
ORIGINAL RESEARCH

New scheduling rules for a dynamic flexible flow line problem
with sequence-dependent setup times

Hamidreza Kia1 • Seyed Hassan Ghodsypour1 • Hamid Davoudpour1

Received: 27 October 2015 /Accepted: 4 January 2017 / Published online: 19 January 2017

� The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract In the literature, the application of multi-objec-

tive dynamic scheduling problem and simple priority rules

are widely studied. Although these rules are not efficient

enough due to simplicity and lack of general insight,

composite dispatching rules have a very suitable perfor-

mance because they result from experiments. In this paper,

a dynamic flexible flow line problem with sequence-de-

pendent setup times is studied. The objective of the prob-

lem is minimization of mean flow time and mean tardiness.

A 0–1 mixed integer model of the problem is formulated.

Since the problem is NP-hard, four new composite dis-

patching rules are proposed to solve it by applying genetic

programming framework and choosing proper operators.

Furthermore, a discrete-event simulation model is made to

examine the performances of scheduling rules considering

four new heuristic rules and the six adapted heuristic rules

from the literature. It is clear from the experimental results

that composite dispatching rules that are formed from

genetic programming have a better performance in mini-

mization of mean flow time and mean tardiness than others.

Keywords Scheduling � Dynamic flexible flow line �
Simulation � Heuristics � Genetic programming

Introduction

Scheduling involves the allocation of resources over a

period of time to perform a collection of tasks (Baker

1974). It is a decision-making process that plays an

important role in most manufacturing and service indus-

tries (Pinedo 1995). The hybrid flow line (HFL) scheduling

problem is defined in the literature, e.g., Kianfar et al.

(2012) and Gómez-Gasquet et al. (2012). In HFL, there are

g stages and there is at least one stage with more than one

machine where the jobs arrive continuously during time

and pass the stages sequentially from stage one through

g with the same order. If the jobs skip some stages, it is

called flexible flow line (FFL) scheduling problem, e.g.,

Kurz and Askin (2004), Quadt and Kuhn (2005) and Kia

et al. (2010).

Salvador (1973) proposed for the first time a definition

of the HFL problem for minimizing makespan. He pre-

sented a branch and bound method to solve the problem. A

double-stage hybrid flow shop problem, with one machine

in stage two, is examined for minimizing makespan by

Gupta (1988). He proved that the problem was NP-hard

and developed a heuristic rule for it. Therefore, FFL is NP-

hard. Sawik (1993) proposed a heuristic rule to minimize

makespan for a limited buffer FFL problem and later

proposed a new rule for the same problem with no in-

process buffer (Sawik 1995). Kia et al. (2010) proposed

two new scheduling rules with sequence-dependent setup

times (SDST) considering non-zero job arrival times for a

dynamic FFL problem. Although several papers have been

written on the extent of hybrid flow shop and hybrid flow

line, most of them are limited to a special case of a double

stage (e.g., Gupta 1988; Guinet et al. 1996) or to a par-

ticular framework of machines in each stage (e.g., Kochhar

and Morris 1987; Sawik 1993, Sawik 2002; Mirabi et al.

& Seyed Hassan Ghodsypour

Ghodsypo@aut.ac.ir

Hamidreza Kia

hamid_R_kia@aut.ac.ir

Hamid Davoudpour

hamidp@aut.ac.ir

1 Department of Industrial Engineering and Management

Systems, Amirkabir University of Technology (Tehran

Polytechnics), 424 Hafez Avenue, Tehran 15916-34311, Iran

123

J Ind Eng Int (2017) 13:297–306

DOI 10.1007/s40092-017-0185-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s40092-017-0185-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40092-017-0185-y&domain=pdf

2014; Maleki-Darounkolaei et al. 2012). The papers that

were in FFL with non-zero job arrival times focused on the

heuristic rules that were rarely seen, except Kia et al.

(2010). Jolai et al. (2012) proposed a novel hybrid meta-

heuristic rule in FFL with SDST. A new dispatching rule

for two-stage FFL is proposed by Li et al. (2013). Finally, a

comprehensive survey in scheduling problems is presented

by Allahverdi (2015) and also Neufeld et al. (2016).

In this paper, scheduling rules are studied to solve a

dynamic flexible flow line scheduling problem with SDST

using simulation. We used genetic programming to create

new composite dispatching rules and a discrete-event

model that examined the performance of scheduling rules

in terms of mean flow time and mean tardiness.

The rest of the paper is organized as follows. The def-

inition of the problem is given in ‘‘Problem definition’’.

‘‘Problem mathematical modeling’’ introduces a mathe-

matical model for considering the problem. The next sec-

tion ‘‘Scheduling rules’’ presents those rules adapted from

the literature. The genetic programming framework that is

illustrated for generating composite dispatching rules is

represented in ‘‘Genetic programming’’. The next section is

the ‘‘Simulation model’’, and in ‘‘Experiment design’’ the

details of experiments are designed and presented for

scheduling rules. ‘‘Experiment results’’ provide the results

and analyses, and the final section is the ‘‘Conclusion’’.

Problem definition

It is possible to find dynamic flexible flow line (DFFL)

configuration in different studies such as Kurz and Askin

(2003) and Kia et al. (2010). In this paper, a DFFL system

is developed. The DFFL system is presented on the basis of

the following assumptions:

• The number of stages is g and also there is at least one

stage with more than one machine.

• All jobs visit all stages through stage g, while skipping

some stages is possible.

• Machines that are placed in each stage are identical.

• All machines are always available.

• Preemption is not allowed.

• There is no buffer constraint.

• A machine can process at most one job at a time and a

job can be processed by at most one machine at a time.

• No job can be processed in one stage, except when the

processing had been completed on the previous stage.

• All jobs are not in the system from the beginning, but

they can continuously enter over time.

• The sequence-dependent setup time is assumed for

every job on each machine.

• The setup time of every job on each machine is

sequence dependent.

• When a job comes into the system, its characteristics,

i.e., processing times in each stage, setup times and due

dates, are identified.

• There is no priority between jobs.

• There is no machine breakdown.

Problem mathematical modeling

In this section, the problem mathematical model is presented.

The problem model is 0–1 mixed integer linear programming.

Notation

n: Number of jobs.

i; j: Index of the number of job, i; j ¼ 1; 2; . . .; n.
g: Number of stages in the shop.

l: Index of the stage, l ¼ 1; 2; . . .; g.

ml: Number of parallel machines at stage l.

k: Index of the machine, k ¼ 1; 2; . . .;ml.

ri: Arrival time of job i.

di: Due date of job i.

pi
l: Processing time of job i at stage l.

sij
l : Setup time from job i to job j at stage l.

Ci
l: Completion time of job i at stage l.

Ti: Tardiness of job i.

Fi: Flow time of job i.

Xijkl: 1 if job j is processed immediately after job i on

machine k at stage l, otherwise 0.

Mathematical model

Minimize a �F þ 1� að Þ�T : ð1Þ

Subject to:

�F ¼ 1

n

Xn

i¼1

Fi 8i; ð2Þ

�T ¼ 1

n

Xn

i¼1

Ti 8i; ð3Þ

Xml

k¼1

Xn

i¼0

Xl
ijk ¼ 1 8l; j; j 6¼ 0; ð4Þ

Xml

k¼1

Xnþ1

j¼1

Xl
ijk ¼ 1 8l; i; i 6¼ nþ 1; ð5Þ

Xnþ1

j¼1

Xl
0jk ¼ 1 8l; k; ð6Þ

298 J Ind Eng Int (2017) 13:297–306

123

Xn

i¼0

Xl
iðnþ1Þk ¼ 1 8l; k; ð7Þ

Xl
iik ¼ 0 8l; k; i; ð8Þ

Xn

i¼0

Xl
ijk ¼

Xnþ1

i¼1

Xl
jik 8l; k; j; j 6¼ 0; j 6¼ nþ 1; ð9Þ

C0
i ¼ ri 8i; ð10Þ

C1
j � rj þ p1j þ

Xm1

k¼1

Xn

i¼0

s1ijX
1
ijk 8j; ð11Þ

Cl
j � Cl

i � plj þ slij þM
Xml

k¼1

Xl
ijk

 !
� 1

 !
8l; k; i; j; i 6¼ j;

ð12Þ

Cl
j � Cl�1

j � plj þ
Xml

k¼1

Xn

i¼0

slijX
l
ijk 8l; j; i 6¼ j; ð13Þ

Cl
i � 0 8l; i; ð14Þ

Ti �C
g
i � di 8i; ð15Þ

Ti � 0 8i; ð16Þ

Fi �C
g
i � ri 8i; ð17Þ

Xl
ijk is binary 8l; k; i; j: ð18Þ

Eq. (1) shows the linear convex combination of the dual

criteria problem. The objective function is minimization of

mean flow time and mean tardiness. The constraints (2) and

(3) calculate the mean flow time and mean tardiness value,

respectively. The constraints (4) and (5) guarantee

assigning only one job to each sequence position at each

stage. Furthermore, the constraints (6) and (7) guarantee

assigning one job to the first and last sequence position on

each machine at each stage, respectively. It is clear that job

0 and job (n ? 1) are not real jobs and just stated for

formularization. The constraint (8) ensures that each job at

each stage is processed once. The constraint (9) forces

consistent sequence at each stage. The constraint (10)

ensures that job processing cannot be started before release

time of the job at the first stage. The constraint (11) forces

that just at the first stage, the completion time for each job

cannot be less than the sum of the release, processing time

and setup time of that job. The constraint (12) states that at

each stage on the particular machine, starting the pro-

cessing of the next job before completing the previous job

is not possible. The constraint (13) states that for each job,

its processing at the next stage cannot be started before

completing it at the previous stage. The constraint (14)

states that completion time for each job at each stage is

non-negative. The constraint (15) determines the tardiness

value for each job and constraint (16) states that the tar-

diness is non-negative. The constraint (17) determines the

flow time value for each job and, finally, the constraint (18)

shows that the problem variables are binary.

Scheduling rules

Generally, whenever a machine is free, a job with the most

priority level is chosen for processing among all existing

jobs in the queue. In a research on Scheduling rules by

Panwalkar and Iskander (1977), the following classification

is proposed:

• Simple priority rules (SPR): These rules usually consist

of just one parameter and are suitable for single-

objective problems such as process time and due date.

• Composite dispatching rules (CDR): These rules con-

sist of the application of a combination of several SPRs,

and when the machine becomes free then this CDR

evaluates the queue and then chooses a job with the

most priority level for processing on the machine.

If the CDR is made well, then it is proper for solving

real multi-objective problems. In the literature, e.g.,

Barman (1997), it is clear that CDRs have a better per-

formance than SPRs. Furthermore, Jayamohan and

Rajendran (2000) stated that there were no rules with a

good performance considering flow time and due date.

So, we intend to indicate the efficiency of the proposed

new CDRs and also compare them with the six

scheduling rules in Kia et al. (2010) that are presented by

considering two objectives of mean flow time and mean

tardiness for the DFFL environment. The six scheduling

rules in Kia et al. (2010) that are adapted for this study

are as follows:

Earliest modified due date (EMDD): In this rule at each

stage whenever a machine becomes free, a job is to be

chosen that has the highest priority considering the earliest

modified due date among all jobs waiting in the queue for

processing. The modified due date of job i on the stage of q

at the time of t is calculated as follows:

max 0; di � t �
Xg

l¼q

pli

()
: ð19Þ

Wilkerson and Irvin’s rule (W&I): According to this

scheduling rule at each stage whenever a machine is free,

a job with the highest priority is chosen between two

jobs i and j waiting in the queue for processing. This

priority is stated by Eq. (20). If Eq. (20) is true, then the

job with a shorter processing time is selected; otherwise,

the job with an earlier due date will be selected. In fact,

J Ind Eng Int (2017) 13:297–306 299

123

W&I rule uses both SPT and EDD according to the

system status:

t þmaxfpli; pljg[maxfdi; djg: ð20Þ

Hybrid shortest processing time and cyclic heuristics

(HSPTCH): In this rule at each stage whenever a machine

is free at the first step, jobs waiting in the queue for pro-

cessing on the machine are arranged according to SPT. In

the second step, a job that has minimum completion time

on the machine relative to the other jobs waiting in the

queue, according to the sequence-dependent setup time of

that job, is allocated to the machine.

Hybrid least work remaining and cyclic heuristics

(HLWKRCH): In this rule at each stage whenever a

machine is free at the first step, jobs waiting in the queue

for processing on the machine are arranged according to

the least total remaining process time. In the second step,

jobs possessing minimum completion time on the machine,

in relation to the other jobs waiting in the queue, is allo-

cated to the machine according to the sequence-dependent

setup time of that job.

Hybrid earliest modified due date and cyclic heuristics

(HEMDDCH): In this rule at each stage whenever a

machine becomes free at the first step, jobs waiting in the

queue for processing in the machine are arranged according

to EMDD. In the second step, a job having the least

completion time on the machine, in relation to the other

jobs waiting in the queue, is allocated to the machine,

according to the sequence-dependent setup time of that job.

Hybrid Wilkerson & Irvin and cyclic heuristic

(HW&ICH): In this rule at each stage whenever a machine

is free at the first step, jobs waiting in the queue for pro-

cessing in the machine are arranged according to W&I. In

the second step, a job having the least completion time on

the machine in relation to the other jobs waiting in the

queue is allocated to the machine according to the

sequence-dependent setup time of that job.

In this paper, we focus on a computational method to

make an effective CDR to solve a DFFL problem by a suit-

able algebraic combination of SPRs, but due to the width of

the operator and parameter space, CDR’s efficiency evalu-

ation is very difficult in comparison with applying SPRs

manually. So, we used genetic programming to evaluate it.

Genetic programming

Genetic programming (GP) is one of the evaluation com-

puting methods based on the survival and reproduction

principle (Koza 1992). Each individual, i.e., computer

program, is a syntax tree in the random initial population

produced in GP including a set of function and terminals;

thus, it is essential to select the function and terminal set

accurately to create proper CDRs for solving DFFL prob-

lems. The function and terminal set and GP parameter

setting are stated in the two following subsections.

Function and terminal set

There are various function and terminal sets that can affect

the results’ quality and efficiency. Each of these terminals

includes a dispatching rule that only a few of them are used

due to the reduction of the search space.

The proposed terminal set in this study is summarized in

Table 1. The proposed function set is also stated in

Table 2. In this table, ADF is a sub-tree of the main tree

with a variable size like the main tree. In fact, ADF is a

function through which GP can generate proper subroutines

dynamically. The results of Koza (1994) indicate that GP

has better performance in comparison with GP without

ADF for solving the same optimization problem.

GP parameter setting

Table 3 shows the GP parameter values. These values are

tuned through a large number of experiments. Ramped half

and half method, applied by quite a few researchers, e.g.,

Koza (1992) and Tay and Ho (2008), is used to generate the

initial population. This method bisects the initial

population.

It generates the first half randomly with a maximum

depth of 5 and the second half with a variable depth

between 1 to maximum depth. The population (rules) size

is 100 and we generate it 200 times. We maintain variation

via crossover, mutation, and the creation type ramped half

and half. At each time, we arrange the generated population

based on the performance measurement and then copy the

four best rules in the following population to be preserved

and not to be deleted in the next generation. The infor-

mation of parameter values is summarized in Table 3.

Simulation model

Conditions like random arrival times, machine breakdowns

and due date changes state a dynamic scheduling envi-

ronment. The simulation is one of the ways to analyze the

dynamic environment. In this paper, the arrival time of jobs

is random, so a DFFL environment is present. A developed

discrete-event simulation model is presented to evaluate

the four best CDRs and the six heuristic rules. We use

C?? programming language on the PC with 2.2 MHz

CPU and 512 MB RAM.

300 J Ind Eng Int (2017) 13:297–306

123

In the literature, it is common to consider setup times

20–40% of the mean process time. In this study, the pro-

cess time is a uniform distribution of [20–60], so the setup

time on the basis of 20 and 40% of process time follows the

uniform distribution [4–12] and [8–24]. The number of

stages (g) is fixed and equals 8. The probability of job skip

in each stage is defined in three separate levels of (0.00,

0.05 and 0.40) and the occurrence probability of these three

levels is equal. The number of machines in the lth stage

(ml) also follows uniform distribution [3–5]. The due date

is also calculated according to Naderi et al. (2009) as

follows:

di ¼ ri þ pi þ sið Þ � 1þ random� 3ð Þ½ �; 8i 2 n; ð21Þ

where pi is the total process time of the job i, si the total

mean setup times of job i at all stages, ri the arrival time

of job i and random a random number with uniform

distribution of (0,1). The mean interval time parameter

follows the Poisson distribution and is calculated as

follows:

a ¼
lp � lg
U �M

; ð22Þ

where lp is the mean process time of every job at each

stage, lg the mean number of non-skipped stages of each

job, U the percentage of workshop utilization and M the

mean of the total number of machines in the shop. Since lg
equals g 9 (1 - lskip) and M equals g 9 lm, we have

a ¼
lp � 1� lskip

� �

U � lm
; ð23Þ

where lskip is the mean skip probability and lm the mean

machine number parameter at each stage. In this study, the

parameter values are lp = 40, lskip = 0.15, lm = 4, a = 9

and 10.

There are two events in the system. The type one is

when a job comes into the system and type two is when

a machine is free as a consequence of a job processing

completion. Whenever an event occurs in the system,

the developed discrete-event model reschedules the

system on the basis of the predefined scheduling rules.

Table 4 presents the simulation model parameters of

the system. The simulation model includes the follow-

ing modules:

(I) Initialization.

(II) Job data generation.

(III) Timing.

(IV) Events.

(V) Scheduling.

(VI) Status.

(VII) Report.

Each of these modules has its own particular role in the

simulation model and is run as follows:

Table 1 Terminal set

Terminal Terminal meaning

ReleaseDate Release date of a job (RD)

DueDate Due date of a job (DD)

ProcessingTime Processing time of a job for each operation (PT)

CurrentTime Current time (CT)

RemainingTime Remaining processing time of each job (RT)

avgTotalProcTime Average total processing time of each job

(aTPT)

Table 2 Function set

Function Function meaning

? Addition

- Subtraction

9 Multiplication

/ Division

ADF(x1,x2) Automatically defined function

avgTotalProcTime Average total processing time

Table 3 Choice of parameter values for GP

Parameter Parameter values

Population size 100

Number of generations 200

Creation type Ramped half and half

Maximum depth for creation 5

Maximum depth for crossover 15

Crossover probability 90%

Swap mutation probability 3%

Shrink mutation probability 3%

Number of best rules copy to new generation 4

Table 4 Simulation parameters

Parameter Value

Number of jobs (n) 1450

Number of stages in the shop (g) 8

Number of parallel machines at stage

l (ml)

Uniform [3–5]

Processing time of job i at stage l (pi
l) Uniform [20–60]

Setup time of job i before job j at

stage l (sij
l)

Uniform between [4–12] and

[8–24]

Skipping probability of each job at

each stage

0.00, 0.05 and 0.40

Mean of inter-arrival time (a) 9–10

J Ind Eng Int (2017) 13:297–306 301

123

Step 1: Run module (I) and set type of scheduling

rule.

Step 2: Run module (II).

Step 3: Run module (III) and set t = 0.

Step 4: Run module (IV) to determine the next event

and advanced simulation time to the next

event time.

Step 5: Run module (V) [according to the selected

scheduling rule in step (I)] to schedule/

reschedule the system.

Step 6: Run module (VI) to analyze the status of the

model.

If the termination condition is not met, go to step 3.

If not, go to the next step.

Step 7: Run module (VII) to report the computational

results.

Table 5 Experimental settings for the scenarios

Scenario Experimental setting Purpose of investigation

Shop utilization percentage (U) Setup time ratio (%) (s)

DFFL-I 95 20 Base case—analyze the performance of scheduling rules

DFFL-II 95 20, 40 Analyze the effect of changing setup time ratio

DFFL-III 95, 85 20 Analyze the effect of changing the mean inter-arrival time

Table 6 GP-generated dispatching rules

Rule Rule expression

GP-1 RD ? 5PT ? 2aTPT

GP-2 7aTPT ? 11PT ? 12RD

GP-3 3RD ? 2DD ? 3aTPT ? PT-2RD

GP-4 2DD ? 8RD ? 2aTPT-5PT

Fig. 1 Comparison of the

overall objective function of

heuristic algorithms for

different scenarios

Table 7 Overall objective function values for different scenarios

EMDD W&I HSPTCH HLWKRCH HEMDDCH HW&ICH GP-1 GP-2 GP-3 GP-4

DFFL-I 700.9 701.0 717.4 698.2 691.3 693.2 647.5 646.7 647.2 647.1

DFFL-II 854.3 852.8 860.1 861.3 833.9 834.1 832.9 832.7 833.3 833.2

DFFL-III 638.0 637.4 657.0 633.3 628.3 629.4 627.0 626.2 626.9 626.5

302 J Ind Eng Int (2017) 13:297–306

123

Experiment design

To examine the performance of the four proposed CDRs

and six adapted scheduling rules from the literature, three

exactly the same scenarios are defined Kia et al. (2010). In

each of these scenarios, to measure the performance, it is

necessary to use the system data in the steady state. So we

warm up the system with 1000 jobs and then for calculating

the performance, the results of the next 450 jobs are

applied. The information on the scenarios is outlined in

Table 5.

Experiment results

The simulation experiment results are examined to deter-

mine the effect of factors on the performance measurement

by analysis of variance (ANOVA). In scenario 1, there is

only one factor with ten levels that are scheduling rules

while, in the two other scenarios, there are two factors. We

use the one-way ANOVA in scenario I and two-way

ANOVA in the other two scenarios. All of the experiments

are done at a significant level of 5%. In the null hypothesis

(H0), all of the means are the same, while, in the alternative

hypothesis (H1), at least two of the means are significantly

different. The four elite scheduling rules are obtained from

GP at each iteration. Table 6 shows that the best four

evolved scheduling rules after ten iterations of GP are

simplified by algebraic operations. For example, the release

date of a job (RD) plus five times the processing time of a

job for each operation (PT) plus two times the average total

processing time of each job (aTPT) are defined as the first

proposed rule (GP-1) that was achieved from genetic

programing.

As mentioned above, all experiments are conducted in

ten iterations and the results of the scenarios are stated in

the following three subsections considering the perfor-

mance measurements.

Scenario results for the overall objective function

In Fig. 1, the performances of the scheduling rules in dif-

ferent scenarios are indicated according to the defined

Fig. 2 Comparison of the mean

flow time of heuristic rules for

different scenarios

Table 8 Mean flow time values for different scenarios

EMDD W&I HSPTCH HLWKRCH HEMDDCH HW&ICH GP-1 GP-2 GP-3 GP-4

DFFL-I 3502.7 3502.9 2966.8 2947.8 3454.7 3464.2 3235.5 3231.3 3234.2 3233.3

DFFL-II 4269.3 4261.8 3500.7 3567.1 4167.2 4168.1 4162.2 4161.5 4164.3 4164.0

DFFL-III 3187.9 3185.1 2732.4 2683.6 3139.5 3145.2 3132.9 3129.1 3132.7 3130.3

J Ind Eng Int (2017) 13:297–306 303

123

overall objective function in Eq. (1). It is clear from Fig. 1

that in all the scenarios, the four evolved CDRs have a

better performance than the six adapted rules. The pro-

posed rules achieve better performance than the adapted

rules. The GP-2 reaches the best result among all rules.

EMDDCH and HW&ICH achieve the best and HSPTCH

the worst result among the six adapted rules. The details

are stated in Table 7.

Scenarios’ results for the mean flow time

The experimental results for the mean flow time are indi-

cated in Fig. 2. HLWKRCH and HSPTCH achieve the best

results among the six adapted rules, while the other four

scheduling rules achieve the worst results for the reason

that four scheduling rules only minimize objectives related

to the due date like mean tardiness, so they perform weakly

in minimizing mean flow time.

Table 8 indicates the details of Fig. 2. Although

HLWKRCH provides the best solution on the basis of the

mean flow time, the four proposed rules achieve better

performance in terms of the mean flow time than

EMDDCH that achieves the best solution among the six

adapted rules in the overall objective function.

Figure 3 indicates the performance of the four proposed

rules and EMDDCH with 95% confidence interval (CI) for

the mean flow time. It is clear from Fig. 3 that in scenario I

(DFFL-I), the GP-2 achieves the best result among the

proposed rules and there is no overlap between its CI and

others. Although GP-2 achieves the best solution in sce-

narios II and III (DFFL-I and III), there is an overlap

between CI of GP-2 and GP-1 in scenario II and CI of GP-2

and GP-4 in scenario III; so, no significant difference is

found between them.

Scenario’s results for mean tardiness

Table 9 indicates the results of mean tardiness for different

scenarios. Two HSPTCH and HLWKRCH rules reach the

worst solution for the reason that these two rules only

minimize the mean flow time, so they perform weakly in

minimizing the mean tardiness. As mentioned above,

EMDCH obtained the best solution for the overall objec-

tive function among the six adapted rules from the

literature.

Fig. 3 Interaction plot with 95% confidence interval for different

scenarios–mean flow time

Table 9 Mean tardiness values for different scenarios

EMDD W&I HSPTCH HLWKRCH HEMDDCH HW&ICH GP-1 GP-2 GP-3 GP-4

DFFL-I 0.518 0.525 155.0 135.8 0.503 0.505 0.502 0.501 0.503 0.503

DFFL-II 0.585 0.611 200.0 184.9 0.574 0.590 0.570 0.561 0.568 0.569

DFFL-III 0.495 0.505 138.1 120.7 0.499 0.506 0.500 0.495 0.498 0.496

304 J Ind Eng Int (2017) 13:297–306

123

Figure 4 indicates the mean tardiness values of the four

proposed rules and EMDDCH with 95% CI for different

scenarios. In scenarios I and II (DFFL-I & II), the GP-2 has

no overlap with others, so the GP-2 is the best rule between

them, but in scenario III (DFFL-III), there is no significant

difference between GP-2 and GP-4.

Conclusion

In this paper, we used the GP framework to obtain proper

and effective CDRs for solving a DFFL problem. Finally,

we created four evolved CDRs and proposed them for

solving the DFFL problem. Experimental results indicated

that the four proposed CDRs with 95% CI obtained a better

solution in comparison with selected scheduling rules from

the literature.

For future research, it is possible to consider the varia-

tion of the terminal set and ADF to develop the GP

framework. It is also possible to use GP to find proper and

effective CDRs for different objectives. Furthermore, it is

useful to apply GP for other scheduling environments such

as job shop or open shop and dynamic assumptions like

machine breakdowns.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

Allahverdi A (2015) The third comprehensive survey on scheduling

problems with setup times/costs. Eur J Oper Res 246(2):345–378

Baker KR (1974) Introduction to sequencing and scheduling. Wiley,

New York

Barman S (1997) Simple priority rule combinations: an approach to

improve both flow time and tardiness. Int J Prod Res

35(10):2857–2870

Gómez-Gasquet P, Andrés C, Lario FC (2012) An agent-based

genetic algorithm for hybrid flow shops with sequence dependent

setup times to minimise makespan. Expert Syst Appl

39(9):8095–8107

Guinet A, Solomon MM, Kedia PK, Dussauchoy A (1996) A

computational study of heuristics for two-stage flexible flow

shops. Int J Prod Res 34(5):1399–1415

Gupta JN (1988) Two-stage, hybrid flowshop scheduling problem.

J Oper Res Soc 39(4):359–364

Jayamohan MS, Rajendran C (2000) New dispatching rules for shop

scheduling: a step forward. Int J Prod Res 38(3):563–586

Jolai F, Rabiee M, Asefi H (2012) A novel hybrid meta-heuristic

algorithm for a no-wait flexible flow shop scheduling problem

with sequence dependent setup times. Int J Prod Res

50(24):7447–7466

Kia HR, Davoudpour H, Zandieh M (2010) Scheduling a dynamic

flexible flow line with sequence-dependent setup times: a

simulation analysis. Int J Prod Res 48(14):4019–4042

Kianfar K, Ghomi SF, Jadid AO (2012) Study of stochastic sequence-

dependent flexible flow shop via developing a dispatching rule

and a hybrid GA. Eng Appl Artif Intell 25(3):494–506

Kochhar S, Morris RJ (1987) Heuristic methods for flexible flow line

scheduling. J Manuf Syst (4):299–314

Koza JR (1992) Genetic programming: on the programming of

computers by means of natural selection, vol 1. MIT Press

Fig. 4 Interaction plot with 95% confidence interval for different

scenarios–mean tardiness

J Ind Eng Int (2017) 13:297–306 305

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Koza JR (1994) Genetic programming II: automatic discovery of

reusable subprograms. Cambridge, MA, USA

Kurz ME, Askin RG (2003) Comparing scheduling rules for flexible

flow lines. Int J Prod Econ 85(3):371–388

Kurz ME, Askin RG (2004) scheduling flexible flow lines with

sequence-dependent setup times. Eur J Oper Res 159(1):66–82

Li ZT, Chen QX, Mao N, Wang X, Liu J (2013) Scheduling rules for

two-stage flexible flow shop scheduling problem subject to tail

group constraint. Int J Prod Econ 146(2):667–678

Maleki-Darounkolaei A, Modiri M, Tavakkoli-Moghaddam R,

Seyyedi I (2012) A three-stage assembly flow shop scheduling

problem with blocking and sequence-dependent set up times.

J Ind Eng Int 8(1):1–7

Mirabi M, Ghomi SF, Jolai F (2014) A novel hybrid genetic algorithm

to solve the make-to-order sequence-dependent flow-shop

scheduling problem. J Ind Eng Int 10(2):1–9

Naderi B, Zandieh M, Roshanaei V (2009) Scheduling hybrid

flowshops with sequence dependent setup times to minimize

makespan and maximum tardiness. Int J Adv Manuf Technol

41(11–12):1186–1198

Neufeld JS, Gupta JN, Buscher U (2016) A comprehensive review of

flowshop group scheduling literature. Comput Oper Res

70:56–74

Panwalkar SS, Iskander W (1977) A survey of scheduling rules. Oper

Res 25(1):45–61

Pinedo M (1995) Scheduling theory, algorithms, and systems.

Prentice-Hall, New York

Quadt D, Kuhn H (2005) A conceptual framework for lot sizing and

scheduling of flexible flow lines. Int J Prod Res

43(11):2291–2308

Salvador MS (1973) A solution to a special class of flow shop

scheduling problems. Symposium on the theory of scheduling

and its applications. Springer, Berlin Heidelberg, pp 83–91

SawikTJ (1993)Aschedulingalgorithmforflexibleflowlineswith limited

intermediate buffers. Appl Stoch Models Data Anal 9(2):127–138

Sawik T (1995) Scheduling flexible flow lines with no in-process

buffers. Int J Prod Res 33(5):1357–1367

Sawik T (2002) Balancing and scheduling of surface mount

technology lines. Int J Prod Res 40(9):1973–1991

Tay JC, Ho NB (2008) Evolving dispatching rules using genetic

programming for solving multi-objective flexible job-shop

problems. Comput Ind Eng 54(3):453–473

306 J Ind Eng Int (2017) 13:297–306

123

	New scheduling rules for a dynamic flexible flow line problem with sequence-dependent setup times
	Abstract
	Introduction
	Problem definition
	Problem mathematical modeling
	Notation
	Mathematical model

	Scheduling rules
	Genetic programming
	Function and terminal set
	GP parameter setting

	Simulation model
	Experiment design
	Experiment results
	Scenario results for the overall objective function
	Scenarios’ results for the mean flow time
	Scenario’s results for mean tardiness

	Conclusion
	Open Access
	References

