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Abstract
In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., 
natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic 
uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This 
paper first proposes a nested robustness-based portfolio optimization formulation using the moment bounding approach-
based representation of epistemic uncertainty. The nested robust portfolio formulation is simple to implement; however, 
the computational cost is often high due to the epistemic analysis performed inside the optimization loop. A decoupled 
approach is then proposed to un-nest the robustness-based portfolio optimization from the analysis of epistemic variables to 
achieve computational efficiency. This paper also proposes a single-loop robust portfolio optimization formulation using the 
likelihood-based representation of epistemic uncertainty that completely separates the epistemic analysis from the portfolio 
optimization framework and thereby achieves further computational efficiency. The proposed robust portfolio optimization 
formulations are tested on real market data from five S&P 500 companies, and performance of the robust optimization models 
is discussed empirically based on portfolio return and risk.

Keywords Robust Optimization · Portfolio Optimization · Epistemic Uncertainty · Maximum Likelihood Estimation

Introduction

Portfolio optimization deals with the problems of how to 
allocate the total wealth among a number of assets. The 
first mathematical model for portfolio selection, formu-
lated by Markowitz (1952, 1959), evaluates investments in 
terms of their mean and variance. A fundamental assump-
tion of Markowitz model is that the investor knows the true 
expected return. However, in practice, investors need to 
estimate the expected return as investment return changes 
over time. In real life, due to lack of historical data about 
security return, such as new security markets, it is difficult 
to forecast the investment return accurately (Qin et al. 2013). 
The classical portfolio formulation ignores the estimation 
error and thereby performs poorly in uncertain conditions. 
Therefore, it is needed to develop a portfolio optimization 

methodology that considers data uncertainty by integrating 
statistical methods and experts’ experience to estimate the 
future return on investment.

The ability to predict the future return of a business based 
on historical data is the biggest challenge for any investment 
as it is affected by uncertainties from various contributing 
sources. Sources of uncertainty may be divided into two 
types: aleatory and epistemic (Oberkampf et al. 2004; Khalaj 
et al. 2013). Aleatory uncertainty is irreducible. Examples 
include phenomena that exhibit natural variation such as 
operating conditions, material properties. In contrast, epis-
temic uncertainty results from a lack of knowledge about 
the system, or due to approximations in the system behavior 
models, or due to limited or subjective data (e.g., expert 
opinion); it can be reduced as more information about the 
system is obtained. Epistemic uncertainty regarding model 
parameters can be viewed in two ways. It can be defined 
with reference to a stochastic quantity whose distribution 
type and/or distribution parameters are not precisely known 
(Baudrit and Dubois 2006), or with reference to a determin-
istic quantity whose value is not precisely known (Helton 
et al. 2004). This paper focuses on handling the first defini-
tion of epistemic uncertainty, i.e., epistemic uncertainty with 
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reference to a stochastic quantity. In some cases, distribution 
information of a random variable may only be available as 
intervals given by experts. The objective of this paper is to 
develop an efficient robust portfolio optimization methodol-
ogy that includes both aleatory uncertainty and epistemic 
uncertainty described through interval data.

Robustness can be defined as the ability of a system to 
be insensitive to small departures from the assumptions on 
which it depends or the degree to which the system operates 
correctly in the presence of uncertain environmental condi-
tions (Hu et al. 2006; Mehrbod et al. 2015; Hafezalkotob 
et al. 2015; Vafaeinezhad et al. 2016; Fereiduni and Shahan-
aghi 2017). The essential elements of robust optimization 
are: (1) ensuring objective robustness, (2) ensuring feasibility 
robustness, (3) estimating mean and measure of variation 
(e.g., variance) of the performance function, and (4) multi-
objective optimization. A detailed description of these four 
components can be found in Zaman et al. (2011a). In this 
paper, we propose a methodology for robustness-based port-
folio optimization to include estimation error in the decision-
making framework so that the resulting optimal portfolio is 
least sensitive to the variations in the input parameters.

There is now an extensive volume of methods and appli-
cations available for portfolio optimization (e.g., Ehrgott 
et al. 2004; Mulvey 2004; Boyle et al. 2008; Anagnosto-
poulos and Mamanis 2010; Oliveira et al. 2011; Mansini 
et al. 2014; Bekiros et al. 2015; Tofighian et al. 2018). While 
some of the existing methods include robustness in the 
portfolio optimization framework (e.g., Kawas and Thiele 
2008; DeMiguel and Nogales 2009; Delage and Ye 2010; 
Chen et al. 2011; Zymler et al. 2011), most of the existing 
methods for portfolio optimization can deal with only alea-
tory uncertainty. A few methods exist that deal with both 
aleatory uncertainty and epistemic uncertainty. In order to 
deal with epistemic uncertainty, the concept of stochastic 
dominance has been used in the portfolio choice problem by 
many authors including Kuosmanen (2004), Berleant et al. 
(2008), Dentcheva and Ruszczynski (2010), and Post and 
Kopa (2013). Berleant et al. (2008) proposed methodology 
for portfolio management under epistemic uncertainty using 
stochastic dominance and information gap theory. Xingyu 
(2013) developed a robust model based on constant elasticity 
of variance considering both input uncertainty and underly-
ing distribution uncertainty using Monte Carlo simulation. 
Kawas and Thiele (2008) developed a log robust linear pro-
gramming problem with theoretical insight of worst-case 
uncertainty, where probabilistic assumption is not required. 
Fuzzy approach (Carlsson et al. 2007; Abiyev and Menekay 
2007; Zhang et al. 2009; Huang 2011) has also been used to 
represent epistemic uncertainty in robust portfolio model.

Most of the current methods of robust portfolio optimiza-
tion under epistemic uncertainty use probabilistic approach to 
deal with aleatory uncertainty and non-probabilistic approach 

to deal with epistemic uncertainty, which may result in 
expensive nested analysis. Also, some of these methods need 
additional non-probabilistic formulations to incorporate epis-
temic uncertainty into the robust optimization framework, 
which may be computationally expensive. However, if the 
epistemic uncertainty can be converted to a probabilistic for-
mat, the need for these additional formulations is avoidable, 
and well-established probabilistic methods of robust design 
optimization (e.g., Zaman et al. 2011a; Zaman and Mahade-
van 2013) can be used in the framework for robust portfolio 
optimization. Therefore, there is a need for an efficient robust 
portfolio optimization methodology that deals with both alea-
tory uncertainty and epistemic uncertainty.

In this paper, we propose robustness-based portfolio opti-
mization formulations using probabilistic representation of 
epistemic uncertainty. This paper specifically focuses on 
epistemic uncertainty arising from interval data. Epistemic 
uncertainty is represented using two approaches: (1) moment 
bounding approach (Zaman et al. 2011b) and (2) likelihood-
based approach (Zaman and Dey 2017). The main contribu-
tion of this paper is to propose a robust portfolio optimization 
methodology that does not require separate representation 
for epistemic uncertainty and aleatory uncertainty as it can 
handle both types of uncertainty using probabilistic format. 
This paper first proposes a nested robustness-based portfo-
lio optimization formulation using the moment bounding 
approach-based representation of epistemic uncertainty. 
The nested robust portfolio formulation is simple to imple-
ment; however, the computational cost is often high due to 
the epistemic analysis performed inside the optimization 
loop. A decoupled approach is then proposed to un-nest the 
robustness-based portfolio optimization from the analysis of 
epistemic variables to achieve computational efficiency. This 
paper also proposes a single-loop robust portfolio optimiza-
tion formulation using the likelihood-based representation 
of epistemic uncertainty that completely separates the epis-
temic analysis from the portfolio optimization framework and 
thereby achieves further computational efficiency.

The proposed methodology intends to achieve robustness 
by simultaneously optimizing the mean (i.e., portfolio return) 
and minimizing the variation of the performance function 
(i.e., portfolio risk). Therefore, the performance of robust 
portfolio can be defined by the mean and variation of the per-
formance function. In our proposed formulations, we obtain 
the optimum mean value of the objective function (e.g., port-
folio return) while also minimizing its variation (e.g., standard 
deviation). Thus, the optimal portfolio will meet target values 
in terms of both mean values and standard deviations of the 
problem parameters. One of the most significant contribu-
tions of this paper is to propose new methods to estimate the 
bounds on the median and semi-variance of multiple-interval 
data. Therefore, in the proposed methodology, we solve the 
portfolio optimization formulations by using four different 
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risk–return measures: mean–variance, median–variance, 
mean–downside risk, and median–downside risk. The pro-
posed robust portfolio optimization formulations are tested on 
real market data from five S&P 500 companies, and perfor-
mance of the robust optimization models is discussed empiri-
cally based on portfolio return and risk. It is seen that the sin-
gle-loop robust portfolio optimization formulation generates 
better optimal solutions than the decoupled approach in terms 
of both portfolio return and risk. The proposed decoupled 
formulations are also compared with a nominal mean–vari-
ance model, and it is seen that the proposed decoupled for-
mulations generate conservative solutions in the presence of 
epistemic uncertainty. The main aspects of this paper are sum-
marized as follows. First, we propose approaches to quantify 
portfolio return and risk under data uncertainty using four dif-
ferent risk–return measures. We then discuss the performance 
of each risk–return measure empirically.

The remainder of the paper is organized as follows. “Port-
folio optimization under aleatory uncertainty” section gives 
an overview of the basic portfolio optimization. “Proposed 
methodologies” section describes the proposed robustness-
based portfolio optimization methodologies under aleatory 
uncertainty and epistemic uncertainty. In “Numerical exam-
ples”  section, we illustrate the proposed methodologies with 
numerical examples. “Conclusions” section concludes the 
paper with future work.

Portfolio optimization under aleatory 
uncertainty

Portfolio optimization

The first mathematical model for portfolio optimization devel-
oped by Markowitz (1952, 1959) was mean–variance portfo-
lio, where the “portfolio return” was measured by maximizing 
the expected value of random portfolio returns and “portfolio 
risk” was quantified by minimizing the variance of portfolio 
returns. For a given level of risk, the investor may choose the 
portfolio with the highest expected return. The classical for-
mulation for maximizing the expected return for an upper limit 
on the variance can be written as follows:

(1)

max
xi

f =

n∑

i=1

xiri

s.t.

n∑

i=1

n∑

j=1

xixj�ij ≤ V

n∑

i=1

xi = 1

xi ≥ 0 ∀i

where xi is the fraction of capital invested in asset i, xj is 
the fraction of capital invested in asset j, ri is the expected 
value of return for asset i, �ij is the covariance of the return 
between assets i and j, and V  is the maximum allowable 
portfolio risk.

Similarly, for a given level of expected return, the inves-
tor may choose the portfolio with the minimum risk. The 
classical formulation for minimizing the variance for a 
lower limit on expected return can be expressed as follows:

where R is the minimum portfolio return.
Portfolio optimization may have different risk–return 

measures. Return can be maximized considering mean or 
median, and risk can be minimized by minimizing variation 
considering variance (Delage and Ye 2010; Chen et al. 2011), 
lower semi-variance (Boasson et al. 2011), mean absolute 
deviation (Konno and Yamazaki 1991), etc. As a robust sta-
tistic, sample median, which is not affected by the outliers, 
is recently used in portfolio optimization instead of sample 
mean (e.g., Benati 2015; Salah et al. 2016). Value-at-risk 
(Fertis et al. 2012), conditional value-at-risk (Huang et al. 
2010), partitioned value-at-risk (Goh et al. 2012), asymme-
try-robust value-at-risk (Natarajan et al. 2008), worst-case 
value-at-risk (Huang et al. 2007), worst-case polyhedral 
value-at-risk (Zymler et al. 2013), worst-case quadratic value-
at-risk (Zymler et al. 2013) have also been used to minimize 
the risk in portfolio optimization, but still many recent 
improvements of robust optimization focus on the conven-
tional mean–variance structure (e.g., DeMiguel and Nogales 
2009; Delage and Ye 2010; Chen et al. 2011). Sharp ratio is 
another important measure of risk which is widely used in 
portfolio management (Ghosh and Mahanti 2009). All these 
return and risk measures have their own advantages and limi-
tations. A brief discussion of various techniques to estimate 
the parameters for portfolio optimization is presented next.

Parameter estimation for portfolio model

According to Markowitz (1952, 1959), the parameters such 
as mean, variance, and correlation coefficient are known 
with certainty. However, in practice, it is needed to estimate 
the parameters from historical data for the uncertain future. 

(2)

min
xi

f =

n∑

i=1

n∑

j=1

xixj�ij

s.t.

n∑

i=1

xiri ≥ R

n∑

i=1

xi = 1

xi ≥ 0 ∀i
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Because of estimation error, the resulting portfolio weights 
fluctuate substantially over time, which may result in an 
unrealistic and unstable portfolio model. Therefore, param-
eters need to be estimated with great accuracy to induce 
stability in portfolio model.

There exists a large volume of literature on ex ante portfo-
lio parameter estimation methods. Plug-in approach (Kan and 
Zhou 2007; Brandt 2009) is a popular and innate one when 
both the sample mean and covariance matrix are unknown to 
the investor, but it fails to include estimation risk (Li 2015). 
Another approach for portfolio parameter estimation is the res-
ampling method (Bennett 2013; Yu et al. 2013) that improves 
the efficiency of investment by reducing the estimation error 
and enhancing the robustness of the classical mean variance 
portfolio model. Researchers have recently focused on mini-
mum variance portfolio, which only estimates the covariance 
matrix (e.g., Clarke et al. 2011; Mostowfi and Stier 2013; 
Yang et al. 2015) to minimize the potential sampling error of 
estimation. James–Stein estimation (Jorion 1986), also known 
as Shrinkage estimation (Jagannathan and Ma 2003; Ledoit 
and Wolf 2003; Pollak 2012; Stefanovits et al. 2014), is one of 
the most commonly used estimators of mean and covariance, 
which generates minimum variance portfolios incorporating 
significant short-scale position (Disatnik and Benninga 2007). 
Nonlinear shrinkage estimation of the sample covariance 
matrix performs well in the case when the sample size is very 
large as compared to the number of assets (Ledoit and Wolf 
2012). A frequently used approach is the Bayesian approach 
(Markowitz and Usmen 2003; Shi and Irwin 2005; Levy and 
Levy 2014; Stefanovits et al. 2014), which considers sampling 
error and uncertainty to estimate parameters under predictive 
distribution of asset returns. Maximum likelihood estimation 
(MLE) is a popular method to estimate the sample mean and 
covariance, which is widely used for diversification of stock 
market portfolio (e.g., Pandher 2001; Valadkhani et al. 2008; 
Făt and Dezsi 2012; Lingaraja et al. 2015). Maximum likeli-
hood estimation constructs an estimator in order to estimate 
the unknown distribution parameters (P) from the observed 
data. It is statistically well understood and least affected by 
sampling error. Others approaches that reduce sampling error 
in parameter estimation include bootstrap method (Hall 1992; 
Hall and Yao 2003; Mendes and Leal 2010) and � method 
(Weisberg 2014). � method is useful to estimate the param-
eters when sample size is large, whereas bootstrap method is 
useful when sample size is very small (Wu et al. 2017).

Most existing methods estimate model parameters by 
using expected values, which leaves the estimated param-
eters with estimation error or uncertainty. However, in port-
folio optimization, the expected returns and the covariances 
are also uncertain, which directly affects investment deci-
sion making as the solutions to optimization problems show 
remarkable sensitivity to uncertainty. Robustness-based 
portfolio optimization takes this uncertainty into account.

Robust portfolio optimization

Unlike classical mean–variance portfolio optimization, 
where all input parameters are estimated using expected 
values, robustness-based portfolio optimization takes the 
input parameter uncertainty into account so that the resulting 
solution is less sensitive to the variations of the input ran-
dom variables. The robustness-based portfolio optimization 
problem under aleatory uncertainty alone can be formulated 
as follows:

where w ≥ 0 and v ≥ 0 are the weighting coefficients that 
represent the relative importance of the objectives. Some-
times the investors are motivated by others to invest a par-
ticular amount of capital in particular assets. Therefore, the 
fractions of capital invested in different assets have lower 
and upper bounds. LB and UB are the vectors of lower and 
upper bounds of decision variables xi.

The implementation of Eq. (3) requires that all r′
i
s and �′

ij
s 

be precisely known, which is possible only when a large 
number of data points are available. In practical situations, 
only a small number of data points may be available for the 
input variables. In other cases, information about random 
input variables may only be specified as intervals, as by 
expert opinion. This is input data uncertainty (i.e., epistemic 
uncertainty), causing uncertainty regarding the expected 
value and covariance of the returns. Robustness-based opti-
mization has to take this into account. In the following sec-
tion, we propose a new methodology for robustness-based 
portfolio optimization that accounts for data uncertainty.

Proposed methodologies

In this paper, we propose three formulations: a nested-loop 
formulation, a decoupled formulation, and a single-loop 
formulation for robust portfolio optimization under epis-
temic uncertainty. Nested-loop and decoupled formula-
tions are presented for four different risk–return measures: 

(3)

max
xi

f (x) = w ×

n∑

i−1

rixi − v ×

n∑

i=1

n∑

j=1

xixj�ij

s.t.

n∑

i=1

n∑

j=1

xixj�ij ≤ V

n∑

i=1

xi = 1

LB ≤ xi ≤ UB
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mean–variance, median–variance, mean–downside risk, and 
median–downside risk; single-loop formulation is presented 
for mean–variance portfolio measure.

Nested‑loop formulation

The inclusion of epistemic uncertainty in robust portfolio 
model adds another level of complexity in the optimization 
methodology. The input variables ri and �ij in Eq. (3) might 
have epistemic uncertainty. Since the investment analyst 
does not have any control on the epistemic variables ri and 
�ij , the portfolio optimization methodology has to employ 
a search among the possible values of such epistemic vari-
ables in order to find an optimal solution. The main feature 
of this nested-loop formulation is that it consists of an outer 
optimization loop that repeatedly calls the inner optimiza-
tion loop to get the optimum solution. In the nested portfolio 
optimization, we maximize the outer-loop objective function 
at each iteration of the inner-loop optimization. In such case, 
we get a conservative robust solution. The robustness-based 
portfolio optimization problem under both aleatory uncer-
tainty and epistemic uncertainty can now be formulated 
with the following generalized statement, where the objec-
tive is to maximize the worst-case cost function (i.e., lower 
bound of the cost function, which is due to the epistemic 
uncertainty):

where rl and ru are the vectors of lower and upper bounds 
of the decision variables r, and lb and ub are the vectors of 
lower and upper bounds of the decision variables � of the 
inner-loop optimization problem.

Note that the outer-loop optimization is a portfolio opti-
mization problem, where a robust portfolio optimization 
is carried out for a fixed set of epistemic variables. The 
inner-loop optimization is the analysis for the epistemic 
variables, where the optimizer searches among the possi-
ble values of the epistemic variables to calculate the lower 
bound of the objective function value.

(4)

max
xi

(
min
ri,�ij

f (x, r, �) = w

n∑

i=1

rixi − (1 − w)

n∑

i=1

n∑

j=1

xixj�ij

)

s.t.

n∑

i=1

n∑

j=1

xixj�ij ≤ V

n∑

i=1

xi = 1

rl ≤ ri ≤ ru

lb ≤ �ij ≤ ub

LB ≤ xi ≤ UB

The nested formulation does not guarantee to converge, 
and even if it converges, it is computationally very expen-
sive. In nested approach, for every iteration of the epis-
temic analysis, the portfolio optimization problem under 
aleatory uncertainty has to be repeated. Therefore, in the 
following subsection, we propose a decoupled approach 
to un-nest the portfolio optimization problem from the 
epistemic analysis and thereby achieve computational 
efficiency.

Decoupled approach

In this paper, we decouple the nested problem from the 
analysis of epistemic variables, which can be expressed as:

The optimization problems in Eqs. (5) and (6) are solved 
iteratively until convergence. Note that r∗

i
 and �∗

ij
 are fixed 

quantities in the optimization in Eq. (5), and x∗
i
 and x∗

j
 are 

fixed quantities in the optimization in Eq. (6).

Robust portfolio models under epistemic 
uncertainty

This section develops methodologies for robustness-based 
portfolio optimization under epistemic uncertainty, using 
the formulations in Eqs. (5) and (6). The proposed nested 
and decoupled formulations are able to accommodate four 

(5)

x∗
i
= argmax

xi

(
w

n∑

i=1

r∗
i
xi − (1 − w)

n∑

i=1

n∑

j=1

xixj�
∗
ij

)

s.t.

n∑

i=1

n∑

j=1

xixj�
∗
ij
≤ V

n∑

i=1

xi = 1

LB ≤ xi ≤ UB

(6)

r∗
i
, �∗

ij
= argmin

ri,�ij

(
w

n∑

i=1

rix
∗
i
− (1 − w)

n∑

i=1

n∑

j=1

x∗
i
x∗
j
�ij

)

s.t.

n∑

i=1

n∑

j=1

x∗
i
x∗
j
�ij ≤ V

rl ≤ ri ≤ ru

lb ≤ �ij ≤ ub
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different risk–return measures: mean–variance, median–vari-
ance, mean–downside risk, and median–downside risk. Port-
folio mean is a popular measure of return as it considers all 
data of asset return; however, portfolio median is a robust 
statistic as it is not affected by the outlier. Variance or stand-
ard deviation of portfolio returns is a statistical measure of 
dispersion, which is one of the best known measures of risk. 
Generally, a larger variance indicates greater uncertainty and 
risk in terms of future returns. However, variance is a volatile 
measure of risk because minimum variance indicates mini-
mum risk; on the other hand, higher value of variance does 
not always present higher risk as variance increases when the 
assets earn higher returns. Higher returns of assets are always 
desirable, and it is an opportunity, not a risk. Downside risk, 
also known as lower semi-variance, is a true measure of risk 
as it quantifies losses and seems better than variance. When 
investors consider variance, it diversifies both risks and 
opportunities; however, semi-variance diversifies away risks.

In the following subsections, the decoupled formulations 
are presented for four different portfolio risk return meas-
ures, when the information on the portfolio returns is availa-
ble as single- and/or multiple-interval data. Once the bounds 
on different return and risk measures are estimated using 
the methods described below, we can use Eqs. (5) and (6) to 
solve the robustness-based portfolio optimization problem 
under epistemic uncertainty.

Robust mean–variance portfolio model

In this paper, we use the mean–variance portfolio measure 
for both single- and multiple-interval data. In mean–variance 
portfolio measure, portfolio return is calculated in terms of 
mean of the asset returns and risk is measured by the vari-
ance of asset returns. In this case, in Eqs. (5) and (6), ri is 
the mean of return for asset i and �ij is the covariance of the 
return for assets i and j. The mean–variance portfolio opti-
mization formulations require that the first two moments of 
interval data be estimated as bounds. Zaman et al. (2011b) 
proposed optimization-based algorithms to calculate the 
bounds on the moments for both single- and multiple-inter-
val data as shown in Tables 1 and 2, respectively.

Since covariance is a monotone function with respect to 
both variance and correlation coefficient, once the bounds on 
the moments of interval data are estimated by the methods 

described above, we can now use the bounds on variance 
to obtain the bounds on the covariance of asset returns as 
follows:

where rij and rij are the lower and upper bounds on the cor-

relation coefficient of the asset returns between asset i and 
asset j, respectively.

Note that in many problems, it is likely that interval data 
for individual assets are not observed simultaneously. There-
fore, it is impractical to calculate the correlation coefficients 
among the asset returns which are described by interval data. 
Zaman et al. (2013) assumed that with interval data the cor-
relations among the input variables (i.e., asset returns) are 
unknown and therefore can range from − 1 to 0 or 0 to + 1. 
In this paper, we assume that the correlation between two 
asset returns is available as bounds [ rij rij ]. Once the bounds 

on the expected returns and covariances are obtained using 
the methods described above, we can now use Eqs. (5) and 
(6) to solve robustness-based portfolio optimization problem 
under epistemic uncertainty represented through single-
interval or multiple-interval data.

Robust median–variance portfolio model

In this paper, we use the median–variance portfolio measure 
for multiple-interval data only. In median–variance portfolio 
measure, portfolio return is calculated in terms of median 
of the asset returns and risk is measured by the variance of 
asset returns. In this case, in Eqs. (5) and (6), ri is the median 

(7)
[
�ij �ij

]
=
[ (

rij × �i × �j

) (
rij × �i × �j

) ]
,

Table 1  Methods for calculating moment bounds for single-interval data

E(y) =
∑2

i=1
yiP

�
yi
�
, E

�
y2
�
=
∑2

i=1
y2
i
P
�
yi
�
 , where P

(
yi
)
 = probability mass function (PMF)

Moment Condition Formula

Lower bound Upper bound

1 PMF = 1 at lower endpoint = 0 elsewhere PMF = 1 at upper endpoint = 0 elsewhere M1 = E(y)

2 PMF = 1 at any point = 0 elsewhere PMF = 0.5 at each endpoint M2 = E
(
y2
)
− (E(y))2

Table 2  Methods for calculating moment bounds for multiple-interval 
data

[lbi ubi] = set of intervals, n = number of intervals

Moment Formula

1
�
M1 M1

�
=
�
1

n

∑n

i
lbi,

1

n

∑n

i
ubi

�

2
min ∕max

y1,…,yn

M2 =
1

n

∑n

i=1

(
yi −

1

n

∑n

j=1
yj

)2

s.t. lbi ≤ yi ≤ ubi i = {1,… , n}



213Journal of Industrial Engineering International (2019) 15:207–219 

1 3

of return for asset i, and �ij is the covariance of the return for 
assets i and j. The median–variance formulations require 
that the median and variance be estimated as bounds. We 
propose a new method to estimate the bounds on the median 
as follows.

Since the median is a monotone function, bounds on 
median of multiple-interval data can be estimated as:

For example, if the returns on investment have the fol-
lowing interval data: [4, 7; 4.5, 8; 5, 8; 2, 4; 8.5, 10], then 
bounds on median are calculated as [4.5, 8], whereas bounds 
on mean are [4.5, 7.4], according to Table 2.

Once the bounds on median are estimated using Eq. (8) 
and bounds on covariance are estimated using Eq. (7), we 
can now use Eqs. (5) and (6) to solve robustness-based port-
folio optimization problem described by multiple-interval 
data.

Robust mean–downside risk portfolio model

In this paper, we use the mean–downside risk portfolio 
measure for multiple-interval data only. In mean–downside 
risk portfolio, portfolio return is calculated in terms of mean 
of asset returns and risk is measured in terms of lower semi-
variance of asset returns. In Eqs. (5) and (6), ri is the mean of 
return for asset i, and �ij is the semi-covariance of the return 
for assets i and j. The mean–downside risk formulations 
require that the mean and semi-variance of interval data be 
calculated as bounds. In the following discussion, we pro-
pose a new method to estimate the bounds on half-variance.

Lower semi-variance for multiple-interval data, which is 
always associated with losses, can be estimated as:

For example, if the returns on investment have the fol-
lowing interval data: [4, 7; 4.5, 8; 5, 8; 2, 4; 8.5, 10], then 
bounds on the lower semi-variance are calculated as [0.5923, 
5.0240], whereas bounds on variance can be calculated as 
[2.0250, 8], using the method given in Table 2.

Once the bounds on the lower semi-variance are esti-
mated using Eq. (9), we can use Eq. (7) to estimate the 
bounds on lower semi-covariance; these bounds are then 
used in Eqs. (5) and (6) to solve robust portfolio optimiza-
tion problem under epistemic uncertainty.

(8)
[
M M
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=
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(
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)
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min∕max
y1,…,yn
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1

n

n∑

i=1

[
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{(
yi −

1

n

n∑

j=1

yj

)
, 0

}]2

s.t. lbi ≤ yi ≤ ubi i = {1,… , n}

Robust median–downside risk portfolio model

In this paper, we use the median–downside risk portfolio 
measure for multiple-interval data only. In this portfolio 
risk–return measure, portfolio return is calculated in terms 
of median of asset returns and risk is measured in terms of 
lower semi-variance of asset returns. In Eqs. (5) and (6), ri 
is the median of return for asset i, and �ij is the semi-covar-
iance of the return for assets i and j. The median–downside 
risk formulations require that the median and semi-covar-
iance of interval data be calculated as bounds. Bounds on 
median are estimated using Eq. (8), and the bounds on lower 
semi-covariance are estimated using Eqs. (7) and (9); these 
bounds are then used in Eqs. (5) and (6) to solve robust 
portfolio optimization problem under epistemic uncertainty.

The proposed decoupled approach is computationally effi-
cient than the nested formulation. However, this is an iterative 
approach, where a portfolio problem and an uncertainty analy-
sis problem for epistemic variables are solved iteratively until 
convergence. We can achieve further computational efficiency 
if the uncertainty analysis for the epistemic variables is car-
ried out outside the portfolio optimization framework. In the 
following subsection, we propose such an efficient single-loop 
approach for robustness-based portfolio optimization under 
both aleatory uncertainty and epistemic uncertainty.

Single‑loop formulation

In this approach, epistemic uncertainty about portfolio return 
data is quantified by a maximum likelihood-based approach. 
Zaman and Dey (2017) recently proposed a worst-case maxi-
mum likelihood-based estimation (WMLE) approach to 
obtain a unique distribution for the random variables with 
interval data so that the double-loop procedure for robust 
optimization can be eliminated. They proposed a nested opti-
mization formulation to find the worst-case maximum likeli-
hood estimates of the distribution parameters of a random 
variable described by multiple-interval data, which ignores 
the correlation among input variables. In this paper, we have 
modified their WMLE approach to include correlated input 
random variables as follows.

We use a multivariate normal distribution to fit portfolio 
return data available as multiple intervals. The log-likeli-
hood function for n observations of random variable yi for 
multivariate normal distribution is:

(10)

log (L(�)) = log (L(�, �))

= −
nM

2
log (2�) −

n

2
log

(
det

∑)

−
1

2
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(
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)T −1∑(
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The mean (µ) and the covariance ( � ) are the parameters 
of the multivariate normal distribution, where mean ( � ) is an 
M-vector and covariance ( � ) is an M × M matrix.

We solve a nested optimization formulation with the 
objective of the outer optimization problem being maximi-
zation of the likelihood function (Eq. (10)) and the objective 
of the inner optimization problem being minimization of 
the likelihood with the data points constrained to fall within 
each of the respective intervals. The maximum likelihood 
estimation problem under interval uncertainty can now be 
formulated with the following generalized statement, where 
the objective is to maximize the worst-case likelihood (i.e., 
lower bound of the likelihood, which is due to the epistemic 
uncertainty) (Zaman and Dey 2017):

where the decision variables y of the inner-loop optimiza-
tion problem are the configurations of multiple-interval data 
(y = [y1 y2 y3 … yn]), which are constrained to fall within 
the respective intervals ([ lb ub ]) . In this formulation, the 
outer-loop decision variables p are the parameters, µ and � 
of the multivariate normal distribution. Note that the use of 
correlated random variables in the WMLE approach requires 
that equal number of data be available for each input random 
variable.

The advantage of the above uncertainty quantification 
method is to generate a single PDF for a random variable in 
the presence of interval uncertainty, which then can be con-
veniently used in any existing algorithms for optimization 
under uncertainty. In the following discussion, we propose 
a new methodology for robustness-based portfolio optimiza-
tion using the likelihood-based representation of epistemic 
uncertainty.

Likelihood‑based robust portfolio optimization

In the proposed robustness-based portfolio optimization 
framework, the uncertainty analysis of the epistemic vari-
ables is done outside the design optimization framework 
using the WMLE approach. The resulting single-loop for-
mulation is equivalent to a portfolio formulation under 
aleatory uncertainty alone, which completely eliminates 
the need for a nested analysis or an epistemic uncertainty 
analysis within the portfolio optimization framework. 
Therefore, the proposed robustness-based portfolio optimi-
zation methodology can solve the investment problem with 
a marginally increased computational effort than a port-
folio formulation under aleatory uncertainty alone, where 

(11)
max
�

(
min
y

(f (�|� ) = log (L(�;�)))

)

s.t. lbi ≤ yi ≤ ubi for i = 1, 2,… , n

the increased computational cost is due to the worst-case 
maximum likelihood estimates of epistemic uncertainty.

The proposed single-loop formulation for the likeli-
hood-based robust portfolio optimization can be expressed 
as:

In Eq. (12), the decision variables are the fraction of capi-
tal invested in asset i, xi where the epistemic variables are 
kept fixed at r∗

i
 and �∗

ij
 . Unlike the nested and decoupled 

formulations discussed in “Nested-loop formulation” and 
“Decoupled approach” sections respectively, the proposed 
robustness-based portfolio optimization formulation is 
solved using the worst-case maximum likelihood estimates 
of the mean value r∗

i
 and covariance �∗

ij
 of the epistemic vari-

ables obtained through the likelihood-based approach dis-
cussed earlier.

Since the optimization formulation in Eq. (12) is solved 
with a fixed set of epistemic variables, Eq. (12) is equivalent 
to a robust portfolio formulation under aleatory uncertainty 
alone. Unlike the nested formulation, the proposed formu-
lation does not suffer from any convergence issues. The 
proposed formulation also does not require any epistemic 
analysis within the portfolio optimization framework.

In the following section, we illustrate our proposed meth-
odologies for robustness-based portfolio optimization with 
both single- and multiple-interval data.

Numerical examples

The proposed methodologies are illustrated with two numer-
ical examples. Each example has data from five different 
S&P 500 companies. Example 1 has point data, single-inter-
val data, and multiple-interval data, where the numbers of 
observations for point and multiple-interval data are not the 
same. Example 2 has point data and multiple-interval data, 
where the numbers of observations are the same.

(12)
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Example 1

We consider point data for the return of three companies 
(ZTH, ALTR and MS), single-interval data for one company 
(ABT), and multiple-interval data for one company (NTAP) 
as given in Table 3. It is assumed that the correlations of 
asset four with the first three assets are negative with correla-
tion coefficients, ρ = [− 0.9, − 0.2], and correlations of asset 
five with others are positive with correlation coefficients, 
ρ = [0.2, 0.9].

Sometimes there exist some psychological and emotional 
effects on investment decision making and the investors are 
motivated by others to invest a particular amount of wealth 
on particular assets. Therefore, it is assumed that the inves-
tor is biased to invest at least 20% of total money on the 
first asset.

Since this problem contains single-interval data, we can-
not solve this problem using the robust portfolio optimiza-
tion methods that use median and lower semi-variance. Also, 
MLE-based single-loop portfolio method cannot be applied 
to this problem as the numbers of observations for point 
and interval data are not the same. Therefore, Example 1 
is illustrated for decoupled approach-based mean–variance 
portfolio model only.

Since the assets ABT and NTAP contain single- and 
multiple-interval data, respectively, bounds on the first two 
moments of these return data are estimated by the moment 
bounding methods as given in Tables 1 and 2, respectively. 
The bounds on covariance are calculated using Eq. (7). Once 
the bounds on mean asset return and covariance are esti-
mated, the next step is to solve Eqs. (5) and (6) iteratively 
until convergence to obtain optimal solutions for the decou-
pled mean–variance portfolio model.

The weight parameter w is varied (from 0 to 1), and the 
optimization formulations in Eqs. (5) and (6) are solved 
by the MATLAB solver “fmincon.” For each weight, the 
optimization problems converged in five iterations. In order 
to demonstrate the efficiency of the proposed decoupled 
formulation, we also solve this problem using a nominal 
mean–variance portfolio model. In nominal mean–vari-
ance model, the midpoints of multiple-interval data are 

considered as point data. For single-interval data, midpoint 
of the interval is considered as the mean and the variance is 
assumed to be 10% of the mean. The solutions from both the 
approaches are presented in Fig. 1.

Figure 1 shows the solutions of the robust portfolio opti-
mization in the presence of epistemic uncertainty. It is seen 
from Fig. 1 that for different weights (w), portfolio risk 
increases with the increase of return. This is a well-known 
characteristic for any multi-objective optimization problem. 
A decrease in the risk (i.e., standard deviation) implies that 
some robustness is achieved in the solutions. Therefore, 
there is a trade-off between the two objectives, minimizing 
the risk and maximizing the return of portfolio.

Note that the selection of weights in the presence of both 
aleatory uncertainty and epistemic uncertainty is not differ-
ent from the case where only aleatory uncertainty is consid-
ered. In both cases, the structure of the final results is exactly 
the same; we get a list of values for the mean (i.e., return) 
and standard deviation (i.e., risk) of the performance func-
tion corresponding to different weights as shown in Fig. 1. 
At this stage, the investment analyst is the main driving force 
of the portfolio optimization problem. The analyst needs 
to decide how much robustness he or she can afford at the 
expense of a decreased mean (i.e., less return) of the perfor-
mance function, and this will serve as a guideline in select-
ing a combination of weights, which is completely problem 
dependent.

It is also seen in Fig. 1 that for the same value of the 
return, the nominal mean–variance portfolio generates 
smaller values of risk than the decoupled approach. Simi-
larly, for the same value of the risk, the optimal solutions 
obtained by the nominal mean–variance portfolio have 
larger values of the return than the decoupled approach. 
This behavior is intuitive given the fact that the decou-
pled approach results in a conservative solution of robust 
portfolio as it searches among the possible values of epis-
temic variables, which is a minimization problem, to find 
optimal solution as discussed in “Proposed methodolo-
gies” section. On the contrary, the nominal mean–variance 
portfolio underestimates input uncertainty (i.e., ignores 

Table 3  Data of five S&P 500 companies for Example 1

Asset Return

ZTH 30.64, 30.73, 30.81, 30.54, 30.48, 30.56, 30.89, 30.53, 30.64, 30.31, 30.26, 30.53, 30.40, 30.16, 29.89, 29.32, 29.82, 28.96, 28.53, 
28.46, 28.48, 28.41, 28.33, 28.79, 28.99, 29.08, 28.93, 29.25, 29.55, 29.55

ALTR 32.43, 32.61, 32.81, 32.38, 32.15, 32.17, 31.95, 32.32, 31.98, 31.93, 32.37, 32.49, 32.41, 32.94, 33.98, 34.20, 34.58, 34.46, 34.30, 
33.82, 33.95, 33.80, 34.29, 35.21, 34.91, 34.35, 34.74, 36.23, 35.93, 32.43

MS 30.25, 30.33, 30.33, 29.68, 29.69, 29.70, 29.46, 30.07, 30.69, 31.22, 30.93, 30.52, 29.99, 30.48, 30.84, 30.94, 31.10, 30.88, 30.66, 
29.79, 29.45, 28.96, 28.38, 29.15, 30.12, 29.43, 29.42, 30.27, 30.85, 31.31

ABT [17.81, 39.92]
NTAP [33.59, 34.98; 35.00, 35.84; 35.62, 37.00; 35.97, 37.66; 36.03, 37.48; 36.43, 37.64; 36.42, 38.87]
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epistemic uncertainty) and thereby results in an optimistic 
portfolio.

However, epistemic uncertainty exists in the physical 
world. The point is how to deal with the investment problem 
in the presence of epistemic uncertainty. In general, the port-
folio optimization problem might become infeasible or too 
optimistic in the presence of unaccounted epistemic uncer-
tainty, if compared with the true optimal solution. Also, if 
epistemic uncertainty exists but is not explicitly considered 
in the portfolio optimization framework, there would be 
considerable difference observed between simulation and 
observed results. Therefore, in the presence of epistemic 
uncertainty arising from interval data, the proposed robust-
ness-based portfolio optimization methodology generates 
realistic solutions.

Example 2

In Example 2, we consider point data for the return of three 
companies (CTL, BBT, and IRM) and multiple-interval data 
for two companies (VIZ and KMI), where the numbers of 
observations for both point and multiple-interval data are 
the same, as given in Table 4. The assumptions for correla-
tions between asset returns and the minimum amount to be 
invested on the first asset are the same as in Example 1.

Since this problem does not contain any single-interval 
data, we solve this problem by the decoupled approach 
using four different risk–return measures: mean–variance, 

median–variance, mean–downside risk, and median–down-
side risk. Also, the numbers of observations for point and 
multiple-interval data are the same. Therefore, MLE-based 
single-loop portfolio method is also used to solve this prob-
lem using mean–variance portfolio measure.

Since the assets VIZ and KMI contain multiple-interval 
data, bounds on the first two moments of these return data 
are estimated by the moment bounding methods as given in 
Table 2, bounds on the median are estimated using Eq. (8), 
and bounds on lower semi-variance are estimated using 
Eq. (9). Equation (7) is then used to obtain bounds on covari-
ance and lower semi-covariance using the bounds on vari-
ance and lower semi-variance thus obtained. We then use 
the decoupled approach to solve the robustness-based port-
folio optimization formulations under epistemic uncertainty 
for different risk–return measures. The weight parameter w 
is varied (from 0 to 1) and the optimization formulations 
in Eqs. (5) and (6) are solved iteratively until convergence 
to obtain optimal solutions. In each case, the optimization 
problems converged in five iterations. This problem is also 
solved by the MLE-based single-loop formulation as given 
in Eq. (12) using mean–variance risk–return measure. The 
solutions from both the approaches are presented in Fig. 2.

It is seen from Fig. 2 that different risk–return measures 
are better for different weights (w). For lower values of 
the weight parameter (w), i.e., when the analyst puts more 
emphasis on minimizing risk rather than maximizing return, 
portfolio models with lower semi-variance, i.e., downside 

Fig. 1  Portfolio risk–return for 
Example 1
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Table 4  Data of five S&P 500 
companies for Example 2

Asset Return

CTL 38.80, 38.40, 39.10, 39.77, 39.68, 40.05, 40.06, 40.72, 41.10, 40.77
BBT 38.10, 38.93, 38.76, 38.78, 37.92, 37.96, 37.41, 37.05, 37.59, 37.90
IRM 37.15, 36.97, 37.20, 37.31, 37.33, 37.38, 37.50, 38.92, 38.83, 38.01
VIZ [38.94, 41.61; 38.82, 41.58; 39.68, 42.52; 39.48, 42.22; 39.95, 42.75; 

39.86, 42.98; 40.38, 42.97; 39.92, 42.42; 39.08, 42.05; 38.69, 41.26]
KMI [38.88, 42.51; 38.44, 42.23; 39.65, 43.03; 38.84, 42.98; 40.12, 43.69; 

40.46, 44.02; 40.83, 44.68; 40.62, 44.94; 39.94, 44.02; 40.35, 43.68]
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risk, show slightly higher risk values than the variance-based 
portfolio models. For higher weights, i.e., when the analyst 
emphasizes more on maximizing return, variance-based 
portfolio models show significantly higher risk values than 
the lower semi-variance-based portfolio models. In general, 
the median–variance and median–downside risk models 
are better than the mean–variance and mean–downside risk 
models, respectively, in terms of return maximization. Also, 
the mean–variance and median–variance models are better 
than the mean–downside risk and median–downside risk 
models, respectively, in terms of risk minimization.

It is also seen in Fig. 2 that singe-loop formulation pro-
vides better portfolio risk–return values than the decoupled 
portfolio models. For the same value of the return, the MLE-
based single-loop mean–variance portfolio model generates 
smaller values of risk than the decoupled approach. Simi-
larly, for the same value of the risk, the optimal solutions 
obtained by the singe-loop formulation have much larger 
values of the return than the decoupled approach. Therefore, 
the proposed single-loop robust optimization formulation 
generally outperforms the decoupled formulations in terms 
of both return and risk.

Conclusions

This paper proposed several formulations for robust portfo-
lio optimization under both aleatory uncertainty and epis-
temic uncertainty. The proposed formulations specifically 
deal with epistemic uncertainty for random variables aris-
ing from interval data. Epistemic uncertainty is represented 
using two approaches: (1) moment bounding approach and 
(2) likelihood-based approach.

First, a nested robust portfolio optimization formula-
tion is proposed in this paper using the moment bounding 
approach-based representation of epistemic uncertainty, 
where the optimizer searches among the possible values of 
the epistemic variables for a conservative solution of the 

robust portfolio problem. However, the nested formulation 
does not guarantee convergence, and even if it converges, it 
is computationally very expensive. Therefore, we propose a 
decoupled approach to un-nest the robustness-based portfo-
lio optimization from the analysis of the epistemic variables 
to achieve computational efficiency. The proposed decou-
pled formulations are presented for four risk–return portfo-
lio measures: classical mean–variance, mean–downside risk, 
median–variance, and median–downside risk. With numeri-
cal experimentation, we show that the median–variance and 
median–downside risk models are better than the mean–vari-
ance and mean–downside risk models, respectively, in 
terms of return maximization. Also, the mean–variance and 
median–variance models are better than the mean–down-
side risk and median–downside risk models, respectively, 
in terms of risk minimization.

Decoupled approach is computationally efficient than 
the nested formulation, but it quantifies uncertainty through 
iterative analysis. Therefore, a likelihood-based moment 
estimation method is also proposed for representing uncer-
tainty that completely separates the epistemic analysis from 
the portfolio optimization framework and thereby achieves 
further computational efficiency. The proposed likelihood-
based approach is general and is able to estimate the param-
eters of any known multivariate probability distributions. 
However, in this paper, we have used multivariate normal 
distribution for the sake of illustration only. The resulting 
MLE-based single-loop robust portfolio optimization formu-
lation generates better optimal solutions than the decoupled 
approach in terms of both portfolio return and risk.

The major advantage of the proposed methodologies is 
that unlike the existing methods, it does not require separate 
representation for aleatory and epistemic uncertainties as 
it can handle both types of uncertainty using probabilistic 
format. The developed methodologies can assist the inves-
tors in making robust decisions with emphasis on both return 
and risk. The methods developed in this paper are appli-
cable to any robust optimization problem under epistemic 

Fig. 2  Portfolio risk–return for 
Example 2
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uncertainty that uses moment information or probability 
distribution.

The proposed uncertainty representation and optimiza-
tion methodologies are capable of solving risk and revenue 
management problem efficiently. In revenue management 
problem, the decision maker not only focuses on maximizing 
the expected revenue, but also focuses on minimizing the 
risk of failing to achieve a given target revenue, and in this 
situation the proposed methodologies are helpful to make a 
robust decision.

Finally, an interesting question arises that how the port-
folio decision may change if we use a linear risk estima-
tor instead of variance or semi-variance. The answer is the 
scope of further research. In the future, the proposed model 
can be compared with the linear robust risk estimator such as 
Mean Absolute Deviation and Median Absolute Deviation.

Open Access This article is distributed under the terms of the Crea-
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