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Abstract
This paper deals with construction of confidence intervals for process capability index using bootstrap method (proposed 
by Chen and Pearn in Qual Reliab Eng Int 13(6):355–360, 1997) by applying simulation technique. It is assumed that the 
quality characteristic follows type-II generalized log-logistic distribution introduced by Rosaiah et al. in Int J Agric Stat Sci 
4(2):283–292, (2008). Discussed different bootstrap confidence intervals for process capability index. Maximum likelihood 
method is considered for obtaining the estimators of the parameter. Monte Carlo simulation technique is applied to find out the 
coverage probabilities and average widths of the bootstrap confidence intervals. The results are illustrated with real data sets.

Keywords Process capability index · Bootstrap confidence interval · Maximum likelihood estimate · Type-II generalized 
log-logistic distribution

Introduction

In the present era, the term “Process Capability Indices” 
finds frequent space in the statistical quality control litera-
ture. If one may keen to study whether the ongoing produc-
tion process is moving according to the predefined specifica-
tions or not, process capability index is the right technique to 
be chosen as it will help in monitoring and analyzing qual-
ity process and productivity. As we know, statistical quality 
control refers to the use of statistical technique in monitoring 
and maintaining the standards of products and services. A 
quality process evaluation procedure such as process capa-
bility analysis helps the manufacturer to achieve consumer 
quality expectations. It is an effective measure to gauge the 

quality of production process. Process capability analysis is 
used to determine whether the process capability of a sup-
plier conforms to a customer’s specifications, by applying 
an expression called the process capability index (PCI), to 
a controlled process. PCI is one such tool to measure the 
quality process at given specifications. As this method is 
simple and transparent and underlying assumptions are not 
complicated compared with conventional methods, PCI 
methods got popularized. The first PCI was developed by 
Juran (1974); later, different PCIs found their origin when 
the underlying distribution is normal, viz. Vännman (1995), 
Aslam et al. (2013), etc. As pointed by Kane (1986) and 
Gunter (1989a, b, c, d), the quality characteristic may not be 
normal in many occasions and assuming normality in such 
cases could lead to inaccurate and unreliable results.

Clements (1989) introduced two PCIs, Cp and Cpk, for 
non-normal data by relaxing the normality assumption 
and brought the concept of quantile-based PCIs. Later, it 
was developed by Vännman (1995). In a similar way, Kane 
(1986) developed PCI based on non-normal assumption. 
Distinguished statisticians made their efforts in develop-
ing different PCI methods, viz. Chan et al. (1988), Pearn 
and Chen (1995), Chen and Pearn (1997), Wood (2005), 
Chen et al. (2008), Wu and Liang (2010), Perakis (2010) 
and Kashif et al. (2017).

Peng (2010a, b) developed parametric lower confidence 
limits of quantile-based PCIs and also studied PCIs for 
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processes with skewed distributions. Similar developments 
can be seen from Kantam et al. (2010) and Wararit and 
Somchit (2012) for half-logistic distribution, and from Rao 
et al. (2015) for inverse Rayleigh and log-logistic distribu-
tions. The main aim behind the development of PCIs is to 
give indication on the quality process whether it is moving 
in line with the predefined standards. These standards can 
be determined by setting lower specification limit (L) and 
upper specification limit (U). In the traditional approach, it 
is assumed that the quality process is normally distributed, 
and then the PCI, Cpk, is given by

The sample mean (x̄) and standard deviation (s) derived from 
a random sample of size n 

(
X1,X2,… ,Xn

)
 are to be used to 

estimate the unknown parameters � and � ; hence,

Clements (1989) suggested that if the process characteristic 
is drawn from a non-normal distribution, PCI Cpk can be 
constructed for any distribution as

Up , Lp and M are, respectively, the 99.865th, 0.135th and 
50th percentiles of the concerned distribution. Another 
method proposed by Chen and Pearn (1997), when the 
underlying process is from a non-normal distribution, is

where �q is the qth quantile, i.e.,P
(
X < 𝜉q

)
= q , 

p1 = 0.00135 , p2 = 0.5 , p3 = 0.99865 , d = (USL − LSL)∕2 , 
m = (USL + LSL)∕2 and T is the target value; from (4), we 
have

As described above, many PCI methods are developed so 
far, and few of the widely used PCIs are Cp and Cpk devel-
oped by Kane (1986). In this paper, we proposed the popu-
lar process capability index CNpk when the quality process 
follows TGLLD. The next part of the article is prepared in 
the following way. Introduction of TGLLD and the estima-
tion of parameters using ML method are given in “Type-II 
generalized log-logistic distribution” section. In “Bootstrap 

(1)Cpk = Min

{
USL − �

3�
,
� − LSL

3�

}

.

(2)C̃pk = Min
{
USL − x̄

3s
,
x̄ − LSL

3s

}
.

(3)Cpk = Min

{
USL −M

Up −M
,
M − LSL

M − Lp

}

.

(4)CNp(u;v) =
d − u

|||
�p2 − m

|||

3

√((
�p3 − �p1

)
∕6

)2
+ �

(
�p2 − T

)2
,

CNp(0, 0) = CNp,CNp(0, 1) = CNpm,CNp(1, 0) = CNpk

and CNp(1, 1) = CNpmk.

confidence intervals” section, the bootstrap confidence 
intervals are determined for the PCIs proposed by Chen 
and Pearn (1997). In “Simulation study” section, simulated 
results for small sample comparison are tabulated. Finally, 
the benefit of PCIs so developed for TGLLD is demonstrated 
with an example in “Illustrative example” section.

Type‑II generalized log‑logistic distribution

Log-logistic distribution (LLD) has proven its importance in 
quality control. Different authors developed properties and 
types of acceptance sampling plans for LLD. The cumulative 
distribution function (CDF) of the log-logistic distribution 
(LLD) is

where σ is the scale parameter and λ is the shape parameter.
The practical pertinence of generalized log-logistic distri-

bution (GLLD) in diverse sectors attracted various authors to 
put their attention in developing some extensions for effec-
tive and wide use of log-logistic distribution, viz. Rosaiah 
et al. (2006, 2007). One such extension to this distribution 
is named as type-II generalized log-logistic distribution 
(TGLLD) introduced by Rosaiah et al. (2008); its cumula-
tive distribution function (CDF) is

It may be noted that the distribution given in (6) is defined 
through the reliability-oriented generalization of log-logistic 
distribution. In short, we call this as the type-II generalized 
log-logistic distribution [type-I generalized (exponentiated) 
log-logistic distribution is given by Rosaiah et al. (2006)]. 
The corresponding probability density function (PDF) is 
given by

where σ is the scale parameter, and λ and θ are shape param-
eters. The three-parameter TGLLD will be denoted by 
TGLLD (�, �, �) . If  � = 1 , then Eq. (7) becomes log-logis-
tic distribution, and if � = 1, then TGLLD becomes Pareto 
type-II distribution. Since log-logistic distribution is also a 
survival model as exemplified by many authors in the past, 
a series system of independent components with common 
log-logistic lifetime distribution for each component, we are 
motivated to study some inferential aspects of the distribu-
tion of such a series system. As not much work is reported 

(5)F(t;𝜎, 𝜃) =
(t∕𝜎)𝜆

[
1 + (t∕𝜎)𝜆

] ;t > 0, 𝜎 > 0, 𝜆 > 1,

(6)
F(t;𝜆, 𝜃, 𝜎) = 1 −

[
1 + (t∕𝜎)𝜆

]−𝜃
; t > 0, 𝜆 > 1, 𝜃 > 0, 𝜎 > 0.

(7)

f (t;𝜆, 𝜃, 𝜎) =
𝜆𝜃

𝜎

(t∕𝜎)𝜆−1

[
1 + (t∕𝜎)𝜆

]𝜃+1 ; t > 0, 𝜆 > 1, 𝜃 > 0, 𝜎 > 0,
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about the study of such a model, we made an attempt to 
take up some theoretical, applied inferential problems with 
respect to type-II generalized log-logistic model. The model 
provided more accurate results, especially when the data 
were examined for quality characteristics. Rao et al. (2012a, 
b) developed the reliability test plans for this distribution. 
The reliability function and hazard (failure rate) function of 
type-II generalized log-logistic distribution are, respectively, 
given by

Let t1, t2,… , tn be a random sample of size n drawn from 
TGLLD (T;�, �, �) , then likelihood function L of the sample 
is

The log-likelihood function is

The log-likelihood equations to obtain MLEs of �, � and � 
are obtained as

(8)R(t) =
[
1 + (t∕�)�

]−�

(9)h(t) =
𝜆𝜃(t∕𝜎)𝜆−1

[
1 + (t∕𝜎)𝜆

] ; t > 0, 𝜆 > 1, 𝜃 > 0, 𝜎 > 0.

(10)L =

n∏

i=1

f
(
ti;�, �, �

)
=

�n�n

�n�

n∏

i=1

(
ti
)�−1

[
1 +

(
ti
/
�

)�]�+1
.
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×

n∑
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log ti − (� + 1)

n∑
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log
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(
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�
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.
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×

n∑
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1
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1 +

(
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/
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(
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/
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log
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= 0

� log L
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log
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(14)
MLE of 𝜃 is �̂� =

n
n∑

i=1

log
�
1 +

�
ti
�
𝜎

�𝜆�
.

Let the parametric function of TGLLD be represented by 
� = (�, �, �) ; by recalling the invariance property of MLE, 
𝜉q = 𝜉q(𝜏) becomes the maximum likelihood estimator 
(MLE) of quantile �q , where 𝜏 =

(
�̂�, �̂�, �̂�

)
 be the MLE of 

� = (�, �, �) . Hence, we consider that the MLE of the pro-
posed PCI with parametric function 𝜏 =

(
�̂�, �̂�, �̂�

)
 is

Therefore, CNpk(𝜏) is a real-valued function of quantiles 
�p1 , �p2 and �p3.

The qth quantile of TGLLD with parameters � = (�, �, �) 

is given by �q = �

[

(1 − q)
−1∕� − 1

]1∕�
 . Simulation tech-

nique is considered for small sample comparison, as it may 
be difficult to find out mathematical form of sampling dis-
tribution of 𝜏.

Bootstrap confidence intervals

Bootstrap sampling is a method of drawing samples (with 
replacement) from the underlying probability distribution. 
Efron (1982) introduced a computationally intensive method 
of estimation called Bootstrap, a technique of computer-
based simulation for estimating the parameters under con-
sideration. Estimates of PCI are determined through boot-
strap confidence intervals. As stated by Efron and Tibshirani 
(1993), for obtaining reasonably accurate confidence interval 
estimates, a minimum of 1000 bootstrap resamples may be 
considered. Among many other methods, the types of boot-
strap confidence interval developed by Efron and Tibshirani 
are considered under study, viz. the standard bootstrap (SB) 
confidence interval, the percentile bootstrap (PB) confidence 
interval and the bias-corrected percentile bootstrap (BCBP) 
confidence interval.

Let t1, t2,… , tn be a random sample of size n drawn from 
a quality process following TGLLD; then, t∗

1
, t∗
2
,… , t∗

n
 is a 

bootstrap sample of size n drawn with replacement from the 
original sample. Using this bootstrap sample, the bootstrap 
ĈNpk , denoted by Ĉ∗

Npk
 , can be obtained. For B bootstrap sam-

ples, we can obtain B bootstrap Ĉ′
Npk

s and arrange them in 
ascending order, i.e., Ĉ∗

Npk
(1), Ĉ∗

Npk
(2),… , Ĉ∗

Npk
(B) , which 

forms an empirical bootstrap distribution of ĈNpk . Here, we 
take B = 10,000 bootstrap samples.

(15)

ĈNpk(𝜏) = CNpk(𝜏) =
min

(
USL − 𝜉p2 (𝜏), 𝜉p2 (𝜏) − LSL

)

((
𝜉p3 (𝜏) − 𝜉p1(𝜏)

)/
2

) .
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Standard bootstrap (SB) confidence interval

Here, the PCI estimate under study is ĈNpk ; then, jth boot-
strap sample estimator of ĈNpk is

where 𝜏(j) is the jth bootstrap estimator of �.
Hence, the sample average and standard deviation are 

obtained as

Then, the 100 (1 − �)% standard bootstrap (SB) confidence 
interval is

where Z1−�∕ 2 is the (1 − �∕2)th quantile of the standard nor-
mal distribution.

Percentile bootstrap (PB) confidence interval

The 100 (1 − �)% percentile bootstrap (PB) confidence inter-
val is given by

where Ĉ∗
Npk(B(𝛼∕2))

 and Ĉ∗
Npk(B(1−𝛼∕2))

 be the 100(�∕2) th and 
100(1 − �∕2) th empirical percentiles of Ĉ∗

Npk
 , respectively.

Bias‑corrected percentile bootstrap (BCPB) 
confidence interval

The complete bootstrap distribution obtained from a sample 
which could result in the higher or lower side of the expected 
value which is nothing but the bias, as the name indicates; 
the third method introduced to correct this potential bias is 
bias-corrected percentile bootstrap (BCPB) confidence inter-
val. We use the ordered distribution of Ĉ∗

Npk
 , to compute the 

probability p0 = Pr
[
Ĉ∗
Npk

≤ ĈNpk

]
 , where Ĉ∗

Npk
 is the esti-

mated value of ĈNpk . Then, the following are determined:

1. The biased-correction factor Z0 = �−1(p0) , where �(.) 
is the cumulative standard normal distribution function.

2. PL = �(2Z0 + Z�∕2) and PU = �(2Z0 + Z1−�∕2) are com-
puted using Z0 values.

(16)

Ĉ
∗(j)

Npk
=

min
(
USL − 𝜉p2 (𝜏

(j)), 𝜉p2 (𝜏
(j)) − LSL

)

((
𝜉p3 (𝜏) − 𝜉p1 (𝜏)

)/
2

) ; j = 1, 2,… ,B.

̄̂
C∗
Npk

=
1

B

B∑

j=1

Ĉ
∗(j)

Npk
and S∗

Ĉ∗
Npk

=

√√√
√ 1

B − 1

B∑

j=1

(
Ĉ
∗(j)

Npk
− ̄̂
C∗
Npk

)2

.

(17)CISB =

(
̄̂
C∗
Npk

− Z1−𝛼∕2S
∗

Ĉ∗
Npk

,
̄̂
C∗
Npk

+ Z1−𝛼∕2S
∗

Ĉ∗
Npk

)

,

(18)CIPB =
(
Ĉ∗
Npk(B(𝛼∕2))

, Ĉ∗
Npk(B(1−𝛼∕2))

)
,

Hence, 100 (1 − �)% bias-corrected percentile bootstrap 
(BCPB) confidence interval for ĈNpk is given by

where Ĉ∗
Npk(r)

 is the rth ordered value of the B bootstrap esti-
mator of ĈNpk.

To determine the performance of the above three con-
fidence intervals, we considered their estimated coverage 
probabilities and average widths. The probability that the 
true value of ĈNpk is covered by the 100 (1 − �)% bootstrap 
confidence interval is called “coverage probability,” and the 
same is obtained for the methods discussed above. In addi-
tion, the average width of the bootstrap confidence interval is 
calculated based on 5000 different trials. The performance of 
the confidence intervals CISB,CIPB andCIBCPB based on their 
estimated coverage probabilities and average widths of the 
bootstrap confidence interval is studied through simulation.

Simulation study

The present section dealt with the results obtained through 
simulation study on the evaluation of three bootstrap con-
fidence intervals of the process capability index given in 
Eq. (16) of TGLLD. With different parametric combina-
tions � = 1 and � = 4, 5, 6, 7 , we consider the sample size 
n = 10, 15, 20, 25, 30 and set the lower and upper specifica-
tion limits as 1 and 29, respectively, to draw the simulation 
results. B = 10000 bootstrap samples of size n are gener-
ated from the original sample and repeated the exercise 5000 
times. Using three methods, i.e., SB, PB and BCPB, the 95% 
confidence intervals were obtained. The difference between 
upper and lower confidence limits called the average width 
along with bias and MSE is calculated to compare the simu-
lation results which are presented in Tables 1, 2, 3 and 4. The 
criteria set for comparison of results is the indices having 
lower average width, and higher coverage probabilities are 
to be considered.

It is noticed from the results given in Tables 1, 2, 3 and 
4 that when the sample size grows the corresponding aver-
age width is falling down, indicating that moderately large 
sample throws better results. When we compared the average 
width values, BCPB method recorded lower values than SB 
and PB methods and followed the order BCPB < PB < SB. 
Average width of all the methods showed an upward trend 
when the shape parameter � raises from 4 to 7. Similar pat-
tern is observed when the other shape parameter � turns up 
from 3.5 to 5. From the coverage probabilities recorded in 
Tables 1, 2, 3 and 4 for all three methods, a raising pattern is 
observed when � increases from 4 to 7. SB method recorded 
higher estimated coverage probabilities which are more than 

(19)CIBCPB =
(
Ĉ∗
Npk(BPL)

, Ĉ∗
Npk(BPU )

)
,
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the confidence level (0.95) than BCPB and PB methods, and 
the pattern observed is PB < BCPB < SB. These probabilities 
get nearer to the confidence level (0.95) in BCPB method 

when the shape parameter � turns up from 4 to 7. When the 
sample size increased to 30, bias and MSE recorded their 
lowest values at the parametric values � = 4 and � = 4.

Table 1  Estimated coverage 
probabilities and average widths 
of 95% bootstrap confidence 
intervals of CNpk for � = 1 and 
� = 4

n � True CNpk Est CNpk Bias MSE Average widths Coverage probabilities

SB PB BCPB SB PB BCPB

10 3.5 0.9783 1.2504 − 0.1590 0.1556 1.5998 1.5701 1.2448 0.9482 0.8326 0.9120
10 4 1.0167 1.2866 − 0.1615 0.1569 1.6115 1.5824 1.2508 0.9496 0.8304 0.9104
10 4.5 1.0468 1.3151 − 0.1630 0.1573 1.6189 1.5899 1.2546 0.9520 0.8308 0.9110
10 5 1.0712 1.3382 − 0.1639 0.1571 1.6236 1.5947 1.2566 0.9536 0.8298 0.9116
15 3.5 0.9783 1.1952 − 0.1024 0.0868 1.1473 1.1357 0.9831 0.9366 0.8656 0.9194
15 4 1.0167 1.2289 − 0.1041 0.0878 1.1544 1.1429 0.9876 0.9356 0.8644 0.9214
15 4.5 1.0468 1.2553 − 0.1053 0.0883 1.1586 1.1475 0.9900 0.9368 0.8640 0.9204
15 5 1.0712 1.2767 − 0.1061 0.0885 1.1612 1.1503 0.9915 0.9362 0.8638 0.9212
20 3.5 0.9783 1.2329 − 0.0717 0.0577 0.9365 0.9293 0.8372 0.9362 0.8880 0.9288
20 4 1.0167 1.2653 − 0.0731 0.0584 0.9418 0.9347 0.8412 0.9358 0.8864 0.9282
20 4.5 1.0468 1.2906 − 0.0741 0.0589 0.9448 0.9378 0.8434 0.9352 0.8852 0.9276
20 5 1.0712 1.3110 − 0.0749 0.0591 0.9465 0.9396 0.8444 0.9348 0.8856 0.9266
25 3.5 0.9783 1.3073 − 0.1872 0.0825 1.8363 1.8189 1.4176 0.9486 0.8334 0.9118
25 4 1.0167 1.3421 − 0.0591 0.0429 0.8148 0.8091 0.7456 0.9454 0.8980 0.9394
25 4.5 1.0468 1.3690 − 0.0598 0.0431 0.8171 0.8116 0.7472 0.9434 0.8992 0.9384
25 5 1.0712 1.3905 − 0.0603 0.0432 0.8183 0.8129 0.7479 0.9426 0.8984 0.9384
30 3.5 0.9783 1.0222 − 0.0883 0.0416 0.8103 0.8234 0.6879 0.9394 0.8900 0.9302
30 4 1.0468 1.0625 − 0.0512 0.0370 0.7304 0.7255 0.6785 0.9316 0.8980 0.9266
30 4.5 1.0712 1.0942 − 0.0516 0.0371 0.7313 0.7265 0.6791 0.9306 0.8984 0.9266
30 5 1.0912 1.1198 − 0.0519 0.0371 0.7317 0.7269 0.6792 0.9292 0.8976 0.9250

Table 2  Estimated coverage 
probabilities and average widths 
of 95% bootstrap confidence 
intervals of CNpk for � = 1 and 
� = 5

n � True CNpk Est CNpk Bias MSE Average widths Coverage probabilities

SB PB BCPB SB PB BCPB

10 3.5 1.2260 1.5286 − 0.1872 0.2125 1.8963 1.8589 1.4576 0.9586 0.8334 0.9118
10 4 1.2671 1.6899 − 0.1906 0.2156 1.9126 1.8754 1.4645 0.9596 0.8322 0.9110
10 4.5 1.2994 1.6194 − 0.1928 0.9114 1.9236 1.8860 1.4690 0.9600 0.8324 0.2163
10 5 1.3253 1.3138 − 0.1939 0.2156 1.9309 1.8934 1.4716 0.9612 0.8312 0.9106
15 3.5 1.2260 1.1176 − 0.1202 0.1174 1.3451 1.3308 1.1435 0.9436 0.8662 0.9208
15 4 1.2671 1.2416 − 0.1225 0.1190 1.3546 1.3404 1.1485 0.9432 0.8650 0.9202
15 4.5 1.2994 1.0503 − 0.1241 0.1200 1.3609 1.3469 1.1519 0.9418 0.8658 0.9220
15 5 1.3253 1.1173 − 0.1253 0.1206 1.3652 1.3514 1.1539 0.9430 0.8640 0.9222
20 3.5 1.2260 2.2360 − 0.0842 0.0774 1.0915 1.0830 0.9704 0.9402 0.8894 0.9294
20 4 1.2671 1.3674 − 0.0860 0.0786 1.0984 1.0898 0.9749 0.9404 0.8868 0.9280
20 4.5 1.2994 1.9263 − 0.0873 0.0793 1.1029 1.0944 0.9776 0.9402 0.8858 0.9274
20 5 1.3253 1.0339 − 0.0883 0.0798 1.1058 1.0973 0.9791 0.9404 0.8864 0.9274
25 3.5 1.2260 0.9242 − 0.0681 0.0567 0.9416 0.9349 0.8586 0.9490 0.8984 0.9412
25 4 1.2671 1.3628 − 0.0693 0.0574 0.9470 0.9403 0.8622 0.9470 0.8990 0.9392
25 4.5 1.2994 1.5053 − 0.0702 0.0578 0.9504 0.9437 0.8643 0.9466 0.8998 0.9394
25 5 1.3253 1.2306 − 0.0708 0.0580 0.9524 0.9459 0.8654 0.9466 0.8988 0.9380
30 3.5 1.2260 1.0429 − 0.0583 0.0486 0.8403 0.8345 0.7788 0.9394 0.9002 0.9306
30 4 1.2671 0.9676 − 0.0593 0.0491 0.8448 0.8391 0.7821 0.9368 0.8992 0.9280
30 4.5 1.2994 1.3758 − 0.0601 0.0495 0.8476 0.8419 0.7839 0.9354 0.8988 0.9266
30 5 1.3253 1.5513 − 0.0606 0.0497 0.8493 0.8436 0.7848 0.9342 0.8990 0.9260
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Table 3  Estimated coverage 
probabilities and average widths 
of 95% bootstrap confidence 
intervals of CNpk for � = 1 and 
� = 6

n � True CNpk Est CNpk Bias MSE Average widths Coverage probabilities

SB PB BCPB SB PB BCPB

10 3.5 1.4608 2.3146 − 0.2172 0.2822 2.2011 2.1551 1.6740 0.9642 0.8348 0.9110
10 4 1.5046 2.3543 − 0.2209 0.2849 2.2219 2.1756 1.6824 0.9644 0.8330 0.9118
10 4.5 1.5389 2.3837 − 0.2237 0.2872 2.2370 2.1899 1.6887 0.9664 0.8328 0.9106
10 5 1.5664 2.4054 − 0.2251 0.2867 2.2473 2.2002 1.6926 0.9674 0.8330 0.9142
15 3.5 1.4608 1.3953 − 0.1391 0.1542 1.5494 1.5317 1.3078 0.9462 0.8672 0.9222
15 4 1.5046 1.4521 − 0.1418 0.1567 1.5620 1.5444 1.3143 0.9458 0.8662 0.9216
15 4.5 1.5389 1.4972 − 0.1438 0.1583 1.5708 1.5536 1.3191 0.9458 0.8666 0.9230
15 5 1.5664 1.5337 − 0.1453 0.1594 1.5772 1.5599 1.3221 0.9464 0.8648 0.9224
20 3.5 1.4608 1.7916 − 0.0975 0.1012 1.2522 1.2417 1.1074 0.9438 0.8892 0.9294
20 4 1.5046 1.8281 − 0.0996 0.1029 1.2614 1.2508 1.1132 0.9444 0.8884 0.9282
20 4.5 1.5389 1.8566 − 0.1013 0.1040 1.2677 1.2572 1.1171 0.9438 0.8872 0.9280
20 5 1.5664 1.8796 − 0.1025 0.1049 1.2722 1.2617 1.1194 0.9442 0.8870 0.9282
25 3.5 1.4608 1.6327 − 0.0785 0.0739 1.0777 1.0696 0.9785 0.9502 0.8994 0.9412
25 4 1.5046 1.6916 − 0.0800 0.0749 1.0849 1.0768 0.9833 0.9496 0.9012 0.9394
25 4.5 1.5389 1.7374 − 0.0812 0.0756 1.0897 1.0816 0.9863 0.9494 0.9002 0.9392
25 5 1.5664 1.7739 − 0.0820 0.0761 1.0931 1.0852 0.9884 0.9494 0.8982 0.9380
30 3.5 1.4608 1.7294 − 0.0672 0.0632 0.9603 0.9535 0.8870 0.9404 0.9000 0.9296
30 4 1.5046 1.7707 − 0.0685 0.0640 0.9664 0.9594 0.8912 0.9384 0.8998 0.9278
30 4.5 1.5389 1.8031 − 0.0695 0.0646 0.9705 0.9635 0.8938 0.9372 0.9000 0.9264
30 5 1.5664 1.8294 − 0.0702 0.0650 0.9733 0.9662 0.8955 0.9368 0.8984 0.9258

Table 4  Estimated coverage 
probabilities and average widths 
of 95% bootstrap confidence 
intervals of CNpk for � = 1 and 
� = 7

n � True CNpk Est CNpk Bias MSE Average widths Coverage probabilities

SB PB BCPB SB PB BCPB

10 3.5 1.6878 2.6521 − 0.2481 0.3651 2.5120 2.4567 1.8947 0.9688 0.8352 0.9112
10 4 1.7344 2.6951 − 0.2529 0.3708 2.5386 2.4825 1.9060 0.9688 0.8344 0.9124
10 4.5 1.7709 2.7276 − 0.2560 0.3733 2.5575 2.5008 1.9140 0.9700 0.8342 0.9134
10 5 1.8001 2.7515 − 0.2575 0.3718 2.5707 2.5137 1.9192 0.9712 0.8342 0.9142
15 3.5 1.6878 1.6216 − 0.1585 0.1975 1.7588 1.7375 1.4761 0.9482 0.8682 0.9224
15 4 1.7344 1.6821 − 0.1617 0.2010 1.7748 1.7536 1.4847 0.9480 0.8668 0.9234
15 4.5 1.7709 1.7301 − 0.1641 0.2032 1.7863 1.7654 1.4910 0.9482 0.8666 0.9226
15 5 1.8001 1.7690 − 0.1659 0.2048 1.7949 1.7739 1.4953 0.9488 0.8658 0.9238
20 3.5 1.6878 1.7655 − 0.1111 0.1291 1.4174 1.4048 1.2483 0.9480 0.8896 0.9290
20 4 1.7344 1.8216 − 0.1137 0.1315 1.4291 1.4165 1.2558 0.9470 0.8888 0.9276
20 4.5 1.7709 1.8651 − 0.1156 0.1332 1.4375 1.4248 1.2609 0.9472 0.8882 0.9282
20 5 1.8001 1.8995 − 0.1171 0.1344 1.4437 1.4310 1.2643 0.9458 0.8858 0.9280
25 3.5 1.6878 1.8853 − 0.0893 0.0940 1.2178 1.2083 1.1020 0.9520 0.9008 0.9406
25 4 1.7344 1.9486 − 0.0911 0.0955 1.2271 1.2175 1.1083 0.9508 0.9020 0.9390
25 4.5 1.7709 1.9978 − 0.0925 0.0965 1.2336 1.2240 1.1125 0.9508 0.9004 0.9384
25 5 1.8001 2.0370 − 0.0935 0.0973 1.2384 1.2289 1.1156 0.9508 0.8990 0.9378
30 3.5 1.6878 1.9931 − 0.0765 0.0803 1.0841 1.0761 0.9983 0.9418 0.9008 0.9296
30 4 1.7344 2.0367 − 0.0781 0.0815 1.0920 1.0838 1.0039 0.9402 0.9002 0.9284
30 4.5 1.7709 2.0709 − 0.0792 0.0824 1.0975 1.0892 1.0076 0.9390 0.8996 0.9266
30 5 1.8001 2.0986 − 0.0801 0.0830 1.1015 1.0931 1.0103 0.9390 0.8980 0.9254
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Illustrative example

In this section, we use a real data set to show that the type-II 
generalized log-logistic distribution can be a suitable model. 
Folks and Chhikara (1978) presented several sets of data to 
describe the Birnbaum–Saunders distribution. One of the 
data sets gives the runoff amounts at Jug Bridge, Maryland. 
For ready reference, this data set is reproduced as follows:

0.17, 0.23, 0.33, 0.39, 0.39, 0.40, 0.45, 0.52, 0.56, 0.59, 
0.64, 0.66, 0.70, 0.76, 0.77, 0.78, 0.95, 0.97, 1.02, 1.12, 
1.19, 1.24, 1.59, 1.74 and 2.92.

We show a rough indication of the goodness of fit for 
our model by plotting the superimposed for the data shows 
that the TGLLD is a good fit as shown in Fig. 1 and also 
goodness of fit is emphasized with QQ plot, as displayed 
in Fig. 1. The maximum likelihood estimates of the three-
parameter TGLLD for the runoff amounts are �̂� = 0.7616,

�̂� = 2.6602 and �̂� = 1.772 ; the Kolmogorov–Smirnov test 
found that the maximum distance between the data and the 
fitted TGLLD is 0.0657 with p value 0.9999. As it can be 
seen from the high p value that the data set considered is 
non-normal, TGLLD model is the best fit to this data set. 
Meanwhile, the maximum likelihood estimates of the two-
parameter TGLLD for the runoff amounts are �̂� = 2.6602 
and �̂� = 1.772 ; the Kolmogorov–Smirnov test found that the 
maximum distance between the data and the fitted TGLLD 
is 0.2526 with p value 0.1891. Therefore, the two-parame-
ter TGLLD also provides reasonable good fit for the runoff 
amounts.

The bootstrap confidence intervals and widths of CNpk and 
Cpk are given in Table 5 for the given example. Numerical 
example shows that width of class intervals is considerably 
large in traditional Cpk method as compared to the bootstrap 
approach for CNpk . Moreover, among the three bootstrap 
methods BCPB shows better performance than the other two 
methods; the simulation results also show the same.

Conclusions

In this article, we constructed bootstrap confidence inter-
vals of process capability index using bootstrap method 
(proposed by Chen and Pearn, (1997)) by applying simu-
lation technique, assuming that the underlying distribution 
is TGLLD. Bootstrap confidence intervals are constructed 
using three methods, i.e., SB, PB and BCPB. The perfor-
mance of these methods is compared by deriving average 

Fig. 1  Density plot and Q–Q plot of the fitted type-II generalized log-logistic distribution for the runoff amounts data

Table 5  Bootstrap confidence intervals and widths of new CNpk and 
traditional Cpk for TGLLD

Methods Bootstrap CNpk Traditional Cpk

Confidence inter-
vals

Widths Confidence inter-
vals

Widths

SB (0.0068, 0.1705) 0.1637 (0.2065, 0.5223) 0.3158
PB (0.0379, 0.1992) 0.1613 (0.1248, 0.4405) 0.3156
BCPB (0.0338, 0.1896) 0.1557 (0.1982, 0.4949) 0.2967
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width, coverage probabilities, bias and MSE from simula-
tion results. ML method of estimation is used to estimate 
the parameters under study. When both average width and 
coverage probabilities are considered as the performance 
criteria, BCPB method throws better results than the other 
two methods.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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