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Abstract
One of the problems tourism faces is how to make itineraries more effective and efficient. This research has solved the routing 
problem with the objective of maximizing the score and minimizing the time needed for the tourist’s itinerary. Maximiz-
ing the score means collecting a maximum of various kinds of score from each destination that is visited. The profits differ 
according to whether those destinations are the favorite ones for the tourists or not. Minimizing time means traveling time 
and visiting time in the itinerary being kept to a minimum. Those are small case with 16 tourism destinations in East Java, 
and large case with 56 instances consists of 100 destinations each from previous research. The existing model is the Team 
Orienteering Problem with Time Window (TOPTW), and the development has been conducted by adding another objective, 
minimum time, become Flexible TOPTW. This model guarantees that an effective itinerary with efficient timing to imple-
ment will be produced. Modification of Iterated Local Search (ILS) into Adjustment ILS (AILS) has been done by replacing 
random construction in the early phase with heuristic construction, continue with Permutation, Reserved and Perturbation. 
This metaheuristic method will address this NP-hard problem faster than the heuristic method because it has better prepara-
tion and process. Contributing to this research is a multi-objective model that combines maximum score and minimum time, 
and a metaheuristics method to solve the problem faster and effectively. There are calibration parameter with 17 instances 
of 100 destinations each, small case test using Mixed Integer Linear Programming, and large case test comparing AILS 
with Multi-Start Simulated Annealing (MSA), Simulated Annealing (SA), Artificial Bee Colony (ABC), and Iterated Local 
Search. The result shows that the proposed model will provide itinerary with less number of visited destination 4.752% but 
has higher total score 8.774%, and 3836.877% faster, comparing with MSA, SA, and ABC. While AILS is compared with 
ILS, it has less visited destination 5.656%, less total score 56.291%, and faster 375.961%. Even though AILS has more effi-
cient running time than other methods, it needs improvement in algorithm to create better result.

Keywords Multi-objective · Team orienteering problem · Time window · Iterated local search · Mixed integer linear 
programming

Introduction

Tourism in Indonesia has a promising future. Data from the 
Indonesian Ministry of Tourism (2017) show tourism generated 
205.04 trillion rupiah in foreign currency while attracting 14.04 
million international tourists and 277 million domestic tour-
ists. Encouraging travel and spending is one of strategic targets 
of the ministry especially for domestic tourists. To encourage 
travel, the itineraries must be planned well so that it covers 

tourists’ favorite destinations without using up too much time. 
Activities that are included initinerary preparation are choosing 
favorite destinations and arranging them while considering the 
destinations’ operational times and tourists’ limited time, then 
making it into a schedule to follow. The combination becomes 
more complex with more destinations, constraints, and objec-
tives. This condition has been categorized as a tourism routing 
problem by previous researchers. This research is interesting 
because it attempts to fulfill tourists’ needs, arrange tourists’ 
favorite destinations, and guarantee the minimum time without 
breaking the constraints.

The Traveling Salesman Problem (TSP) is a basic routing 
arrangement that also applies to routing for tourism itineraries. 
TSP with profit is one of the TSP developments that considers 
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every destination to have score or profit in order to prioritize 
visitations. The Orienteering Problem (OP) starts with a simi-
lar principle to TSP with its scores and profit for destinations, 
but with OP the different scores become the objective. This 
problem is more complex because it has constraints like time 
windows at each destination that must be followed to make 
the itinerary feasible. This condition is similar with tourism 
industry because tourists will visit their favorite destination 
or destinations with higher scores. OP is a basic model that 
is applicated widely in addressing tourism routing problems. 
There are many developments that arise so that it conforms 
to tourism situations. For example, the Orienteering Problem 
with Time Window (OPTW) is an OP model that consid-
ers destinations’ operational times, or the Team Orienteering 
Problem (TOP) will apply to group traveling situations.

Previous research has focused on maximizing scores to guar-
antee that the favorite destinations are the priority of an itinerary. 
Unfortunately, time can be ineffective because such an itinerary 
reduces productive hours that can be used to visit other favorite 
destinations. The previous objective is maximizing scores which 
guarantees the favorite destinations are inserted in the itinerary, 
but the effect is a longer time spent traveling and some destina-
tions cannot be visited. This research will combine two objec-
tives: maximizing the score and minimizing the time. The previ-
ous models only used one objective. The metaheuristic method 
replaces the random phase in the heuristic construction to reduce 
the possibility of an ineffective result. The contribution of this 
research is more effective and efficient routing for tourists. It is 
referred to as more effective because it will contain more desti-
nations, while more efficiency is achieved because it can save 
time for the tourists. The contribution of this model is a better 
result according to route development by modifying the Team 
Orienteering Problem with Time Window (TOPTW) model and 
metaheuristics method, Iterated Local Search (ILS). This modi-
fication is needed in order to accommodate another objective, 
which is minimum time. With ILS, it will start with an adjust-
ment in the heuristic construction before it will perturb randomly.

This paper will be start with an introduction that shows 
problem and also the gap in previous research. The sec-
ond section is a literature review to help design state of the 
art research that links the previous research and the pro-
posed research. The third section is the methodology for 
the research steps. The results will be laid out in the fourth 
section along with the analysis. Then the fifth section will 
consist of the conclusions based on this research.

Literature review

Most of the routing algorithms for the tourism problem use 
the Orienteering Problem (OP) as a base model, then they are 
modified to adjust then to certain conditions. The OP is an algo-
rithm that arranges a set of possible destinations with various 

scores and has a goal of maximizing the total score of the visited 
destinations. Tsiligirides (1984) approached two heuristics for 
OP: they are stochastic and deterministic algorithms. OP can 
be formulated as follows: G =(V, E) is an edge-weighted graph 
with a score for the destination, s is a starting location, t is a 
terminal location, T is a positive time limit budget, and the goal 
is finding a path from s to t (or tour if s ≡ t) with a duration of, 
at most, T. The objective is collecting a maximum total profit 
from the visited destinations. Souffriau et al. (2008) said OP 
is the simplest routing model in which each destination has its 
own score and the objective is to create a single route that will 
maximize the collected score within a limited time. Li and Fu 
(2012) developed an equation with the objective of maximizing 
total profit (1). Let pi be tourists’ preference value or profit for 
destination Vi, while xij(t) is 1 or 0, depending on it is visited or 
not. Si is the set of successor destinations of destination Vi and Pi 
is set of predecessors. Equation (2.2) and (2.3) explain the flow 
conversion in model. Equation (2.4) ensures every destination 
is visited no more than once. Equation (2.5) and (2.6) guarantee 
that, if one destination is visited, the arrival time in that destina-
tion is the sum of preceding arrival time, service time, and travel 
time between those destinations. vt is visiting time on node Vi. 
Equation (2.7) consists of the start time and end time constraint. 
If t0 is starting time, ti is arrival time at node Vi. In this equation, 
t0 is equal to t1 means V1 is the starting location and time starts 
from there. Equation (2.8) and (2.9) are variables constraints. 
The result for this model is a route that satisfies tourist prefer-
ence and limitation, and follows the destinations’ time windows.

(2.1)Max

T
∑

t=t0

n−1
∑

i=2

∑

j∈S(i)

pixij(t)

(2.2)
T
∑

t=t0

∑

j∈S(1)

xij(t) =

T
∑

t=t0

∑

i∈P(n)

x1n(t) = 1

(2.3)
T
∑

t=t0

∑

i∈P(k)

x1k(t) =

T
∑

t=t0

∑

j∈S(k)

xkj, ∀k = 2,… , n − 1

(2.4)
T
∑

t=t0

∑

j∈S(1)

xij(t) ≤ 1, ∀i = 2,… , n − 1

(2.5)

T
∑

t=t0

∑

i∈P(j)

(

t + tij(t)
)

xij(t) = tj, ∀j = 2,… , n

(2.6)
T
∑

t=t0

∑

j∈S(i)

tx1j(t) = ti + vti, ∀i = 1,… , n − 1

(2.7)t1 = t0, tn ≤ T

(2.8)ti > 0, ∀i = 1,… , n
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OP can be adjusted to many situations; it can be contin-
ued to the metaheuristic method for the optimality, consider 
many constraints, and has faster computer time. Herzog 
and Wörndl (2014) defined OP as a score system based on 
collected scores for chosen destinations while considering 
the constraints. OP is related to the Knapsack Problem, The 
Maximum Collection Problem, and The Bank Robber Prob-
lem (Li and Fu 2012). A regular heuristic method cannot be 
used because considering all the constraints takes longer in 
terms of process time and has a greater possibility of yield-
ing an infeasible result. Hence, the metaheuristic method 
will be used to run the algorithm. The metaheuristic method 
concerns efficiency in time and has the flexibility to consider 
the preferences and limitations of the tourists.

OP development has expanded it widely but OP has remained 
as the basic model. If OP is usually for single route, the Team 
Orienteering Problem (TOP) that was developed by Vansteen-
wegen et al. (2011a, b) will produce multi-routes. Some mod-
els can be used to generate single or multi-routes. For example, 
the Orienteering Problem with Time Windows (OPTW) is for 
arranging a single route while considering operational hours of 
destinations (Tsitsiklis 1992; Kantor and Rosenwein 1992; Gen-
dreau et al. 1998a, b; Bansal et al. 2004; Chekuri and Kumar 
2004; Chekuri and Pal 2005; Righini and Salani 2009; Van-
steenwegen et al. 2011a). OPTW can transform into the Team 
Orienteering Problem with Time Windows (TOPTW) for multi-
routes (Vansteenwegen 2008; Vansteenwegen et al. 2009a; Lin 
and Yu 2012; Gunawan et al. 2015a). Both OPTW and TOPTW 
transform into many research topics because of their flexibility 
(Vansteenwegen et al. 2011b). A moving 2-opt is needed to get a 
qualified result for OP, but in the limited time this process cannot 
be implemented efficiently to solve the (T)OPTW model. The 
solution approach for (T)OPTW is the same as for (T)OP. This 
concept was confirmed by Tricoire et al. (2010) who modified 
(T)OP problem solving with limited time to get better results. 
Model TOPTW was used in Vansteenwegen et al. (2009b) paper, 
Vansteenwegen et al. (2009c), Labadie et al. (2010), Montemanni 
et al. (2011), Lin and Yu (2012), Hu and Lim (2014), Cura 
(2014), Gunawan et al. (2015a), and Gunawan et al. (2015b). The 
reason why the researchers used the same model was because 
they can compare the performance of the metaheuristic method 
in terms of result quality and run time. They used the same case 
as found here: http://www.mech.kuleu ven.be/en/cib/op.

Vansteenwegen et al. (2009b) explained that TOPTW is gen-
erally like OP with m-route. For m-route, TOP must determine 
route m which starts from destination 1 and ends at destination 
n will maximize score for all routes. The equation for OPTW 
consists of a variable for each location i = 1,…, n is assigned to 
a score Si, has visiting time Ti and a time window [Oi, Ci]. The 
starting point and the end point in every tour are the same and 
fixed. The time that is needed to travel from location i to j is 

(2.9)xij(t) = 0, 1, ∀eij ∈ E, ∀t = 1,… , T known for all locations as tij. Every destination has their own 
score and total time from traveling and visiting time inside route 
m cannot exceed the limited time that is already determined as 
Tmax.. Each location can be visited at most once and formulated 
as an integer program (xijd= 1 if included is in a route, a visit to 
location i is followed by a visit to location j, 0 otherwise; yid= 1 
if location i is in a route, 0 otherwise; sid is the start of the ser-
vice at location i in route, and M is a large constant).

Objective (2.10) maximizes the total score that is col-
lected. Equation (2.11) guarantees that a route that starts at 
destination 1 will be ended at location n. Equation (2.12) and 
(2.13) determine the relationship and timeline of each tour. 
Equation (2.14) assures that each destination will be visited 
once. Equation (2.15) explains that each route will finish in 
limited time. Equations (2.16) and (2.17) guarantee every 
visit will start during operational hours. Equation (2.18) 
prevents same route planning.

Gendreau and Lourenco (2003) said that a metaheuris-
tic method gets solutions by combining interaction between 
local improvement procedures and higher strategy to get an 
effective process. This process can escape from local optimal 
results and give better results from a bigger searching area. In 
the existing method, this has done but it created a trap in local 
optimal results. In a complex searching area, especially when 
using one or more neighborhoods to move from one solution to 
other solution, it could be a constructive or destructive process. 
To solve this problem, it needs an optimal method that will 
yield results immediately like metaheuristic methods do. Talbi 

(2.10)Max

m
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d=1

n−1
∑

i=2

Siyid,

(2.11)
m
∑

d=1

n−1
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m
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(2.12)
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xikd =

n
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xkjd = ykd(k = 2,… , n − 1, ;d = 1,… ,m)

(2.13)
sid + Ti + cij − sjd ≤ M

(

1 − xijd
)

(i, j = 1,… , n;d = 1,… ,m)

(2.14)

m
∑

d=1

ykd ≤ 1 (k = 2,… , n − 1)

(2.15)
n−1
∑

i=1

(

Tiyid +

n
∑

j=2

cijxijd

)

≤ Tmax(d = 1,… ,m)

(2.16)Oi ≤ sid(i = 1,… , n;vd = 1,… ,m)

(2.17)sid ≤ Ci(i = 1,… , n;vd = 1,… ,m)

(2.18)xijdyid ∈ {0, 1}(i, j = 1,… , n;d = 1,… ,m)

http://www.mech.kuleuven.be/en/cib/op
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(2009) divided metaheuristic methods into several groups: one 
of them is the most developed single-solution metaheuristics 
like Simulated Annealing, Tabu Search, Variable Neighbor-
hood Search, Iterated Local Search, and Guided Local Search. 
Population-based metaheuristics is another common group like 
Genetic Algorithm, Ant Colony, and Particle Swarm. Labadi 
et al. (2010) proposed a method that combines the Greedy 
Randomized Adaptive Search Procedure (GRASP) and the 
Evolutionary Local Search (ELS). This approach gives solu-
tions with equal quality and reduces computer time significantly 
compared to the Ant Colony System. When GRASP-ELS com-
pared to ILS, it gives better quality results but has a longer 
process time. Lin dan Yu (2012) used a heuristic algorithm 
for TOPTW with Simulated Annealing, and they modified it 
become Multi-Start Simulated Annealing (Lin and Yu 2017). 
Gunawan et al. (2016) stated the better solution of the TOPTW 
model is an equilibrium solution compared to an optimal solu-
tion that is centered. They said that models like Local Search 
and Simulated Annealing (Hu and Lim 2014), Artificial Bee 
Colony (Cura 2014), and Simulated Annealing and Iterated 
Local Search (SAILS) (Gunawan et al. 2015a) have worse 
results than the Well-Tuned—Iterated Local Search that they 
had designed (Gunawan et al. 2015b). Well-tuned ILS will 
yield improved solutions with short computerization. This is 
in line with the survey by Gavalas et al. (2013a) that said Iter-
ated Local Search (ILS), Greedy Randomized Adaptive Search 
Procedure and Evolutionary Local Search (GRASP-ELS), 
Ant Colony Systems (ACS) and Iterative Three Components 
Heuristics (I3CH) can give satisfactory results for problems in 
TOPTW. Before those pieces of research, Vansteenwegen et al. 
(2011b) conducted a survey to compare the results of ILS and 
ACS. Gavalas et al. (2013b) said that TOPTW is a NP-hard 
problem and that the most efficient metaheuristic method is 
ILS. Vansteenwegen et al. (2009c) also made same statement 
because ILS also offers a fair compromise between execution 
time and a good quality traveling route.

The Iterated Local Search is the fastest algorithm to solve 
a TOPTW problem with good quality. According to Labadie 
et al. (2010), ILS has two steps. First, ILS will not take the 
initial phase randomly. ILS will keep the local optimal score 
temporarily and choose a new location around the local opti-
mal one. Second, when ILS finds a new local optimal, ILS will 
decide whether to maintain the initial local optimal or adopt the 
new one as the basis. If the new one is adopted, it means explo-
ration. If the existing one is used because it is better, it means 
exploitation. ILS mostly takes the result between the two. This 
pseudo code below is ILS algorithm with random phase.

ILS combines an insertion step and a shaking step to avoid 
the optimum solution being local. ILS was developed by 
Lourenço et al. (2013) for the Traveling Salesman Problem 
and Scheduling Problem. A set of local solutions is developed 
rather than repeating a local search randomly. Good balancing 
between improvement and shaking the intermediate solution is 
the important thing. These two important steps in ILS, as seen 
in Vansteenwegen et al. (2009b), are Insertion and Shaking. 
The first step, Insertion, is a local heuristic step to add new 
destinations to a route one by one. Before adding the visit to 
a destination to a route, the verification for all the visitations 
to other destination must be conducted, thus the arrangement 
can follow the operational time after the insertion. To get a 
fast heuristic, there needs to be a fast evaluation for every pos-
sibility. The problem is this checking will take a lot of time. 
For every insertion of a visitation, the minimum insertion time 
will be determined. The second step, Shake, is needed to exit 
from the local optimal. As long as this step is one, one or more 
visitations will be removed. The shake uses two parameters as 
inputs, with first parameter indicating how many visitations 
in the sequence will be removed from each route and position 
in every route to start the removal process. If in the removal 
process the last destination is reached, removal still continues 
after the starting point. After the removal, all visitations that 
are removed will be diverted to the front as much as possible to 
avoid unimportant waiting time. If it reaches the final destina-
tion, removal will continue after the starting point.

From previous research, we knew the problem that has not 
been fulfilled is the addition of another objective to the pre-
vious model TOPTW, making a multi-objective model with 
two objectives, which are maximizing score and minimizing 
time. This additional objective is needed because it will make 
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the itinerary more effective and efficient. Effective because 
it can accommodate the tourists’ favorite destinations, and 
efficient because it can save the tourists time. The novelty 
of this research is the modification of the model by using a 
mathematical formula. This formula will help to achieve the 
optimal result by considering the real situation or reducing 
the assumptions. Another novelty is the design of the adjust-
ment to the ILS, because it has a construction phase to replace 
the random phase. The heuristic construction will give better 
preparation by producing better results and faster that tourist 
only needs few time to wait for the result.

Methodology

This research methodology consists of three steps. The first step 
is analyzing and modifying the previous TOPTW model, second 
is modifying the ILS method, and third is validating and com-
paring the result. The new TOPTW model will accommodate 
multi-objectives, which are the maximum score and minimum 
time for finding the shortest total time that contains visiting time 
Vi and traveling time Tij. Constraints will be added to make sure 
the starting time si, and visiting time Vi at a destination will not 
pass the Tmax. A complete directed network is G = (k,i), where 
k = {1,2,…,m} is the set of destinations in a route; destinations 
{(i j,}: i ≠ j, i j∈N} are the set of arcs. Destination 0 is the start-
ing location in each route. Destination i(i =1,…, n) is a tourism 
destination with a nonnegative score Si, a nonnegative visiting 
time Vi, and a time window [Oi, Ci] in each node. Each path must 
start from and end at node 0. The traveling time from destination 
i to destination j is known as Tij for each pair of destinations i 
and j. The maximum time in a route cannot exceed the budget 
time Tmax. Every destination can be visited only once. The objec-
tive is maximizing the total score from visiting the destinations, 
and minimizing the time spent. The minimum time is found by 
adding the visiting and traveling times for all destinations and 
routes that are visited, and the traveling time from the starting 
location to the first location. FTOPTW can be modeled as a 
mixed integer linear program as follows.

Decision Variables:

yik = 1 if destination i is visited in route k, 0 otherwise
xijk = 1 if in route k, a visitation to destination i is followed 
by a visit to destination j, 0 otherwise

Parameters:

i: number of destinations.
k: number of routes.
Si: score of customer i.
Tmax: budget time in a route.
Tij: traveling time from destination i to destination j.

si: arrival time for destination i.
Vi: visiting time for destination i.
Oi: opening time in the time window for destination i.
Ci: closing time in the time window for destination i.
L: Large constants.

Model:

The objective function (3.1) maximizes the total score 
and (3.2) minimizes the time. The total score comes from 
the score that is summed from every destination that is in the 
schedule. Total time comes from all the starting times and all 
the visiting time spent at the places visited. Maximum total 
score is the priority before continuing with the minimum 
total time. Constraint (3.3) determines the number of routes 
used. Constraints (3.4) and (3.5) maintain the connectiv-
ity and keep track of the timeline of each route. Constraint 
(3.6) makes sure that every destination is visited at most 
once. Constraint (3.7) guarantees that the time budget of 
each route is not violated. Constraints (3.8) and (3.9) are 

(3.1)Max

m
∑

k=1

n
∑

i=1

Siyik

(3.2)Min

m
∑

k=1

n
∑

i=1

sik + Vi

(3.3)
m
∑

k=1

n
∑

i=1

xijk =

m
∑

k=1

n
∑

i=1

xjik = m

(3.4)

n
∑

i=1,i≠l

xilk =

n
∑

j=1,j≠l

xljk = ylk ∀l = 1,… , n; ∀k = 1,… ,m

(3.5)
sik + Vi + Tij − sjk ≤ L

(

1 − xijk
)

∀i, j = 1,… , n; ∀k = 1,… ,m

(3.6)
n
∑

i=1

m
∑

d=1

yik ≤ 1

(3.7)
m
∑

k=1

n
∑

i=1

(

Viyik +

n
∑

j=1

Tijxijk

)

≤ Tmax

(3.8)Oiyik ≤ sik ∀i = 1,… , n; ∀k = 1,… ,m

(3.9)Ciyik ≥ sik ∀i = 1,… , n; ∀k = 1,… ,m

(3.10)sik + Vi ≤ Tmax ∀i = 1,… , n; ∀k = 1,… ,m

(3.11)xijk,yik ∈ ∀{0, 1}; i, j = 1,… , n; ∀k = 1,… ,m
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time window constraints. Constraint (3.10) guarantees that 
the starting time and visiting time for each destination is 
not greater than the time budget. Constraint (3.11) specifies 
that all variables are binary. To make sure this formulation 
is feasible to run, we used a case study with 16 tourism des-
tinations in East Java.

The second step is analyzing and modifying the previous 
ILS method. The previous metaheuristics method still uses a 
random phase at the beginning, which makes the probability 
of getting feasible results small. For modifying the existing 
model, we replaced the random phase with a heuristic con-
struction that considers all the constraints, to make a more 
feasible result and become a candidate for optimization. The 
Adjusted Iterated Local Search (AILS) pseudo code can be 
read as below.

In the beginning, AILS will take visiting and traveling 
times from the database, then the destination with the big-
gest score will be allocated to each route without violating 
the maximum time Tmax and operational hours [Oi, Ci] of 
the destination. Permutation will guarantee every destina-
tion has the same probability of contributing the best solu-
tion. The maximum score (Total Score or TS) and minimum 
time (Total Time or TT) become BS1. BS1 continues to the 
second process, reverse, in which we will flip the sequence 
in every route, and recount the TT. If this is less than BS1 
and fulfills the time requirement, the result will be placed 
into BS2. Otherwise, BS1 will become BS2. Repeat this 
step until all the routes have been flipped. The last step is 
Perturbation for all the routes. Based on the percentage, the 
destinations will be moved to another route randomly. If 
there is a better TT, it could be BS3. If they are getting 
worse, BS2 will be set as BS3.

The third step is comparing the metaheuristics AILS with 
other methods in previous papers. Some researches proposed 
multi-objective team orienteering problem to maximize vari-
ous profit from each destinations (Martín-Moreno and Vega-
Rodríguez 2018; Schilde et al. 2009; Rezki and Aghezzaf 
2017), while Hu et al. (2018) developed it with time win-
dows. Mirzaei et al. (2017) research has objective to balance 
the profit among the routes. Another multi-objective for time 
dependent orienteering problem was designed by Mei et al. 
2016). Multi-objective that is combined maximum profit and 
minimum travel cost was developed by Bederina and Hifi 
(2017) as proposed multi-objective team orienteering prob-
lem without time windows. This research is focused with 
multi-objective orienteering problem with time window, and 
the objectives are maximum profit and minimum time. The 
previous multi-objectives research did not use single profit 
for each destination and did not have time window, while 
this research will compare with single objective research, 
because they presented the multi-result like total destination 
visited, total profit, total time, and running time. AILS will 
compare to other methods like MSA, SA and ABC in Lin 
and Yu (2017) and ILS in Vansteenwegen et al. (2009b). 
There is a calibration parameter that is required before we 
run AILS. There are 17 problem instances, each consisting 
of 100 destinations, from Solomon’s datasets (Lin and Yu 
2017). The percentage will be set at 20%, 40%, 60% and 80% 
to find out which one will give the shorter running time. The 
comparison that will be used is total score, visited destina-
tion and running time. All the result for each problem are 
recorded and the gap for the running time is calculated as 
the average (RTBS–RTAILS)/RTAILS where RTBS is the best 
solution running time in comparing methods and RTAILS is 
the running time from the AILS method. It will do the same 
for Visited Destination (VD) and Total Score (TS). Other 
methods that will be compared are Multi-Start Simulated 
Annealing (MSA) (Lin and Yu 2017), Simulated Annealing 
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(SA) (Lin and Yu 2012), Artificial Bee Colony (ABC) (Cura 
2014), and Iterated Local Search (ILS) (Vansteenwegen et al. 
2009b). We use the same case study from Solomon’s data-
sets, and follow the number of routes previous papers used, 
for a fair comparison.

Algorithm and metaheuristic

This section will describe the calculation process and solu-
tion that is obtained from mathematic formulation for the 
TOPTW algorithm. However, the proposed TOPTW has 
more objectives. In this new algorithm, the objectives are 
to maximize the score and minimize the time. The addi-
tion objectives make the optimization program perform it as 
two serial process. When we run the program in Lingo 17 
with 16 destinations in Mixed Integer Linear Programming, 
the program runs for more than 45 min to get the global 
optimum total score. This time is too long for tourists, who 
need a very short time to give them a result. The program’s 
running time must be limited, at most to just 1 s, to get a 
maximum score and minimum time. That is why we need 
a metaheuristics method like the Adjustment Iterated Local 
Search (AILS) to speed up the algorithm to get a solution 
that is near the global optimal. Because the objective of the 
program is to minimize its running time, so the tourist is 
only waiting a short time, we will focus on this. But to make 
sure the program is good enough, compared to other meth-
ods, we also record the total score and number of visited 
destinations.

Solution representation

A solution for FTOPTW is started by sorting the priority 
destinations in descending order. The sorting of n destina-
tions (1,2,…,n) and m routes. Destination 1 is the starting 
and ending destination as the route will return to the same 
destination it began at. Each destination has the score Si 
which represents the priorities to visit. Destinations with the 
highest scores will be distributed in each route. For exam-
ple, the 16 destinations with the highest scores are shown in 
Table 1. Because tourists only have 2 days to complete their 
journey, there are 2 routes. The allocation would be destina-
tion 2 in route 1; destination 8 in route 2, destination 6 in 
route 1, and so on. If the score is the same, the destination 
can be chosen arbitrarily. The allocation will be based on 
minimum visiting times spent in each route, and continue 
until it almost reaches the maximum time Tmax. Traveling 
time between destinations will be inserted, then it continues 
with checking Tmax, to return destinations with the lowest 
scores back to the list. Time window constraints [Oi, Ci] 
will be checked to make sure there is no violation. For every 
destination that is returned to the list, and there is still some 

time remaining in a route, it could be replaced with another 
destination that has a visiting time which is less than the 
remaining time. Every time a new destination is inserted, the 
process to check Tmax and [Oi, Ci] will be repeated.

Illustration of solution representation

Table 1 gives a FTOPTW instance with 16 tourism destina-
tions in East Java, and a tourist decides to do the journey in 
2 days or two routes. Each destination has coordinates (X, 
Y), visiting time (V), score (S), opening time (O) and closing 
time (C) for its time window. All the information is taken 
from Google Maps.

An example of a solution for this FTOPTW is given in 
Fig. 1. First the destinations will be arranged, based on the 
highest score to the lowest. Then one by one the destinations 
will be included in each route by considering their visiting 
time, to make sure it will not violate the time budget or Tmax. 
The number of days is the same as the number of routes, so 
how many days the tourists want to spend is the same as the 
number of routes that will be created. Each pair of destina-
tions has X and Y coordinates that include the traveling time 
that comes multiplied by the Euclidian distances with the 
vehicle’s speed. For running the formulation in Lingo 17, we 
used the traveling times provided in Google Maps.

As can be seen in Fig. 1, the first destination in the first 
route is destination 2. Line represents traveling time, bar 
represents visiting time for each destination. It needs 52 min 
to reach destination 2 from destination 1 (the starting point). 
It takes 120 min to visit destination 2. Then it continues to 
destination 4, which takes 12 min, so the starting time at 
destination 4 is 184 min. The visitation then goes on to des-
tinations 9 and then 12. The time budget Tmax will end after 
or equal with end of the visiting time at the last destination. 
After the last destination, the tourist will return to destina-
tion 1. All the visited destinations must be checked for not 
violating the time window. The second route will do the 
same. The total score of a given initial solution can be easily 
calculated from the total score collected in all the routes.

The AILS procedure in Fig. 2 is started with the permu-
tation. All the destinations in one route will get pairwise 
exchanges and for each exchange the total time must be 
counted. Total scores are not an issue anymore because all 
the destinations that are included in the route are already 
the highest scoring ones. After all the exchanges then 
every sequence that is created is compared, then it will 
choose the minimum total time. Checking must be done 
for the time window, because the time budget is already 
guaranteed at the beginning. For example the permuta-
tion process gives the same result as the optimization. The 
second step is to reverse the sequence for each route. For 
example in route 1, the first sequence is 2–4–9–12. When 
reversed, the sequence becomes 12–9–4–2. Then it must 
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be checked for the time budget and time window, and if it 
is appropriate, it will continue with comparing which one 
has the minimum total time. We will use the sequence 
with the new minimum time, otherwise it will be back to 
the previous sequence. As we can see in Fig. 3, the reverse 
has a better result so we continue with this sequence. For 
the third process, Perturbation, there is a certain percent-
age that represents the number of destinations that will 
be moved randomly. For example in our case study, there 
are 16 destinations. If we use 20%, it means 3.2 destina-
tions. This must be rounded up to an even number, so 
there are 4 destinations that must be moved. The moving 
could be inside one route or across to another route. In 
our example destination 9 in route 1, and originally in 
the second sequence, is moved to route 2 and becomes a 
third sequence. Destination 17 from route 2 will replace 

destination 9 in route 1. Time budgets and time windows 
must be checked for every route, and if they give a better 
total time the route will change. Figure 3 shows the illus-
tration how the route can change. The red pin shows the 
starting point and ending point. In the left figure, there are 
two routes and each is distinguish by the line style, solid 
for route 1 and dashes for route 2. Then in the right figure, 
the routes are changed.

Experimental results and discussion

The proposed FTOPTW algorithm and AILS method was 
implemented in Java by Eclipse. The experiments are carry 
out on a computer with an Intel Core m51.10 GHz CPU. To 
demonstrate the applicability of the FTOPTW algorithm, 

Table 1  A FTOPTW example 
with 16 destinations

Destination No X Y V S O C

Starting point 1 − 7.70 111.00 0 0 0 600
Banyulawe Waterfall 2 − 7.75 111.68 120 4.7 0 960
Krecek Ndenu Waterfall 3 − 7.71 111.66 120 4.0 0 960
Slampir Waterfall 4 − 7.73 111.69 120 4.1 0 960
Dumilah Waterpark 5 − 7.62 111.53 120 3.7 0 960
Wilis Mountain 6 − 7.81 111.75 120 4.3 0 960
Brem Citra Rasa 7 − 7.51 111.68 90 4.0 1 540
Great mosque Taman 8 − 7.63 111.52 60 4.5 0 780
Kresek Monument 9 − 7.70 111.63 60 4.2 0 900
Punden Lambang Kuning 10 − 7.61 111.57 60 4.4 1 540
Sun City Waterpark 11 − 7.62 111.53 210 4.1 1 540
Madiun Umbul Square 12 − 7.78 111.52 150 3.8 1 900
Tirtonirmolo Waterpark 13 − 7.46 111.42 180 4.0 0 780
Bening Reservoir 14 − 7.54 111.8 180 4.0 1 780
Dawuhan Reservoir 15 − 7.58 111.62 180 3.9 1 780
Kedung Brubus Reservoir 16 − 7.45 111.7 180 3.6 1 780
Grape Agritourism 17 − 7.69 111.64 120 4.1 1 780

Fig. 1  The FTOPTW result
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94 (17 + 56 + 21) problem instances are generated, based 
on Solomon’s datasets. These problems can be classified 
as the problems for parameter calibration, comparing prob-
lems with Simulated Annealing (MSA and SA) and Artifi-
cial Bee Colony (ABC), and the last is comparing problems 
with Iterated Local Search (ILS). Each instances consists 
of 100 destinations with coordinates, visiting times, scores 
and time windows.

Parameter calibration

Since the computational results of the FTOPTW algorithm 
are affected by the parameter settings, the parameter cali-
bration used 17 problem instances. In the experiment, sev-
eral values of the perturbation percentages are used. Each 
parameter has four levels (20%, 40%, 60% and 80%) so 68 
values were generated. We compared the running times as 
the important factor to achieve. As presented in Table 2, 
the 40% perturbation has the minimum average time from 
the 68 trials. It has a 1.159 s running time for each instance 
that has 100 destinations that could be visited. It means a 
lower perturbation does not guarantee a shorter running 

time. Many factors may influence the computational running 
time, including CPU speed, memory size, operating system, 
compiler, computer program, and precision.

Comparing results obtained by AILS, MSA, SA, ABC 
and ILS

Computational experiments were carried out on a large prob-
lem set to compare the performance of AILS with the other 
metaheuristic methods like MSA, SA, ABC, and ILS. Given 
the computational complexity of FTOPTW, a global optimal 
solution needs 45 min to solve for 16 destinations. Because it 
is done in sequence, the total score is first achieved with the 
global optimum, then followed by the minimum time. But 
in an iterated local search, the total score is near optimal, 
and the total time will be adjusted. The sequence will be 
exchanged to find the minimum time.

The best solutions obtained by AILS, MSA, SA, and ABC 
for each instance are shown in Table 3. In this table, the 
instance column displays the name of the problem instance, 
while the numbers are number of routes, total score, number 
of visited destinations, and running time in seconds. With 
this number of tours, it should be feasible to visit every loca-
tion, and hence the optimal result equals the sum of all the 

Fig. 2  The AILS procedure Route 1 Route 2
Permutation 1 2 4 9 12 1 3 17 7 10 1

Route 1 Route 2
Reverse 1 12 9 4 2 1 10 7 17 3 1

Route 1 Route 2
Pertubation 1 12 17 4 2 1 10 7 9 3 1

Fig. 3  A visual illustration of the example solution given in
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scores. Because this is an orienteering problem, it is possible 
not to visit all the locations. It tries to select as many visits 
as possible, and to design a feasible route between them. The 
difficulty of solving instances is not only related to the num-
ber of locations that can be visited in each route, but also 
to the number of routes that can be generated. Table 3 com-
pares the score obtained by the AILS with the best known 
solution from comparing the other methods. The best know 
result for each instance is either the optimal solution or the 
best result of the runs of the method. Columns 1 and 2 give 
the instance’s name and total score. The third column pre-
sents the score obtained by the AILS. In the next column the 
number of visited locations in the solutions is presented and 
the running time in the last column is expressed in seconds.

There are three kinds of gaps that we will measure, they 
are the gaps for the number of Visited Destinations (VD), 
Total Score (TS), and Running Time (RT). The gap for the 
running time is calculated as the average (RTBS–RTAILS)/R
TAILS where RTBS is the best solution running time in the 
compared method and RTAILS is the running time from the 
AILS method. The same formula can also be done for the 
VD gap and TS gap. Then all the instances’ gaps will be aver-
aged again and converted into a percentage. The percentage 
could be positive because the other methods have a higher 
result, or negative because the other methods have a lower 
result. In comparison with Table 3, the VD gap is 4.752%. 
It means the other methods visited more destinations than 
AILS. But if we compare it with the TS gap, it has − 8.744%, 
showing AILS has a higher score than the other methods. It 

means even though the other methods visited more destina-
tions, they were not effective journeys because they only 
visited more lower scoring destinations. AILS will give a 
more effective journey by visiting only the higher ones, so 
tourist spend less time traveling. The percentage of total time 
gives a very good result, the difference being 3836.877%. It 
means the AILS running time is much more efficient than 
that of the other methods.

In comparison with ILS, we also measured the gaps for 
the number of visited destinations, total score and running 
time. Because there are three routes (m = 2, m = 3, m = 4) 
the gap is obtained from the average gap of all the routes. In 
comparison with Table 4, the number of visited destinations 
has a 5.656% difference. It means ILS visited more desti-
nations than AILS. The total score difference is 56.291% 
higher for ILS, thus ILS can visit more destinations and col-
lect higher scores. But if we compare this with the running 
times, ILS needs more time to give a good result, the dif-
ferent being 375.961%. It means the AILS running time is 
more efficient than ILS, and this is important for the tourist 
that has no time to wait for the program to load.

Conclusion and future research

The main contribution of this paper is an algorithm that 
solves the Team Orienteering Problem with Time Windows 
(TOPTW) fast and effectively. This work concerns the 
FTOPTW, which is a challenging extension of TOPTW. To 
reduce the gap between theory and industrial practice, this 
work develops an MILP model of FTOPTW, which incor-
porates the maximum score and minimum time. In a small 
set the algorithm can give a global optimal, based on the 
maximum score and minimum time. But because the run-
ning time was more than 45 min, it will not be suitable as 
a tourist’s mobile application. There are calibration param-
eters, a small case test using Mixed Integer Linear Program-
ming, and a large case test comparing AILS with MSA, SA, 
ABC and ILS. On a large set of test instances, AILS is faster 
than MSA, SA, ABC and ILS, which will satisfy the tourist. 
This is achieved by the permutation of all the destinations, 
that guarantees the best pairwise will be found, which can 
be reversed as an alternative to get an even better result, and 
perturbation with a certain percentage will move the desti-
nation randomly between routes. The gap for the number of 
destinations visited is better than MSA, SA, and ABC, but 
slightly lower than the ILS result.

For future research, having an algorithm that has a near 
global optimum and a minimum running time is needed 
to make tourists more satisfied. Combining the algorithm 
with a metaheuristic method, or hybridize other algo-
rithms is good, but the best fit must pass much research to 
achieve the objective. The constraints, such as the number 

Table 2  Parameter values tested in the calibration

Instance Percentage perturbation (p)

20 40 60 80

c101 1.923 1.279 1.343 1.086
c102 0.611 0.811 0.749 0.725
c103 0.860 0.986 0.829 0.820
c104 1.094 1.355 1.268 1.388
c105 1.484 1.210 1.324 2.125
c106 1.235 1.310 1.155 1.337
c107 1.350 1.193 1.654 1.116
c108 1.348 1.332 1.293 1.559
c109 1.240 1.378 1.206 1.241
c201 1.192 1.143 1.420 1.141
c202 1.135 1.140 1.122 1.281
c203 1.028 1.367 1.071 1.191
c204 1.029 1.082 1.089 1.057
c205 0.967 0.975 1.016 1.039
c206 1.091 1.050 1.157 1.056
c207 1.153 0.984 1.048 1.037
c208 1.089 1.104 1.038 1.026
average 1.166 1.159 1.164 1.190
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Table 4  Computational results for AILS and ILS method

Instance AILS

Path Visited Score Time Path Visited Score Time Path Visited Score Time

c101 2 23 450 0.435 3 32 590 0.374 4 40 770 0.324
c102 2 23 450 0.412 3 32 590 0.328 4 40 770 0.298
c103 2 23 450 0.468 3 32 590 0.300 4 40 770 0.327
c104 2 23 450 0.499 3 32 590 0.320 4 40 770 0.291
c105 2 23 450 0.437 3 32 590 0.358 4 40 770 0.343
c106 2 23 450 0.466 3 32 590 0.310 4 40 770 0.316
c107 2 23 450 0.595 3 32 590 0.318 4 40 770 0.281
c108 2 23 450 0.397 3 32 590 0.362 4 40 770 0.400
c109 2 23 450 0.448 3 32 590 0.330 4 40 770 0.309
r101 2 19 281 0.339 3 30 434 0.498 4 37 553 0.340
r102 2 19 281 0.313 3 30 434 0.364 4 37 553 0.315
r103 2 19 281 0.335 3 30 434 0.564 4 37 553 0.331
r104 2 19 281 0.338 3 30 434 0.436 4 37 553 0.339
r105 2 19 281 0.355 3 30 434 0.395 4 37 553 0.353
r106 2 19 281 0.297 3 30 434 0.342 4 37 553 0.308
r107 2 19 281 0.328 3 30 434 0.329 4 37 553 0.342
r108 2 19 281 0.381 3 30 434 0.352 4 37 553 0.332
r109 2 19 281 0.314 3 30 434 0.338 4 37 553 0.404
r110 2 19 281 0.337 3 30 434 0.392 4 37 553 0.295
r111 2 19 281 0.341 3 30 434 0.403 4 37 553 0.316
r112 2 19 281 0.336 3 30 434 0.320 4 37 553 0.328

Instance ILS GAP

Path Visited Score Time Path Visited Score Time Path Visited Score Time Visited Score Time

c101 2 21 590 1.4 3 29 790 1.1 4 39 1000 3.8 − 0.063 0.315 4.560
c102 2 22 650 0.9 3 32 890 2.1 4 43 1090 1.8 0.021 0.453 3.624
c103 2 22 700 1.2 3 33 960 2.2 4 44 1150 2.5 0.042 0.552 4.388
c104 2 22 750 1.5 3 34 1010 1.3 4 45 1220 3.0 0.063 0.646 4.225
c105 2 21 640 0.8 3 30 840 1.0 4 40 1030 1.8 − 0.042 0.387 2.1633
c106 2 20 620 0.8 3 30 870 1.1 4 40 1040 2.1 − 0.053 0.398 2.663
c107 2 22 670 1.4 3 33 900 1.5 4 43 1100 2.0 0.032 0.475 3.104
c108 2 22 670 0.8 3 33 900 1.2 4 44 1100 3.6 0.042 0.475 3.832
c109 2 22 710 0.9 3 33 950 2.0 4 45 1180 2.5 0.053 0.569 3.968
r101 2 13 330 0.4 3 31 481 0.8 4 28 601 1.4 − 0.163 0.114 1.209
r102 2 21 508 0.9 3 31 685 1.0 4 39 807 1.7 0.058 0.577 2.629
r103 2 20 513 0.9 3 31 720 2.0 4 42 878 2.2 0.081 0.665 3.146
r104 2 22 539 1.5 3 34 765 1.5 4 45 941 3.8 0.174 0.771 5.110
r105 2 18 430 0.8 3 27 609 2.3 4 35 735 2.9 − 0.070 0.399 4.440
r106 2 21 529 0.9 3 32 719 2.1 4 41 870 3.5 0.093 0.670 5.864
r107 2 21 529 1.0 3 33 747 1.1 4 44 927 3.3 0.140 0.737 4.405
r108 2 24 549 1.4 3 36 790 3.1 4 47 983 3.2 0.244 0.831 6.230
r109 2 22 498 0.5 3 31 699 1.8 4 40 866 2.1 0.081 0.627 3.167
r110 2 22 515 1.0 3 32 711 1.4 4 42 870 2.0 0.116 0.653 3.297
r111 2 23 535 0.6 3 34 764 1.8 4 45 935 2.0 0.186 0.762 3.151
r112 2 21 515 0.5 3 34 758 1.1 4 44 939 3.1 0.151 0.744 3.776

Average gap percentage 5.656 56.291 375.961
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of destinations, the number of routes, time budget and 
operating hours determine the difficulties in arranging the 
instances.
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