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Abstract The present investigation deals with a machine

repair problem consisting of cold and warm standby

machines. The machines are subject to breakdown and are

repaired by the permanent repairman operating under

N-policy. There is provision of one additional removable

repairman who is called upon when the work load of failed

machines crosses a certain threshold level and is removed

as soon as the work load again ceases to that level. Both

repairmen recover the failed machines by following the

time sharing concept which means that the repairmen share

their repair job simultaneously among all the failed

machines that have joined the system for repair. Markovian

model has been developed by considering the queue

dependent rates and solved analytically using the recursive

technique. Various performance indices are derived which

are further used to obtain the cost function. By taking

illustration, numerical simulation and sensitivity analysis

have been provided.

Keywords Markov chain � Machine repair � Mixed

spares � Time sharing � Threshold policy � Additional
repairman � Queue length

Introduction

In the present era of modernization, machines have become

part and partial of our day to day life. Due to automation of

many systems, we are now completely dependent on the

machines as it has become very difficult to even imagine

our life without machines. But unfortunately, we cannot

rely on the machines completely as they are always prone

to failure. The failures of the machines affect the system

adversely by reducing the efficiency and thereby increasing

the overall cost of the system. Thus, it has become a very

difficult task for the system developer to design a com-

pletely reliable machining system which can operate

without any hindrance in spite of component failures. The

provision of having spare machines in the system is one of

the key approaches to cope up with the failure of operating

machines and carrying out the machining operation

smoothly without any interruptions. Multi-component

systems with the provision of redundancy and maintain-

ability are commonly seen in industrial scenarios, namely

production systems, computer networks, transportation

system, etc.

The spare machines are those machines which are put in

place of the failed machines in the main system just like the

main operating machines to carry out the functions prop-

erly and continuously. In the present paper, we study a

Markovian machine repair problem with mixed standbys

under the care of a repair facility having one permanent

repairman and another additional removable repairman

which turn on according to N-policy and threshold policy,
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respectively. The repairs to the failed machines are ren-

dered on the time sharing basis. The time-shared policy is

used for allocating the repairman capacity of the repair job

to be utilized simultaneously by all failed machines by

slicing the unit repair time among all failed machines as

per round robin discipline. Each failed machine receives

time slice of permanent as well as additional removable

repairmen and recovers from the faults after receiving

several quantum of repair time depending on the severity of

the faults/damage. Taylor and Jackson (1954) introduced

the standby provisioning in machine repair system by

incorporating the use of cold standbys in a machine repair

system. In the past years, a lot of researches have been

done on the repairable machining system with standbys by

many renowned queue theoreticians (cf. Albright 1980;

Wang and Sivazlian 1989; Wang 1995; Jain and Baghel

2001). Haque and Armstrong (2007), Jain et al. (2010) and

Jain and Gupta (2011) presented a brief review on the

machine interference problem (MRP) with spares in their

review articles. In recent years, many researchers also

contributed to study on the performance prediction of the

machine repair problems with standbys by incorporating

some other distinct features like vacation, heterogeneous

repairmen, N-policy, etc. (see Ke et al. 2009; Maheshwari

et al. 2010; Jain et al. 2012). By including the F-policy

Kumar and Jain (2013a) developed a queueing model for

the performance prediction of the machine repair problems

with standbys. A machine repair problem with standbys,

having unreliable repairman and working vacation for the

repairman, was investigated by Jain (2014).

In many machine repair systems, it has been often seen

that the service rendered by the permanent repairman

becomes too expensive as itmay be idlemost of the times. To

reduce the cost for such system, the repairman can initiate the

service only when a certain workload is build up. Yadin and

Naor (1963) introduced the N-policy which can be used to

control the service rendered by the repairman in optimal

manner. Optimal N-policy ensures that the repairmanwill be

activated only when N failed machines are accumulated in

the system. This will be helpful in reduction of the expen-

ditures such as set up cost to initiate the busy period after

each idle period. According to N-policy, there will be no

service provided by the repairman until the queue length is

build up to N and once the service is started, the repairman

stops service only when the queue becomes empty. There are

some important research works available in the literature on

MRP operating under N-policy (cf. Shawky 2000; Jain et al.

2004; Jain andBhargava 2009).A fewpapers onN-policy for

the MRP have been reported in the survey article by Sharma

(2012). Machine repair problems with spares were investi-

gated by Yue et al. (2012) and Kumar and Jain (2013a, b) by

incorporating the N-policy. The performance modeling of

multi-component machining systems under the care of

unreliable repairman which operates according to N-policy

was done by Jain et al. (2014b, c). Jayachitra and Albert

(2014) presented an elaborated survey on various queueing

models under N-policy which also includes the works on

MRP under N-policy.

To tackle with the congestion problem, the provision of

additional repairmen to the system may be helpful in

reducing the workload of the permanent repairman and up

gradation of the repair facility provided to the system. The

feature of varying number of repairmen in queueing system

has been studied by many researchers in the recent past

(Shawky 1997; Jain 1998; Jain and Singh 2003). Later

some works were also done on MRP with additional

repairman by some renowned queue theorists (Al-seedy

and Al-Ibraheem 2001; Sharma et al. 2005; Jain et al.

2007a, b). In recent years, some remarkable works have

been done by the researchers by deploying the additional

repairmen in machine repair system based on workload

level. The important Markovian studies done on the same

line in the last couple of years have been reviewed here.

Markovian machine repair problems with additional

repairman were investigated by Huang et al. (2011) and

Liou et al. (2013) by including threshold control policies.

Maheshwari and Ali (2013) studied an M/M/C/K/N

machine repair problem with additional repairman by

incorporating the concept of discouragement. A MRP with

mixed standbys having the provision of permanent as well

as additional repairmen was also investigated by Jain and

Preeti (2014) by evaluating the probabilities for the tran-

sient states of the system which are further used to carry

out the performance prediction of system characteristics.

The time sharing concept emerges in the 1960s to make

the computer systems an object of public utility, i.e., to

make it useful for more and more people (cf. Kleinrock

1967). In the context of machine repair system, the time-

shared systems are the repair facility wherein the technical

staff repairs the failed machines on time slicing basic, i.e.,

by dividing its unit time among all those failed machines

which are presently waiting in the queue to be repaired by

the repairman. The repairman will attend a failed machine

for a pre-specified fixed quantum of time only and then it

will move to the next machine in the queue. If the service

of the first machine is not completed in that time interval

then it will be put in the end in the queue to be served

again. The repairman will return to the first machine after

rendering its service to each of all other failed machines

present in the queue for the fixed (pre-specified) small

duration of time. This way, the whole cycle will go on by

following the round-robin discipline. As soon as the repair

of individual failed machine is completed during the repair

cycle, it is removed from the queue. The newly failed

machines will join the queue at the last position. The

fraction of the total service time offered to any failed
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machine will depend upon the number of failed machines

waiting in the queue for their service at the repair facility.

In a specific case, we can assume the sharing factor of

servers’ time according to harmonic variation of individual

capacity among. The number of users present in the sys-

tems (cf. Kleinrock 1967; Coffman and Kleinrock 1968;

Adiri and Avi-Itzhak 1969). For the early notable contri-

bution on time-shared systems, we refer Klienrock (1967).

In the past, some other important contributions on time-

shared computer systems are due to Rasch (1970), Yashkov

(1992), Wang and Tai (2000). Yashkov and Yashkova

(2007) have presented a survey article on processor-shared

queueing systems which presents an overview of the work

done so far on the concerned topic. In recent years, other

related research works on the time-shared queueing sys-

tems by incorporating various distinct features have been

done by Zhean and Knessl (2009), Altman et al. (2010),

Tahar and Jean-Marie (2012), and others.

Sometimes, it is also observed that due to fewer failed

machines in the system there may be less workload of the

repairing as such the repairman may remain idle most of the

time which is the wastage of resources and time. So in order

to avoid this situation and to utilize the repair facility opti-

mally, the concept of additional removable repairman is

better option and can be employed in time sharing machine

repair systems also. In the timesharing system, all the failed

machines are served by the repairman at the same time

through various repair positions. Such scenario of time

sharing inmachine repair problem can be seen in automobile

repair shop of travel agency where a limited registered

vehicles are repaired and the permanent repairman starts the

concurrent repair jobs on the vehicles by slicing unit time

only when some vehicles have joined the repair shop. In case

of high workload when a certain number of failed vehicles

have already joined the repair shop, the secondary repairman

is called upon to render the repair. A lot of research works on

the time-shared systems have appeared in the queueing lit-

erature (cf. Jain andLata 1995; Jain et al. 2005;Kim andKim

2007). In recent years, Chandrasekaran et al. (2013) and

Jeong et al. (2014) investigated the optimization issues of

machining system used for cloud computing. More recently,

time-shared machining systems have been studied by Flap-

per et al. (2014) in manufacturing–remanufacturing system.

Jain et al. (2014a) analyzed the sensitivity of a machine

repair problem with two types of spares and controlled rates

by incorporating the concept of time sharing.

In the present investigation, a time-shared machine repair

problem with mixed (cold and warm) standbys has been

studied. There is provision of permanent as well as one

additional repairman; the permanent repairman follows the

N-policy whereas additional removable repairman is intro-

duced when the workload of failed machines crosses a cer-

tain threshold level. The noble feature of the present model

over other existing models lies in the incorporation of many

key realistic factors such as N-policy, time sharing concept,

provision of mixed standbys, and facility of additional

removable server in case of heavy workload in a combined

and collaborated manner for the performance modeling of

machine repair system. It is to be worth mentioning that the

permanent repairman follows N-policy, i.e., starts working

only when N failed machines are accumulated in the system.

The secondary additional repairman is called upon as and

when the workload of failed machines crosses a critical

threshold level. Both repairmen work on the time sharing

basis which means that both of them repair the failed

machines present in the queue by sharing their time with all

failed machines accumulated in the system. By constructing

Chapman–Kolmogorov equations, the steady-state proba-

bilities have been evaluated using the recursive solution

approach. The rest of the paper is organized in different

sections as follows. The description of the model and the

differential equations, which governs the model, is given in

‘‘The model’’ and ‘‘Governing equations’’, respectively. In

‘‘Queue size distribution’’, the queue size distribution is

obtained using recursive method. In ‘‘Special cases’’, some

particular cases are deduced by setting appropriate parame-

ter values. The queue size distribution is used to derive

various performance measures and cost function which has

been explained in ‘‘Performance indices’’ and ‘‘Cost func-

tion’’, respectively. To validate the tractability of the ana-

lytical results, the numerical simulation has been provided in

‘‘Numerical analysis’’. To summarize the findings and

highlight the noble features of the work done, the concluding

remarks have been given in the last section on ‘‘Discussion’’.

The model

Consider a time-shared machining system with mixed

standby support and under the care of repair facility having

permanent and additional removable servers. The perma-

nent repairman operates under the N-policy whereas the

additional repairman is called upon according to a thresh-

old policy to reduce the workload of permanent repairman.

For developing Markov model, we have made the under-

lying assumptions:

• Themachining system is composed of Y cold and Swarm

standbys machines along with M operating machines.

The system operates under the (m, M) policy, i.e., the

system can work with at least m (\M) machines in short

mode whereasM operating machines are required for the

normal functioning of the machining system.

• The life times of the operating and standby machines

follow the exponential distribution. The operating

machines may fail with rate of k and the failure rate
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of the cold standby is zero whereas the warm standbys

fail with a rate of a.
• After the use of all spares, the system starts to fail in a

degraded fashion with a failure rate kd.
• There is provision of two repairmen for the repair of the

failed machines in the maintenance facility; the first one

is appointed on the permanent basis and the second one is

secondary removable repairmen which can be called

upon to reduce the burden of loaded permanent repair-

man. The permanent and additional repairmen provide

the repair following the exponential distribution at the

rate of l and la, respectively. The permanent and

additional repairmen turn on according to N-policy and a

threshold policy respectively, on time sharing basis. The

first permanent repairman follows the N-policy accord-

ing to which it starts the repair work only when there are

N failed machines accumulated in the system. Once the

permanent repairman initiates the repair, it continues its

job in time sharing manner till all the failed machines are

repaired.

• Theadditional removable repairmangets activatedwhenall

spare machines are exhausted and the system will go in the

short mode with the occurrence of failure of next machine.

Thus, to prevent the system to work in degraded mode, the

additional server will be called upon at a threshold level

N1 = Y ? S. Furthermore, it becomes deactivated as soon

as the workload of failed machines drops below N1.

• The failed machines are repaired by the repairmen

following the FCFS rule, i.e., the failed machines are

queued up in the order in which they failed and join the

system. Both the repairmen provide the repair on the time

sharing basis. They take care of all the failed machines in

the queue for a small interval of time as the time has been

shared equally by all available failed machines in the

queue. The machine which has been attended by the

repairman will join the queue to be served again if its

repair has not been completed otherwise it will leave the

system. The rate of sharing time by both repairmen is /
(n) which can be considered as the reciprocal of the

available numbers of failed machines in the queue.

• In case of failure of any machine, the switchover time

of the standby machine (if available) from standby state

to operating state of the machines is considered to be

instantaneous. It is to be mentioned that the cold

standbys are used to switch over the failed machines

before warm standbys (cf. Gross et al. 2009; Jain et al.

2012; Maheshwari and Ali 2013).

Let kn and ln denote the down and up transition rates

corresponding to exponentially distributed life and repair

processes of the machines, respectively; here, suffix ‘n’

denote the number of failed machines in the system. The

state transition diagram, showing in-flows and out-flows of

system states, is depicted in Fig. 1. The state-dependent

failure and repair rates are defined as follows:

kn ¼
Mkþ Sa; 0� n� Y

Mkþ ðY þ S� nÞa; Y\n� Y þ S

ðM þ Y þ S� nÞkd; Y þ S\n� L ¼ M þ Y þ S� mþ 1

8
><

>:

and

ln ¼
l/ðnÞ; 1� n\Y þ S

ðlþ laÞ/ðnÞ; Y þ S� n� L ¼ M þ Y þ S� mþ 1

(

We denote the steady-state probabilities of the system

states when there are ‘n’ failed machines in the system, as

follows:

P0,n The steady-state probability that there is n failed

machine in the system which is in accumulation

state.

P1,n The steady-state probability that the first or both

repairmen are activated and there are n numbers

of failed machines present in the system at any

instant.

PYþSð1Þ Probability that first permanent repairman is

performing the repair work of the failed

machine at the threshold level Y ? S when all

standby machines are used.

PYþSð2Þ Probability that second additional repairman is

performing the repair work of the failed

machine at the threshold level Y ? S when all

standby machines are used.

Governing equations

In this section, Chapman–Kolmogorov equations for all the

states of the system using the appropriate transition rates

for three different situations ðN ¼ Y;N\Yand N[ YÞ
have been constructed.

Case I: The first repairman starts repair when all

cold standby machines (Y) are exhausted, i.e.

when N 5 Y

�ðMkþ SaÞP0;0 þ l/ð1ÞP1;1 ¼ 0 ð1Þ

�ðMkþ SaÞP0;n þ ðMkþ SaÞP0;n�1 ¼ 0;

1� n�N � 1
ð2Þ

�½Mkþ Saþ l/ð1Þ�P1;1 þ l/ð2ÞP1;2 ¼ 0 ð3Þ

�½Mkþ Saþ l/ðnÞ�P1;n þ ðMkþ SaÞP1;n�1

þl/ðnþ 1ÞP1;nþ1 ¼ 0; 2� n�N � 1
ð4Þ

�½Mkþ Saþ l/ðNÞ�P1;N þ ðMkþ SaÞP1;N�1

þl/ðN þ 1ÞP1;Nþ1 þ ðMkþ SaÞP0;N�1 ¼ 0
ð5Þ
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�½Mkþ ðY þ S� nÞaþ l/ðnÞ�P1;n

þ½Mkþ ðY þ S� nþ 1Þa�P1;n�1

þl/ðnþ 1ÞP1;nþ1 ¼ 0;

N þ 1� n� Y þ S� 2

ð6Þ

�½Mkþ aþ l/ðY þ S� 1Þ�P1;ðYþS�1Þ

þðMkþ 2aÞP1;YþS�2 þ l/ðY þ SÞPYþSð1Þ
þla/ðY þ SÞPYþSð2Þ ¼ 0

ð7Þ

�½Mkþ l/ðY þ SÞ�PðYþSÞð1Þ
þðMkþ aÞP1;YþS�1

þla/ðY þ Sþ 1ÞP1;YþSþ1 ¼ 0

ð8Þ

�½Mkþ la/ðY þ SÞ�PYþSð2Þ
þl/ðY þ Sþ 1ÞP1;YþSþ1 ¼ 0

ð9Þ

�½ðM � 1Þkd þ ðlþ laÞ/ðY þ Sþ 1Þ�P1;YþSþ1

þMkPYþSð1Þ þMkPYþSð2Þ
ðlþ laÞ/ðY þ Sþ 2ÞP1;YþSþ2 ¼ 0

ð10Þ

�½ðM þ Y þ S� nÞkd þ ðlþ laÞ/ðnÞ�P1;n

þðM þ Y þ S� nþ 1ÞkdP1;n�1

þðlþ laÞ/ðnþ 1ÞP1;nþ1 ¼ 0;

Y þ Sþ 2� n\L

ð11Þ

�ðlþ laÞ/ðLÞP1;L þ mkdP1;L�1 ¼ 0 ð12Þ

Case II: The number of cold standby machines (Y) is

less than the threshold value (N) at which the repair

starts, i.e. when N < Y

The steady-state probabilities of the states (0, n) for

0 B n B N - 1 are governed by Eqs. (1)–(2). Also for the

states (1, n) when 1 B n B N, we can refer Eqs. (3)–(5).

Now, we construct the equations for the states (1, N ? 1)

to (1, Y ? S - 2) as follows:

�½Mkþ Saþ l/ðnÞ�P1;n þ ðMkþ SaÞP1;n�1

þl/ðnþ 1ÞP1;nþ1 ¼ 0;N þ 1� n� Y
ð13Þ

�½Mkþ ðS� 1Þaþ l/ðY þ 1Þ�P1;Yþ1

þðMkþ SaÞP1;Y þ l/ðY þ 2ÞP1;Yþ2 ¼ 0
ð14Þ

�½Mkþ ðY þ S� nÞaþ l/ðnÞ�P1;n

þ½Mkþ ðY þ S� nþ 1Þa�P1;n�1

þl/ðnþ 1ÞP1;nþ1 ¼ 0;

Y þ 2� n� Y þ S� 2

ð15Þ

For the range (1, Y ? S - 1) to (1, L), Eqs. (7)–(12)

hold.

Case III: The threshold parameter (N) is more

than the number of cold standby machines (Y) and is

less than the total number (Y 1 S) of standbys

machines, i.e. when Y < N < Y 1 S

In this case, Eqs. (1) and (3), will hold for the states (0, 0)

and (1, 1), respectively. For the states (0, 1) to (0, N - 1),

we have the following equations:

�ðMkþ SaÞP0;n þ ðMkþ SaÞP0;n�1 ¼ 0; 1� n� Y ð16Þ

�½Mkþ ðS� 1Þa�P0;Yþ1 þ ðMkþ SaÞP0;Y ¼ 0 ð17Þ

�½Mkþ ðY þ S� nÞa�P0;n

þ½Mkþ ðY þ S� nþ 1Þa�P0;n�1 ¼ 0;

Y þ 2� n�N � 1

ð18Þ

For the states (1, 2) to (1, N), we construct the following

equations:

Fig. 1 State transition diagram
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� ½Mkþ Saþ l/ðnÞ�P1;n þ ðMkþ SaÞP1;n�1

þ l/ðnþ 1ÞP1;nþ1 ¼ 0; 2� n� Y
ð19Þ

� ½Mkþ ðS� 1Þaþ l/ðY þ 1Þ�P1;Yþ1

þ ðMkþ SaÞP1;Y þ l/ðY þ 2ÞP1;Yþ2 ¼ 0
ð20Þ

�½Mkþ ðY þ S� nÞaþ l/ðnÞ�P1;n

þ ½Mkþ ðY þ S� nþ 1Þa�P1;n�1

þ l/ðnþ 1ÞP1;nþ1 ¼ 0;

Y þ 2� n�N � 1

ð21Þ

� ½Mkþ ðY þ S� NÞaþ l/ðNÞ�P1;N

þ ½Mkþ ðY þ S� N þ 1Þa�P1;N�1

þ l/ðN þ 1ÞP1;Nþ1

þ ½Mkþ ðY þ S� N þ 1Þa�P0;N�1 ¼ 0

ð22Þ

For the states in the range (1, N ? 1) to (1, L), Eqs. (6)–

(12) also hold.

Queue size distribution

The queue size for the steady-state probabilities P0,n and

P1,n can be obtained by solving the governing equations,

which can be further used for the evaluation of the per-

formance measures of interest.

Case I: When N 5 Y

In this case, when the number of cold standbys and the

threshold level N are equal, the queue size for the steady-

state probabilities P0,n, P1,n, PYþSð1Þ and PYþSð2Þ can be

obtained by solving the Eqs. (1)–(12) recursively in the

following manner.

Equation (1) can be written as:

P1;1 ¼
K
a1

P0:0 ð23Þ

where K ¼ Mkþ Sa; an ¼ l/ðnÞ:
From Eq. (2), we can get

P0;n ¼ P0;0; 1� n�N � 1 ð24Þ

Solving Eqs. (3) and (4), we obtain

P1;n ¼
Kn þ

Pn�1
k¼1 K

n�kcðkÞ

cðnÞ
P0:0; 1� n�N ð25Þ

where cðnÞ ¼
Qn

j¼1 aj:
On solving Eq. (5) for n = N, we obtain

P1;Nþ1 ¼
B1

cðNþ1Þ P0:0 ð26Þ

where, B1 ¼ KYþ1 þ
PY�1

k¼1 K
Yþ1�kcðkÞ (as we already

know that we are considering the case when N = Y).

Again, solving recursively for n = N ? 1 to Y ? S - 2,

we obtain

P1;n ¼
B1

cðnÞ
Yn�Y�1

i¼1

ðkYþiÞP0:0; N þ 2� n� Y þ S� 1 ð27Þ

where kn ¼ Mkþ ðY þ S� nÞa:
To obtain the steady-state probabilities for the nodes

Y ? S, Y ? S ? 1 and Y ? S ? 2, i.e., P1;YþS, P1;YþSþ1,

P1;YþSþ2, we solve the Eqs. (7), (8), (9) and (10), recur-

sively. Solving Eq. (7) and (8), we get

PYþSð1Þ ¼
B1

cðYþSÞ

YS�1

i¼1

ðkYþiÞP0:0 �
la
l
PYþSð2Þ ð28Þ

P1;YþSþ1 ¼
B1

QS
i¼1ðkYþiÞ

la/ðY þ Sþ 1ÞcðYþSÞ P0;0

� kYþS þ aYþS

aYþSþ1

� �

PYþSð2Þ
ð29Þ

Multiplying the above equation by l/ðY þ Sþ 1Þ on

both sides and then solving it simultaneously with Eq. (9),

we get

PYþSð2Þ ¼
l
la

C1n1P0;0 ð30Þ

where n1 ¼
B1

QS

i¼1
ðkYþiÞ

cðYþSÞ and C1 ¼ 1
2kYþSþðlþlaÞ/ðYþSÞ. On

substituting the value of PYþSð2Þ in Eqs. (28) and (29), we

get

PYþSð1Þ ¼
kYþS þ ðlþ laÞ/ðY þ SÞ

kYþS

C1n1P0;0 ð31Þ

and

P1;YþSþ1 ¼
kYþS þ la/ðY þ SÞ
la/ðY þ Sþ 1Þ C1n1P0;0 ð32Þ

P1;YþS ¼ PYþSð1Þ þ PYþSð2Þ ð33Þ

From Eqs. (10), (11) and (12), we can obtain the results

for the remaining states as:

P1;n ¼
kYþS þ la/ðY þ SÞ
la/ðY þ Sþ 1Þ

�
Yn�ðYþSÞ�1

i¼1

k0YþSþi

ðlþ laÞ/ðY þ Sþ i� 1Þ

� �

� C1n1P0;0;

Y þ Sþ 2� n� L

ð34Þ

where k0n ¼ ðM þ Y þ S� nÞkd:
Thus, the queue size distribution for case (I) is given in

the Eqs. (24)–(27) and (30)–(34). To obtain the probability

P0;0, the following normalizing condition is used:
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XN�1

i¼0

P0;i þ
XL

j¼1

P1;j ¼ 1 ð35Þ

Case II: When N\Y

In the similar manner as in case I, on solving Eqs. (1)–(5),

(7)–(15) recursively and using the notations:

B ¼ Kn þ
Xn�2

k¼1

Kn�kcðkÞ; n ¼ B
QS

i¼1 kYþi

cðYþSÞ ;

C ¼ 1

2kYþS þ ðlþ laÞ/ðY þ SÞ ;

Z ¼
Xn�Y�1

k¼1

Yn�Y�1

i¼kþ1

kYþi

 !

cðYþkÞ;

PYþSð1Þ ¼
kYþS þ ðlþ laÞ/ðY þ SÞ

kYþS

� CnP0;0;

and PYþSð2Þ ¼
l
la

CnP0;0

and other notations being same as used in case I, we obtain

the queue size distribution as follows:

P0;n ¼ P0;0; 1� n�N � 1 ð36Þ

P1;n ¼

Kn þ
Pn�1

k¼1½Kn�kcðkÞ�
cðnÞ

 !

P0:0; 1� n�N

Kn þ
Pn�2

k¼1½Kn�kcðkÞ�
cðnÞ

 !

P0:0; N þ 1� n� Y þ 1

B
Qn�Y�1

i¼1 ðkYþiÞ þ K2

aY
Z

cðnÞ
P0:0; Y þ 2� n� Y þ S� 1

PYþSð1Þ þ PYþSð2Þ; n ¼ Y þ S

kYþS þ la/ðY þ SÞ
la/ðY þ Sþ 1Þ CnP0;0; n ¼ Y þ Sþ 1

kYþS þ la/ðY þ SÞ
la/ðY þ Sþ 1Þ

�
Yn�ðYþSÞ�1

i¼1

k0YþSþi

ðlþ laÞ/YþSþiþ1

� �

� CnP0;0;

Y þ Sþ 2� n� L

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð37Þ

Case III: When N[ Y

Using the following notations,

B2 ¼ KYþ1 þ
XY

k¼1

ðKY�kþ1cðkÞÞ;

n2 ¼
B2

QYþS�N
i¼1 kNþi

cðYþSÞ ;

C2 ¼
1

2kYþS þ ðlþ laÞ/ðY þ SÞ ;

Z1 ¼
Xn�Y�1

k¼1

Yn�Y�1

i¼kþ1

kYþi

 !

cðYþkÞ;

we have

PYþSð1Þ ¼
kYþS þ ðlþ laÞ/ðY þ SÞ

kYþS

� C2n2P0;0

and

PYþSð2Þ ¼
l
la

C2n2P0;0

From Eqs. (1), (3), (6)–(12) and (16)–(22), we derive the

queue size as follows:

P0;n ¼
P0;0; 1� n� Y
K

cðnÞ
P0;0; Y þ 1� n�N

8
<

:
ð38Þ

P1;n ¼

Kn þ
Pn�1

k¼1ðKn�kcðkÞÞ
cðnÞ

 !

P0:0; 1� n� Y þ 1

B2

Qn�Y�1
i¼1 ðkYþiÞ þ KZ1

cðnÞ
P0:0; Y þ 2� n�N

B2

cðnÞ
Yn�Y�1

i¼1

kYþiP0:0; N þ 1� n� Y þ S� 1

PYþSð1Þ þ PYþSð2Þ; n ¼ Y þ S

kYþS þ la/ðY þ SÞ
la/ðY þ Sþ 1Þ C2n2P0;0; n ¼ Y þ Sþ 1

kYþS þ la/ðY þ SÞ
la/ðY þ Sþ 1Þ

�
Yn�ðYþSÞ�1

i¼1

k0YþSþi

ðlþ laÞ/YþSþiþ1

� �

� C2n2P0;0; Y þ Sþ 2� n� L

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð39Þ

Special cases

To establish the validity of the results obtained in ‘‘Queue

size distribution’’ (Case I), we explore some special cases

by varying the values of /ðnÞ and N as follows:

1. If /ðnÞ ¼ 1
n
, the model portrays a time sharing and

state-dependent MRP problem working under N-pol-

icy. For the state (0, n), the state probabilities are same
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as given by Eq. (24). For the state (1, n) using

D ¼ KNþ1 þ
XN�1

k¼1

ðKNþ1�klkÞ
k!

and

E ¼ ðY þ Sþ 1Þ!
lYþS � la

� �
ðY þ SÞkYþS þ lþ la
2ðY þ SÞkYþS þ lþ la

� �

we have

PYþSð1Þ ¼
ðY þ SÞkYþS þ lþ la
2ðY þ SÞkYþS þ lþ la

� �

� ðY þ SÞ!D
lYþS � kYþS

�
Ys

i¼1

kYþi

" #

P0;0

PYþSð2Þ ¼
l
la

� ðY þ SÞkYþS

2ðY þ SÞkYþS þ lþ la

� ðY þ SÞ!D
lYþS

�
Ys

i¼1

kYþi

" #

P0;0

Thus, we get the following probabilities:

P1:n¼

n!

ln
Knþ

Xn�1

k¼1

ðKn�klkÞ
k!

" #

P0;0; 1�n�N

ðNþ1Þ!
lNþ1

½D�P0;0; n¼Nþ1

n!D

ln
Yn�Y�1

i¼1

kYþi

l
ðYþ iÞ

" #

P0;0; Yþ2�n�YþS�1

PYþSð1ÞþPYþSð2Þ; n¼YþS

DðYþSþ1Þ!
lYþS�la

� �

� ðYþSÞkYþSþla
ð2YþSÞkYþSþlþla

� �

�
Ys

i¼1

kYþi

" #

P0;0; n¼YþSþ1

Yn�ðYþSÞ�1

i¼1

k0YþSþiðYþSþ iþ1Þ
ðlþlaÞ

" #

�
Ys

i¼1

kYþi

" #

�DE�P0;0; YþSþ2�n�L

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð40Þ

2. If /ðnÞ ¼ 1, the model reduces to a state-dependent

N-policy MRP model with additional repairman. In

this case, for brevity the following notations have been

used

G ¼ KNþ1 þ
XN�1

k¼1

ðKNþ1�klkÞ
" #

;

H ¼ kYþS þ la
2kYþS þ lþ la

� �

PYþSð1Þ ¼
GH

lYþS � la

� �

�
Ys

i¼1

kYþi

" #

P0;0

and PYþSð2Þ ¼ l�G
la�lYþS � 1

2kYþSþðlþlaÞ
� ½
Qs

i¼1

kYþi�P0;0

The steady-state probabilities P0;n can be obtained by

Eq. (24). The steady-state probabilities P1;n become:

P1:n¼

1

ln
Knþ

Xn�1

k¼1

ðKn�klkÞ
" #

P0;0; 1�n�N

1

lNþ1
½G�P0;0; n¼Nþ1

G

ln
Yn�Y�1

i¼1

kYþi

" #

P0;0; Yþ2�n�YþS�1

PYþSð1ÞþPYþSð2Þ; n¼YþS

GH

lYþS�la

� �

�
Ys

i¼1

kYþi

" #

P0;0; n¼YþSþ1

Yn�ðYþSÞ�1

i¼1

k0YþSþi

ðlþlaÞ

" #

�
Ys

i¼1

kYþi

" #

� GH

lYþS�la
P0;0; þSþ2�n�L

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð41Þ

3. If /ðnÞ ¼ 1
n
, N = 1, the machining system reduces to

time sharing state-dependent queueing system. The

repairman gets activated as soon as a machine fails,

i.e., N-policy is not taken into account. The queue size

distribution can be obtained by substituting N ¼ 1 and

/ðnÞ ¼ 1
n
in the Eqs. (25)–(27), (30) and (32)–(34).

4. If /ðnÞ ¼ 1, N = 1, the model provides results for a

machining system with additional repairman but

without N-policy and time sharing factor.

Performance indices

The performance indices of the concerned system can help

the system engineer to develop an appropriate design for

the concerned machining system. Using the probabilities

obtained in the case I, some performance indices, viz.

expected number of failed machines in the system, prob-

ability that the first repairman is busy, probability that both

repairmen are busy, probability that the system is in

accumulation state, throughput of the system and variance

of the number of failed machines in the system have been

established as follows:
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• The expected number of failed machines in the system

is

EðnÞ ¼
XN�1

n¼0

nP0;n þ
XL

n¼1

nP1;n ð42Þ

• The probability of the system being in accumulation

state is

PðAÞ ¼
XN�1

n¼0

P0;n ð43Þ

• The probability that only first permanent repairman

being in busy state is

PðFBÞ ¼
XYþS�1

n¼0

P1;n ð44Þ

• The probability that both the repairmen being in busy

state is

PðBBÞ ¼
XL

n¼YþS

P1;n ð45Þ

• The throughput of the time-shared system is

s ¼ l
XYþS�1

n¼1

P1;n þ ðlþ laÞ
XL

n¼YþS

P1;n ð46Þ

• The variance of the number of failed machines is

VarðnÞ ¼
XL

n¼1

n2P1;n þ�ðEðnÞÞ2 ð47Þ

Cost function

The cost function for the time-shared machine repair

problem has been constructed to make the system eco-

nomic by the optimal choice of repair rates. It is desirable

to reduce the cost as much as possible by setting the

optimal service rate. For the concerned system, we define

the cost factors associated with main activities as follows:

Cf Cost per unit time for each failed machine present in

the system

Ca Cost per unit time in the accumulation state

Cp Cost per unit time of the permanent repairman

Cb Cost per unit time of the additional removable

repairman

To achieve the maximum net profit, total average cost

must be minimized. The total average cost is given by

EfTCg ¼ CfEðNÞ þ CaPðAÞ þ CpPðFBÞ
þðCb þ CpÞPðBBÞ

ð48Þ

Numerical analysis

To establish the utility of the performance model of the

queueing system, the analytical solution is not enough as

such it is important to do numerical simulation. The

numerical results of the performance measures will be of

great help to the system engineers and decision makers in

improving and future designing the system. In this section,

the sensitivity analysis is carried out for case I, by setting

the default parameters for the numerical results depicted in

Figs. 2, 3, 4 and Tables 1, 2, 3 as Y = 4, S = 3, k = 0.3,

a = 0.2, kd = 0.4, l = 0.5, la = 0.2. For Tables 1, 2, 3

and Figs. 3, 4, the numerical results are obtained for

M = 5, 7, 9. To obtain the variation in the cost function

E{TC} in Fig. 2, the results are obtained by setting M = 7.

The effects of the failure rates of operating machines (k,
kd), the failure rate of spares (a), service rates (l, la) of the
repairmen and the number of operating machines (M) have

been examined on various performance measures such as

the expectation E(n) and variance Var(n) of the number of

failed machines in the system, throughput (s) and the

expected total cost E{TC} incurred on the system. The

long run probability measures of the different states of the

system like probability of the system being in accumulation

state P(A), probability when the first permanent repairman

is in busy state P(FB) and the probability when both

repairmen are in busy state P(BB) have also been explored

numerically for the variation in different parameters. Now,

we discuss the sensitivity of the parameters as follows:

• Effect of the failure rate of machines The failure rate of

the operating machines (k) affects the performance of a

machining system significantly. It is clear from Table 1

that with the increase in the failure rate (k) of the

operating machines, the probability of both permanent

and additional repairmen being busy P(BB) increases

whereas the probability of the system being in accu-

mulation state P(A), the probability of only first

repairman being busy P(FB) and the Var(n) decrease. It

is also observed from Figs. 3a and 4a that the queue

length E(n) and the throughput (s), respectively,

increase with the increase in the failure rate of the

operating machines. When all the spares have exhaus-

ted, the machines start failing with a degraded rate (kd)
due to overload. The queue length E(n) and the

throughput (s) of the system increase with the increase

in the degraded failure rate (kd) of the machines. A

converging pattern is observed in the graphs shown in

the Figs. 3c and 4c.

The spares are also likely to fail with rate (a) and also

affect the system performance considerably. Table 2

depicts a similar variation in the probabilities and

variance by increasing the failure rate of the spares as
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Fig. 2 Total cost of the system by varying l for different values of la

(a)
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(c)
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Fig. 3 Expected number of failed machines by varying a k, b a, c kd
for different values of M
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observed by varying the failure rate (k) of the operating
machines in Table 1. The queue length E(n) and the

throughput (s) of the system increase gradually with the

increase in the failure rate of the spares which can be

seen in the Figs. 3b and 4b, respectively.

• Effect of the repair rates of the permanent as well as

additional repairmen The repair rates of the permanent

as well as additional repairmen affect the total cost of

the system remarkably. It is clear from Table 3 that the

long run probabilities of the system in accumulation

state P(A) and the P(BB) increases whereas the long

run probabilities P(FB) and Var(n) decrease with the

(a)

(b)

(c)
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τ

Fig. 4 Throughput of the system by varying a k, b a, c kd for

different values of M

Table 1 Performance measures of the system by varying M and k

M k P(A) P(FB) P(BB) Var(n)

5 0.3 0.00070 0.23784 0.76147 0.85857

1.2 0.00000 0.03607 0.96394 0.66354

2.1 0.00000 0.01415 0.98586 0.58421

7 0.3 0.00011 0.15464 0.84525 1.01274

1.2 0.00000 0.01873 0.98127 0.86666

2.1 0.00000 0.00693 0.99307 0.77330

9 0.3 0.00002 0.10384 0.89614 1.32885

1.2 0.00000 0.01064 0.98936 1.14656

2.1 0.00000 0.00379 0.99622 1.04056

Table 2 Performance measures of the system by varying M and a

M a P(A) P(FB) P(BB) Var(n)

5 0.3 0.00031 0.22237 0.77731 0.80831

1.1 0.00000 0.14787 0.85213 0.63824

1.9 0.00000 0.11138 0.88863 0.56696

7 0.3 0.00006 0.14678 0.85316 0.98939

1.1 0.00000 0.10528 0.89472 0.88215

1.9 0.00000 0.08256 0.91744 0.82964

9 0.3 0.00001 0.09956 0.90043 1.31454

1.1 0.00000 0.07539 0.92461 1.24002

1.9 0.00000 0.06098 0.93902 1.19949

Table 3 Performance measures of the system by varying M and l

M l P(A) P(FB) P(BB) Var(n)

5 0.3 0.00049 0.27418 0.72533 1.1467

1.2 0.00109 0.15881 0.84010 0.4994

2.1 0.00130 0.11259 0.88611 0.3518

7 0.3 0.00007 0.16936 0.83057 1.5153

1.2 0.00018 0.10675 0.89308 0.4701

2.1 0.00021 0.07541 0.92437 0.2865

9 0.3 0.00001 0.10401 0.89598 2.0977

1.2 0.00004 0.07709 0.92287 0.5343

2.1 0.00005 0.05520 0.94476 0.2984
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increase in the repair rate of the permanent repairman

(l).
• Variation in the cost function The variation in the

expected total cost of the system E{TC} has been

observed for three different sets of cost parameters

which are depicted in Fig. 2a–c. The different cost

parameters set for the figures are as follows:

I. Cf = Rs. 50, Ca = Rs. 10, Cp = Rs. 80, Cb =

Rs. 100.

II. Cf = Rs. 100, Ca = Rs. 50, Cp = Rs. 200,

Cb = Rs. 300.

III. Cf = Rs. 100, Ca = Rs. 50, Cp = Rs. 250,

Cb = Rs. 250.

From Fig. 2a–c, it has been observed that the expected

total cost of the system E{TC}increases with the increase

in the repair rate of the additional repairman (l). However,
with the increase in the repair rate of the permanent

repairman (la), the total cost E{TC} first decreases and

then increases, i.e., E{TC} shows the convexity with

respect to repair rate (la). From Fig. 2a, a minimum cost

E{TC} = Rs. 407.88 is obtained at optimal repair rates of

the permanent repairman and additional repairman at l ¼ 1

and la ¼ 1:37.

Now, we can conclude our results as:

• The failure rates of both operating machines as well as

standbys should be kept low to avoid the excessive

workload at the repairman.

• The degraded failure rate of the system should also be

kept low, otherwise it will result in huge queue at the

repairmen.

• The repair rate of the additional repairman should be

kept higher as compared to that of the permanent

repairmen to minimize the overall cost of the system.

Discussion

In this investigation, threshold-based repair facility for the

time-shared Markovian machine repair problem with

mixed standbys under the care of one permanent repairman

and one additional repairman has been studied. The fea-

tures of mixed standbys, degraded failure and additional

repairman incorporated in the model all together make our

study more realistic and can be realized in several real

world industrial organizations operating in multi-compo-

nent machining environment. The repair rate of the failed

operating machines and spare machines should be kept

higher for smooth functioning of the system. The incor-

poration of threshold N-policy to turn on the permanent

repairman makes our system cost effective and economic.

It is realized in many machining systems that the

permanent repairman cannot cope up with the increase in

work load as such provision of additional repairman may

be helpful in faster recovery of the failed machines. The

numerical simulation of various performance indices

facilitated will definitely provide insight to the system

designers and industrial engineers to improve the efficiency

and reliability of the concerned machining systems. The

cost analysis carried out for the evaluation of minimum

value of cost for a given set of other cost parameters sig-

nifies the validity and profitability of the model in a very

effective manner and will be helpful to the decision makers

in minimizing the cost of maintainability and in turn

increase in the profit which is a highly desired trait of any

organization. This work can be further extended by

incorporating some more features, such as bulk failure and

the switching failure.
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