðy; xtÞ and Tt.

Smaller values of Dðy; xtÞ induce greater acceptance

probabilities and, therefore, more chance for y to be

accepted as the value of xtþ1. Moreover, higher values of Tt
give higher acceptance probability and, therefore, more

chance for y to be accepted as the value of xtþ1. The

temperature parameter Tt is controlled by a cooling

schema. It has been shown that there are theoretical cooling

schedules which guarantee asymptotic convergence toward

the optimal solution, although they require infinite com-

puting time steps (Kirkpatrick et al. 1983). In practice finite

computing time steps are preferred even if they do not

guarantee convergence to an optimum. Higher temperature

values in the first iterations of the SA make it possible to

explore different regions of the search space, and lower

values in the final iterations of the algorithm make it more

selective to neighborhoods of good solutions.

Concept of harmony search

HS algorithm was inspired by the musical process of

searching for a perfect state of harmony (Geem et al. 2001).

In HS, each potential solution for the problem is coded as a

feature vector named harmony and the goal is to find a

global optimum as determined by a fitness function. HS

takes advantage of a limited subset of successful experi-

ences, i.e., the fittest solutions. These harmonies are gath-

ered in a memory called harmony memory (HM). In each

iteration of HS a new harmony is generated. The new

generated harmony, then, is compared with the worst har-

mony in HM based on the fitness function. If the new

harmony dominates the worst harmony, it will be substi-

tuted for the worst one.

HM (i, j) shows the jth component of the ith harmony in

HM. Each harmony is presented as a d-dimensional vector.

To create a new harmony, all d components or features of a

new harmony, called ‘‘H’’, should be computed. HS

employs three strategies to compute each component of H,

i.e., H (j). As the first strategy, one of the harmonies in HM

is selected randomly, e.g., the ith harmony, and then the

value of HM (i,j) is assigned to H (j). As the second

strategy, one of the harmonies in HM is selected randomly,

e.g., the ith harmony, and then an adjacent value of HM (i,

j) is assigned to H (j). The adjustment value is conducted

using a bandwidth bw, which is a parameter of the algo-

rithm. Finally, as the third strategy, a random value from

the possible range is used as H (j). To compute each H (j),

HS uses one of these three strategies and therefore it needs

to decide on one of them. HS uses two parameters named

harmony memory consideration rate (HMCR) and pitch

adjustment rate (PAR) to decide on each strategy. Figure 3
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depicts the process of creation of a new harmony in the HS

algorithm.

Proposed algorithm

Exploration and exploitation are two essential concepts

of meta-heuristic algorithms. The aim of exploration is

to find new solutions in the search space, so it takes

advantage of random steps to discover solutions from

different regions of the search space. On the other hand,

the aim of exploitation is to create new solutions based

on the solutions which have previously been found

during the search process. If a meta-heuristic algorithm

just focuses on exploration, it acts like a random search

algorithm which is a highly inefficient way to search the

solution space. On the other hand, if a meta-heuristic

algorithm just focuses on exploitation, it is not able to

efficiently discover and search all regions of solution

space. So, it may be involve in the local optima.

Therefore, any meta-heuristic algorithm needs to make a

balance between exploration and exploitation properties

to find optimal solutions without searching the whole

solution space.

Start

Create N countries
Select m (m<N) countries as imperialists
Assign each colony to one imperialist

Assimilation Process

Compute the total cost of each empire
weakEmpire = Select the weakest empire
weakColony=Select the weakest Colony of weakEmpire
winnerImperialist = Choose the Imperialist which will be in possession of weakColony

Stopping criteria
satisfied?

End

Yes

No

Revolution Process

Fig. 2 Flowchart of ICA

Start to create a new harmony named H

j = 0

j ≤ d

rand ≤ HMCR

Yes

No

End No

i=Choose a random number from { 1, 2 , …,N}
H(j)=HM(i,j)

H(j)= a random value from allowed range

Yes

rand≤ PAR

H(j)=H(j) ± bw Yes

j= j+1 No

Fig. 3 Process of creation of a new harmony in the HS algorithm
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Imperialistic competition algorithm uses revolution

strategy to explore different regions of the search space. In

addition, during the assimilation process in each iteration

of IDA, the exploitation takes place inside each empire.

Meanwhile, the imperialistic competition process, the

weakest colony of the weakest empire, may move to

another empire. Although this colony may help to diffuse

information between empires, it usually is one of the worst

countries (solutions) which has a negligible effect on the

search process. Hence, ICA never exploits high-quality

solutions from different empires to construct new solutions.

In the real world, sometimes developing countries

emulate social, political, and economical characteristics of

advanced countries. This strategy can be used in ICA to

tune its exploitation ability. In the proposed hybrid algo-

rithm, the harmony creation process of the HS algorithm is

applied to use high-quality solutions (countries) for con-

structing a new solution. More formally, the proposed

hybrid algorithm adds an emulation step to the ICA. Fig-

ure 4 represents the emulation process.

In the emulation step, first, imperialists assemble to

construct harmony memory. Next, the harmony creation

process is used to create a new harmony (country) H. Then,

an empire is selected at random, and one of its colonies is

randomly chosen. Let us denote this colony by C. After

that, C and H are compared based on the fitness function. If

H is a better solution in comparison with C, it will be

replaced by C. Otherwise, H could also be accepted as a

substitute for C, with a probability of p ¼ e
�DðH;CÞ

Tt , where

Tt is defined by a cooling schema, and DðH;CÞ is the

objective difference for H and C. Figure 5 illustrates the

flowchart of the proposed hybrid algorithm.

The proposed hybrid algorithm uses a modified assimi-

lation process to avoid trigonometry calculation and

improve the computational efficiency. Let x be the position

of a country C and y the position of the imperialist of C.

Also, assume that the new position of C is illustrated by x0.
The ith component of x0, i.e., x0i, is calculated as follows:

x0i ¼ xi þ b� Uð0; 1Þ � ðyi � xiÞ; ð3Þ

where xi and yi are the ith components of x and y,

respectively; b ¼ 2 and Uð0; 1Þ is a uniformly distributed

random number in the interval ð0; 1Þ.

Benchmark functions and experimental results

To evaluate the capability and efficiency of the proposed

hybrid algorithm, its performance is compared with ICA,

HS, and GA on a set of standard benchmark instances

including ten well-known benchmark functions.

Benchmark functions

The standard benchmark functions are as follows.

Ackley function This function is defined as follows:

Start Emulation Process

j = j+1

j ≤ d

Yes

rand ≤ HMCRNo

End No

i = Choose a random number from { 1, 2 , …,N}

H(j)=HM(i,j)
H(j)= a random value from allowed range Yes

rand≤ PARH(j)=H(j) ± bw Yes

Construct harmony memory HM using all N Imperialists

j = 0

No

Fig. 4 The emulation process
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� exp

1

n

Xn

i¼1

cosð2pxiÞ
 !

þ 20þ e; ð4Þ

where the global optimum x� ¼ ð0; . . .; 0Þ and f ðx�Þ ¼ 0

for �32� xðiÞ� 32 (Fig. 6).

Griewank function This function is defined as follows:

1

4000

Xn

i¼1

x2i �
Yn

i¼1

cos
xiffiffi
i

p
� �

þ 1; ð5Þ

where the global optimum x� ¼ ð0; . . .; 0Þ and f ðx�Þ ¼ 0

for �600� xðiÞ� 600 (Fig. 7).

Rastrigin function This function is defined as follows:

Xn

i¼1

ðx2i � 10cosð2pxiÞ þ 10Þ; ð6Þ

where the global optimum x� ¼ ð0; . . .; 0Þ and f ðx�Þ ¼ 0

for �5:12� xðiÞ� 5:12 (Fig. 8).

Rosenbrock function This function is defined as follows:

Xn�1

i¼1

ð100ðxiþ1 � x2i Þ
2 þ ðxi � 1Þ2Þ; ð7Þ

U(0,1) <

Exp(-Δ(H,C)/Tt)

Start

Assimilation Process

Compute the total cost of each empire
weakEmpire = Select the weakest empire
weakColony=Select the weakest Colony of weakEmpire
winnerImperialist = Choose the Imperialist which will be in possession of weakColony

Stopping criteria
satisfied?

End

Yes

No

Revolution Process Generate solution H using Emulation Process
Randomly select an empire and choose one of its colonies, e.g. C, at random

Create N countries
Select m (m<N) countries as imperialists
Assign each colony to one of the imperialists
t = 1

Δ(H,C) ≤ 0Substitute H for C Yes

No

YesNo

Fig. 5 Flowchart of the proposed hybrid algorithm

Fig. 6 The Ackley function
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where the global optimum x� ¼ ð0; . . .; 0Þ and f ðx�Þ ¼ 0

for �30� xðiÞ� 30 (Fig. 9).

Rotated hyper-ellipsoid function This function is defined

as follows:

Xn

i¼1

Xi

j¼1

xj

 !2

; ð8Þ

where the global optimum x� ¼ ð0; . . .; 0Þ and f ðx�Þ ¼ 0

for �100� xðiÞ� 100 (Fig. 10).

Schwefel’s problem This function, is defined as follows:

f ðxÞ ¼
Xn

i¼1

jxij þ
Yn

i¼1

jxij; ð9Þ

where the global optimum x� ¼ ð0; . . .; 0Þ and f ðx�Þ ¼ 0

for �10� xðiÞ� 10 (Fig. 11).

Schwefel’s function This function, is defined as follows:

418:9829n�
Xn

i¼1

ðxisinð
ffiffiffiffiffiffiffiffiffiffi
ðjxijÞ

p
ÞÞ; ð10Þ

where the global optimum x� ¼ ð420:9687; . . .; 420:9687Þ
and f ðx�Þ ¼ 0 for �500� xðiÞ� 500 (Fig. 12).

Sphere function This function is defined as follows:

f ðxÞ ¼
Xn

i¼1

x2ðiÞ; ð11Þ

where the global optimum x� ¼ ð0; . . .; 0Þ and f ðx�Þ ¼ 0

for �100� xðiÞ� 100 (Fig. 13).

Six-hump camel-back function This function is defined

as follows:

4x21 � 2:1x41 þ
1

3
x61 þ x1x2 þ 4x22 þ 4x42; ð12Þ

where the global optimum x� ¼ ð�0:08983; 0:7126Þ and

f ðx�Þ ¼ �1:0316285 for �5� xðiÞ� 5 (Fig. 14).

Fig. 7 The Griewank function
Fig. 8 The Rastrigin function

Fig. 9 The Rosenbrock function

Fig. 10 The rotated hyper-ellipsoid function
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Step function This function, is defined as follows:

Xn

i¼1

xi þ 0:5b cð Þ2; ð13Þ

Fig. 11 The Schwefel’s problem

Fig. 12 The Schwefel’s function

Fig. 13 The sphere function

Fig. 14 The six-hump camel-back function

Fig. 15 The Step function

Table 1 Parameters of genetic algorithm

Population

size

Number of

iteration

Mutation

rate

Crossover

rate

100 200 0.01 0.90

Table 2 Parameters of harmony search algorithm

Number of iteration HMCR PAR BW HM size

20,000 0.9 0.1 0.01 5

Table 3 Parameters of ICA

Population size Number of empires Revolution rate b d

100 10 0.01 2 0.1
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where the global optimum x� ¼ ð0; . . .; 0Þ and f ðx�Þ ¼ 0

for �100� xðiÞ� 100 (Fig. 15).

Experimental results

In this section, the comparative results of application of the

proposed hybrid algorithm, GA, HS, and ICA on the

standard benchmark instances are presented.

Experimental study using the standard benchmark

functions

The performance of the proposed hybrid algorithm is

compared with GA, HS, and ICA. To make an analogous

condition for algorithms, similar parameters of these

algorithms are similarly set. For example, GA, ICA, and

the proposed hybrid algorithm use population size equal to

100. Table 1 shows the parameters of GA. Single-point

Table 4 Parameters of the

proposed hybrid algorithm
Population size Number of empires Revolution rate b d HMCR PAR BW

100 10 0.01 2 0.1 0.90 0.1 0.01

Table 5 Evaluation and comparison of the proposed algorithm with other methods

Function Value HS GA ICA HSICA

Rastrigin A 73.86800065 148.8863622 159.3491324 47.06123053

B 52.87033715 100.5309011 88.65225145 22.99265435

V 72.52436980 333.2909468 889.4490264 122.2813194

Step A 1637.33 4318.1 305.185 27.55

B 859 2048 54 9

V 109931.5589 672372.4523 28936.53344 124.7211055

Griewank A 15.74962645 39.29549023 2.386376350 1.117339723

B 8.512656213 20.09827017 1.278180068 0.968977325

V 7.831053920 63.33536810 0.689018954 0.004798309

Rotated hyper-ellipsoid A 31033.64331 92431.90391 3413.176126 265.8344968

B 16087.52566 44923.85352 559.4225231 63.48156505

V 47934812.31 311528733.4 4328196.864 15979.10728

Six-hump camel-back A -1.0316284532 -1.0314847966 -1.0316284535 -1.0316284535

B -1.0316284535 -1.0316280965 -1.0316284535 -1.0316284535

V 2.56E-19 3.23E-08 1.06E-29 1.04E-29

Schwefels problem A 16.45869234 23.28643578 130.1712082 1.765889143

B 11.12122981 16.07921931 90.82060767 0.635371822

V 3.657980143 8.677513739 182.1192711 0.440279650

Schwefels problem A 1788.095100 -96708.55994 5774.509383 1938.845204

B 1206.869925 -122048.6442 3261.586477 977.4971647

V 77826.43171 64928436.913 535486.4149 139629.2107

Ackley A 7.712093734 10.90869984 16.65335679 3.935734989

B 6.338061317 9.204203841 12.22135283 2.258496104

V 0.265323799 0.489400176 1.500157784 1.111832527

Sphere A 1664.487098 4201.984681 147.6140975 13.24124148

B 884.0886831 2331.556985 27.36464552 2.906834961

V 103804.7484 767589.5080 27.36464552 57.76724060

Rosenbrock A 201565.93392 1766467.546834 20761.85366 4817.158306

B 58634.209542 602588.6213100 20752.01576 920.0986773

V 5026920423.1 485809094885.7 24.60486397 6111380.957

A average, B best, V variance
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crossover and roulette wheel selection function were used

in GA.

It should be noted that GA, ICA, and the proposed

hybrid algorithm evaluate n solutions in each iteration,

where n is the population size. Hence, the same number of

iterations, M, were used for them. HS, on the other hand,

just evaluates one solution at each iteration. So, the number

of iterations for HS were set equal to n�M, where M is

the number of iterations for GA, ICA, and the proposed

hybrid algorithm. Tables 2, 3, and 4 show the parameters

of HS, ICA, and the proposed hybrid algorithm, respec-

tively.In addition, in the proposed hybrid algorithm, the

geometric cooling schedule was used. In the geometric

cooling schedule, the temperature decreases as follows:

Tkþ1 ¼ c� Tk; ð14Þ

where c, the cooling factor, is assumed to be a positive

constant less than one. In this paper, c and T0 was assumed

to be 0.95, and 100, respectively.

All benchmark instances except for six-hump camel-

back function can be defined for arbitrary dimensions. Six-

hump camel-back function is defined only for two dimen-

sions. In experiments, 50-dimensional versions of bench-

mark functions were studied. Moreover, to achieve

statistically reliable results, each algorithm was run 100

times on each problem and the best, the average, and the

variance of solutions were reported in Table 5.

Fig. 16 Q–Q plot for normality test

Table 6 Shapiro–Wilk test for normality

Variable Statistic Degree of freedom p value

HS 0.994 100 0.938

GA 0.982 100 0.190

ICA 0.975 100 0.055

HSICA 0.976 100 0.069
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It can be concluded from Table 5 that the proposed

hybrid algorithm is superior to HS, ICA, and GA on

benchmark instances.

Statistical analysis

Although the measures presented in Table 5 certifies the

relative dominance of the proposed hybrid algorithm, a

statistical analysis was also supplied to verify the mean-

ingful superiority of the proposed algorithm. Each method

was executed 100 times independently. The outcome of the

execution of each algorithm is assumed to be a random

variable. A quantile–quantile plot (Q–Q plot) was supplied

to determine whether parametric or non-parametric tests

were appropriate. A Q–Q plot is a graphical data analysis

technique for assessing whether the distribution of data

follows a particular distribution or not. The Q–Q plot was

applied to examine the normality of each random variable.

Figure 16 depicts the Q–Q plot for the data resulting from

the application of all methods for finding the minimum of

Rastrigin’s function.

The results support the normality of all variables under

consideration. Moreover, Shapiro–Wilk test was used for

tests of the normality of the population (Shapiro and Wilk

1965). Table 6 shows the results of Shapiro–Wilk test for

all variables on finding the minimum of Rastrigin’s

function.

It can be concluded from both of Table 6 and Fig. 16

that there are not enough evidences to reject the normality

of variables. Therefore, parametric tests were used to

compare the performance of the algorithms. To examine

whether there is a significant difference between the per-

formance of the algorithms, the analysis of variance

(ANOVA) was used. As depicted in Table 7, there is

enough evidence to reject the null hypothesis, i.e., the equal

means of outcomes of HS, GA, ICA, and the proposed

algorithm.

Post hoc Games–Howell tests were carried out to further

investigate how the competent methods differed from each

other. Table 8 presents the results of Games and Howell’s

pairwise comparison test.

The confidence level, in all experiments, was set to

95 %. It can be inferred from Table 8 that there are sig-

nificant differences between the mean of the proposed

algorithm and the other methods. In addition, the confi-

dence intervals show that the proposed algorithm provides

solutions which are closer to the optimum solution. This

certifies the superiority of the proposed algorithm in

comparison with GA, HS, and ICA.

Conclusions

In this paper, a hybrid meta-heuristic algorithm was pro-

posed. The proposed algorithm inherits the advantage of

the process of harmony creation in harmony search algo-

rithm to improve the exploitation phase of the ICA algo-

rithm. In addition, the proposed algorithm uses simulated

annealing to maintain a balance between the exploration

and exploitation phases. To examine the efficiency and

applicability of the proposed algorithm, several standard

benchmark functions were used to compare the results of

the proposed method with GA, HS, and ICA. Statistical

analysis was supplied to investigate the performance of the

proposed hybrid algorithm in comparison with GA, HS,

and ICA. The experimental results and the statistical study

certified the superiority of the proposed method over GA,

HS, and ICA. The comprehensive experimental study of

the proposed method demonstrates its promising efficiency

and recommends it as a powerful tool to deal with real-life

engineering and management problems.
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