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Abstract
This paper adopts a modified approach of data envelopment analysis (DEA) to measure the academic efficiency of

university departments. In real-world case studies, conventional DEA models often identify too many decision-making

units (DMUs) as efficient. This occurs when the number of DMUs under evaluation is not large enough compared to the

total number of decision variables. To overcome this limitation and reduce the number of decision variables, multi-

objective data envelopment analysis (MODEA) approach previously presented in the literature is applied. The MODEA

approach applies Shapley value as a cooperative game to determine the appropriate weights and efficiency score of each

category of inputs. To illustrate the performance of the adopted approach, a case study is conducted in a university in the

Philippines. The input variables are academic staff, non-academic staff, classrooms, laboratories, research grants, and

department expenditures, while the output variables are the number of graduates and publications. The results of the case

study revealed that all DMUs are inefficient. DMUs with efficiency scores close to the ideal efficiency score may be

emulated by other DMUs with least efficiency scores.

Keywords Academic efficiency � Data envelopment analysis � Multi-objective data envelopment analysis �
University departments

List of symbols
q Index of the q th category of inputs

q ¼ 1; . . . ; Qð Þ
i Index of inputs i ¼ 1; . . . ;mq

� �

j Index of DMU j ¼ 1; . . . ; nð Þ
r Index of outputs r ¼ 1; . . . ; sð Þ
n Number of DMUs

mq Number of inputs in the qth category

s Number of common outputs

xij ith input for DMUj

x
q
ij ith input for DMUj in the qth category of inputs

yrj rth output for DMUj

vi Weight of the ith input

v
q
i Weight of the ith input in the qth category of

inputs

lr Weight of the rth common output

K Set of input categories in coalition

X Set of input categories
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Introduction

Higher education institutions (HEIs) play an important role

in preparing a country to be globally competitive through

the skilled human capital resources it produces. With the

proliferation of HEIs, most academic institutions are con-

fronted with the issue on the deterioration of quality

graduates (Conchada 2015). Also, HEIs have failed to meet

the national expectations of quality education to match the

labor requirements of a country and the world market

(Bautista 2014). To assure that HEIs produce quality

graduates, there is a need to constantly check itself against

the standards set by a governing body and the latest

demands of the labor market. This entails assessment on

the educational resources to be conducted by accreditation

bodies to HEIs such that its faculty, research, and facilities

may be further developed (Conchada 2015). To carry this

out, efficiency assessment on the utilization of educational

resources must be done. This can help HEIs set strategic

goals, allocate resources and budgets, and promote their

institutions’ accomplishments to potential faculty, funders,

and students. More so, efficiency measurement in HEIs can

be summed up as an investment in quality as it aids in

accurate strategic decision-making whether to build on

existing strength or develop new areas.

To measure efficiency, two basic methodologies can be

used depending on the nature of efficiency under evalua-

tion (i.e., economic or technical). In the case of HEIs, a

non-parametric technique to evaluate relative efficiencies

of a set of comparable decision-making units (DMUs) by

mathematical programming is deemed appropriate to be

implemented (Guccio et al. 2016). One non-parametric

technique that is widely used in measuring technical effi-

ciency is data envelopment analysis (DEA). It identifies the

sources and level of inefficiency for each input and output

(Cooper et al. 2007). DEA has been successfully applied in

various fields such as: (a) evaluation of the relative tech-

nical efficiencies of academic departments of a university

in Gaza, Egypt (Agha et al. 2011), (b) evaluation of the

relative efficiency of public and private higher education

institutions in Brazil (Zoghbi et al. 2013), (c) assessment of

the performance levels of departments of a university in

Turkey (Goksen et al. 2015), (d) assessment of the effi-

ciency of agricultural farms in different regions of Turkey

(Atici and Podinovski 2015), (e) estimation of the relative

efficiency of local municipalities in traffic safety in Israel

(Alper et al. 2015), (f) evaluation of the performance of the

supply chain operations (Tajbakhsh et al. 2015), and

(g) evaluation of electricity distribution companies under

uncertainty about input/output data (Hafezalkotob et al.

2015). As an extension to the conventional DEA model,

multiple objective-based models are further introduced.

Some of which include (a) an interactive multi-objective

linear programming (MOLP) procedure in selecting ideal

output targets given the input level (Golany 1988), (b) a

two-stage approach for solving DEA and multi-objective

programming models in calculating efficiency scores (Li

et al. 2009; Wang et al. 2014; Despotis et al. 2015), (c) a

fuzzy multi-objective mathematical model for identifying

and ranking of the candidate suppliers and finding the

optimal number of parts and finished products in a reverse

logistics network configuration (Moghaddam 2015), and

(d) a multi-objective programming model as an alternative

approach to solving network DEA (Kao et al. 2014).

The previously presented multi-objective DEA

(MODEA) applications are not able to overcome the lim-

itation of the conventional DEA which requires a number

of decision variables that is lesser than the number of

DMUs under evaluation (Cooper et al. 2007). As a result,

DEA drops its discriminating ability, thereby, leading to a

less accurate measure of efficiency. To address the limi-

tation of the conventional DEA and compare DMUs more

effectively regardless of the number of DMUs considered

(i.e., DMUs can both be lesser than or greater than the

decision variables), Rezaee (2015) introduced the use of

Shapley value in MODEA. In this approach, it enables the

use of a large set of decision variables when the number of

DMUs evaluated is lesser than such variables. This is in

direct contrast to the conventional DEA models that only

allows a particular number of DMUs for a set of variables

based on a predetermined guideline.

To take advantage of the strength of the Shapley-based

MODEA model proposed by Rezaee (2015), this paper

aims to apply this approach in a case study concerning an

academic institution which, by nature, involves a wide

array of decision variables that need to be considered to

measure efficiency more accurately. In literature, the effi-

ciency of academic institutions is mostly measured using

the conventional DEA approach and none has made use of

the MODEA approach despite its advantage of looking at

the multi-objective characteristic of the problem. Thus, the

gap that is advanced in this paper is the use of a large set of

decision variables, i.e., inputs and outputs, in academic

efficiency evaluation of a small number of university

departments where the conventional DEA approach would

result in low discriminating ability when such conditions

are present. Furthermore, while Rezaee (2015) introduced

the use of MODEA approach in evaluating power plants,

this paper contributes by demonstrating the same approach

in measuring the academic efficiency in university

departments where the number of DMUs is sufficiently

lesser than that of decision variables involved. The

remainder of this paper is organized as follows: Sect. 2

presents the review of related literature with emphasis on

how efficiency is characterized as well as outstanding
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approaches used to measure efficiency and its other rele-

vant applications in diverse fields. Section 3 provides a

detailed flow on how the MODEA approach is imple-

mented. An illustrative example is presented in Sect. 4 to

validate the model based on MODEA approach with Sha-

pely values and the discussion of results are shown in

Sect. 5. The managerial implications and final remarks on

the key results obtained are presented in Sect. 6.

Literature review

Efficiency is a systematic process that converts a set of

inputs into a set of outputs. An input is a primary resource

to produce an output while an output is the expected result.

Any process, taking a set of inputs to produce certain

outputs, can be viewed this way. In any organization, it is

imperative to consider multiple inputs and multiple out-

puts. Coelli et al. (2005) suggest that efficiency reflects the

ability of an organization to obtain maximum output from a

given set of inputs. When an organization is able to max-

imize its output from a given set of inputs, it is said to be

efficient (Rogers 1998).

Essentially, there are two main methodologies for

measuring efficiency, that is, parametric methods and

nonparametric methods. Parametric methods include thick

frontier approach (TFA), stochastic frontier approach

(SFA), and distribution free approach (DFA). These

methods measure economic efficiency. Non-parametric

methods include DEA and free disposal hull (FDH). These

methods measure technical efficiency. Parametric methods

are good in handling data with a certain level of uncer-

tainty; however, it is not easy to be applied in a multiple-

inputs-and-outputs situation. Moreover, these methods are

not suited to measure the efficiency of a nonprofit organi-

zation since these methods usually involve market price.

Cooper et al. (2007) have established DEA to measure

the relative and technical efficiency of variables. It is a

nonparametric method of measuring the efficiency with

multiple inputs, multiple outputs, and no market prices.

DEA uses linear programming to compute weights as the

alternative to market prices. Linear programming computes

the weights that maximize an objective function subject to

the constraints identified. The data used for DEA are the

observed inputs used and the actual outputs produced by

the spending units.

Data envelopment analysis (DEA)

DEA is a mathematical programming model developed to

evaluate the relative efficiency of homogeneous DMUs.

According to Kuah et al. (2011), a DMU is an entity

responsible for converting input(s) into output(s) and which

performances are to be assessed. Farrell (1957) first used

DEA to measure technical efficiency for a set of organi-

zations, and this has been developed and extended by

Charnes et al. (1978). The objective function in DEA is

specified in terms of the overall output–input ratio. The

constraints of this linear programming model are also

output–input ratios pertaining to the DMUs. Suppose there

are n DMUs, where each DMUj j ¼ 1; . . .; nð Þ produces

s outputs r ¼ 1; . . .; sð Þ by utilizing m inputs i ¼ 1; . . .;mð Þ.
According to these notations, DEA uses the following

model for evaluating DMU0’s efficiency:

Maximize

Ps
r¼1 lryr0Pm
i¼1 vixi0

Subject to

Ps
r¼1 lryrjPm
i¼1 vixij

� 1; j ¼ 1; . . .; n

vi; lr � e; i ¼ 1; . . .;m r ¼ 1; . . .; s

ð1Þ

where lr and vi are the weight of inputs and outputs, xij and
yrj are input and output variables, and e[ 0 is a non-

Archimedean number that is smaller than any non-negative

real number. The relative efficiency of DMUs is calculated

by assigning 1 for efficient DMUs and less than 1 for

inefficient DMUs.

Efficiency measurement with the use of DEA approach

has been applied to several industries. Among the multi-

faceted applications of DEA, the top-five industries

addressed are banking, health care, agriculture and farm,

transportation, and education. These industries practically

adopt DEA for a variety of reasons, as Golany and Roll

(1989) pointed out that it can be applied to identify sources

of inefficiency, rank the DMUs, evaluate management,

evaluate the effectiveness of programs or policies, and

create a quantitative basis for reallocating resources.

Another advantage of DEA is its ability to identify a set of

corresponding efficient DMUs that can be referred as

benchmarks for every inefficient DMU.

The application of DEA has been integrated with other

mathematical approaches to further its ability to measure

efficiency. For instance, Stackelberg approach is used in a

mixed integer bi-level DEA model for bank branch per-

formance evaluation (Shafiee et al. 2016). This approach

involves a bi-level programming motivated by Von

Stackelberg’s game theory (1952) which aim is to obtain a

solution that optimizes the objective functions of a leader

and a follower. Another approach is that of a multilayer

artificial neural network which has been applied to forecast

the decision variables of each DMU for a specified period

(Shokrollahpour et al. 2016). On the other hand, a slack-

based measure of efficiency that involves constant inputs is

used to calculate the perceived service quality index of the

multiple-item service quality construct. DEA is further

used to evaluate the service quality within a pre-determined
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framework (Najafi et al. 2015). Another index, that is,

Malmquist DEA-based productivity index is used to eval-

uate the changes in productivity in the technical efficiency

and technology frontier (Abri and Mahmoudzadeh 2015).

In another case, the efficiency scores obtained in DEA

model is then applied to a mixed integer scenario-based

stochastic programming model for a supplier selection

problem (Zarindast et al. 2017). The objective functions

include minimizing the total purchasing cost over the

planning horizon and maximizing the rank of suppliers.

A Nash bargaining game theory is integrated to DEA to

tackle efficiency of suppliers in the presence of competition

at the same time (Rezaee et al. 2017). The programming

model focused on four objective functions defining total

profit, defective rate, delivery delay rate, and efficiency in a

competitive environment.

In the context of academic institutions, its efficiency is

measured using DEA as shown in several studies in the

literature. For instance, Kao et al. (2006) applied DEA to

assess the relative efficiency of academic departments in a

university in Taiwan by utilizing scarce resources in

teaching students and producing research results. This

study focused on the efficiency of resource utilization

rather than academic performance. In another case, Tyagi

et al. (2008) evaluated the performance efficiencies of 19

academic departments of a university in India using DEA

approach. Sensitivity analysis is applied to test the

robustness of the efficiency results. Similarly, academic

departments of a university in Gaza are assessed by Agha

et al. (2011) in terms of its technical efficiencies. Super-

efficiency analysis is applied to efficient departments to

determine the most efficient department. On the other hand,

Goksen et al. (2015) determined the performance levels of

26 departments of a university in Turkey using DEA to

reveal the main cause of its inefficiency. Academic col-

leges at a university in Iran are likewise assessed by Saniee

Monfared and Safi (2013) using network DEA in com-

parison to the conventional DEA model.

Each of these previously presented studies differs in its

scope, DMUs, and decision variables considered. The input

and output variables for each study are shown in Table 1.

Most of these studies used only the basic models of DEA

which are based on Banker–Charnes–Cooper (BCC) and

Charnes–Cooper–Rhodes (CCR) models except for Agha

et al. (2011) who applied super-efficiency analysis in their

study. In addition, these studies did not clearly answer the

question as to which of the resources caused the DMUs’

inefficiency.

Variable selection in university departments

The selection of decision variables is an important factor in

DEA. One point to consider in using DEA is the relation-

ship of the number of DMUs and the number of decision

variables. According to Pedraja-Chaparro (1999), DEA

drops its discriminative power and accuracy of measuring

the efficiency of DMUs when the value of n= mþ sð Þ,
where n is the number of DMUs, m is the number of inputs,

and s is the number of outputs, is too small. It is suggested

that n should be greater than 3� mþ sð Þ as a guideline for
DEA (Banker et al. 1989; Friedman and Sinuany-Stern

1998; Cooper et al. 2007). According to Dyson et al.

(2001), the number of DMUs must be at least 2� m� sð Þ
wherein if twice the product of the variables is equal to or

lower than the number of DMUs, it indicates that the

number of variables used is satisfactory for measuring

efficiency through DEA.

Typically, the number of inputs and outputs and the

DMUs determines how acceptable a discrimination exists

between efficient and inefficient units. If DMUs are taken

from an infinite set, DEA models can provide best esti-

mations of production frontier. In other words, if there are

lesser DMUs, the error of the production frontier estima-

tion increases, and the possibility of domination for each

DMU decreases due to other efficient DMUs. As a result,

the number of efficient DMUs increases, however, some of

which are not actually as efficient. When there is such a

case, other post-optimality models may be applied to fur-

ther rank DMUs (Ziari and Raissi 2016). These may

include super-efficiency analysis (Anderson and Peterson

1993), Mehrabian-Alirezaee-Jahanshahloo (MAJ) model

(Mehrabian et al. 1999), a nonlinear programming L1-norm

model (Jahanshahloo et al. 2004), and leave-one-out idea

and L1-norm (Rezai Balf et al. 2012). It is, however,

important to note that these models still require a large

number of units under evaluation for it to be carried out. In

practice, a large number of units are not always available.

There are several inputs and outputs that decision-makers

intend to use for evaluation but the number of DMUs is not

sufficient (Rezaee 2015). One concrete example is that of

university departments which is characterized by a wide

range of variables (Berbegal and Sole 2012).

Variable reduction in DEA

To counteract with the limited distinction provided by

DEA with many variables, previous findings have retained

some variables originally planned for the analysis while
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omitting other variables that are highly correlated with it.

For instance, Zhu (1998) used principal component anal-

ysis (PCA) approach for aggregating multiple inputs and

multiple outputs to evaluate the efficiency of DEA models.

By means of aggregation, the number of variables of

DMUs can be reduced using a joint application of DEA and

Table 1 Decision variables of previous studies of DEA applied in university departments

Year Author Input variables Output variables

1990 Beasley General expenditure Undergraduates

Equipment expenditure Postgraduates on taught courses

Research income Postgraduates who are doing research

2003 Abbott et al. Academic staff Full-time students

Non-academic staff Postgraduate and undergraduate degrees enrolled

Expenditure Postgraduate degrees and undergraduate degrees conferred

Non-current assets

2006 Kao et al. Personnel Total credit hours

Operating expenses Publications

Floor space External grants

2008 Tyagi et al. Academic staff Total enrolled students

Non-academic staff Progress

Department operating cost Research index

2010 Halkos et al. Academic staff Academic research

Auxiliary staff Graduates

Number of students Publications

Total income

2010 Katharak et al. Academic staff Graduates

Non-academic staff Research income

Actively registered students

Operating expenses

2011 Agha et al. Operating expenses Graduates

Credit hours Promotions

Training resources Public service activities

2011 Kuah et al. Academic staff Graduates from taught courses

Number of taught course students Average graduates’ results

Average students’ qualifications Graduation rate

University expenditures Graduates’ employment rate

Research staffs Graduates from research

Average research staffs’ qualifications Publications

Research students Awards

Research grants Intellectual properties

2013 Kuhail Full-time academic staff Graduates

Part-time academic staff Promotions

Academic staff salaries Public service activities

Training resources

2013 Aziz et al. Academic staff Graduates

Non-academic staff Research grant received

Yearly operating expenses Academic publications

2015 Goksen et al. Outdoor–indoor area of University Publications

Academic staff Graduate students

Administrative staff

Journal of Industrial Engineering International (2018) 14:733–746 737
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factor analysis as introduced by Nadimi et al. (2008). They

also detected structure in the relationship between variables

and applied joint DEA and factor analysis to form groups

of variables that have a correlation with one another.

Furthermore, only those that are considered as important

variables from multiple inputs and multiple outputs can be

selected using a stepwise regression data envelopment

approach developed by Sharma et al. (2015). A null

hypothesis is formulated to understand the importance of

each variables using Kruskal–Wallis test. The Kruskal–

Wallis is able to determine if all variables are of equal

importance when it is present and when huge fluctuations

in efficiency scores will be created in the absence of such

variables. Similarly, an analysis of variance (ANOVA) is

executed firstly to identify significant process parameters

which then served as the basis for which the efficient

frontiers using DEA are generated (Chen et al. 2013).

On the other hand, Jenkins and Anderson (2003) used a

systematic statistical method in deciding which of the

correlated variables identified can be omitted with least

loss of information and which should be retained. The

results of their study revealed that omitting variables that

are highly correlated with one another and contain little

additional information on the performance of departments

can cause a major influence on the computed efficiency

measures. Another approach is dealt by Alder and

Yazhemsky (2010) which combined PCA and DEA to

reduce the dimensionality of decision variables which

consists of a large number of interrelated variables without

much loss of information. The data compression is done by

transforming the original data into a new set of variables

which are uncorrelated with one another. A Monte Carlo

simulation is further applied to generalize and compare two

discrimination improving methods: (a) PCA applied to

DEA, and (b) variable reduction based on partial covari-

ance. The combination of PCA and DEA approach is also

implemented by Omrani et al. (2015) in an integrated

approach in assessing efficiency performance of electricity

distribution companies.

These approaches entail some difficulties in target set-

ting and evaluation goals because the original set of inputs

and outputs are usually converted into new variables so that

the latter variables are not of the same type as the former. It

means that these new variables will not be appropriate for

analysis and target setting (Rezaee 2015). The MODEA

model is introduced to overcome the limitations of the

conventional DEA models. In MODEA model, multiple

objectives generate multiple frontiers. This approach,

regardless of the number of DMUs, discriminates among

the DMUs more effectively (Rezaee 2015).

Multi-objective data envelopment analysis
(MODEA)

The MODEA model is based on the conventional DEA

model given in (1) with the consideration of changing the

variables to a non-fractional multi-objective model (Rezaee

2015). For simplicity, variables are denoted as tq ¼
Pmq

i¼1 v
q
i x

q
io

� ��1
; vqi ¼ tqv

q
i ; and lqr ¼ tqur: As for the first

objective, variables are given as l2i ¼ t2
t1
l1i ; l

3
i ¼

t3
t1
l1i ; . . .; l

Q
i ¼ tQ

t1
l1i : By having, a2 ¼ t2

t1
; a3 ¼ t3

t1
; . . .; aQ ¼

tQ
t1
and li ¼ l1i ; then the conventional DEA model is con-

verted to (2):

Maximize
Xs

r¼1

lryro; a2
Xs

r¼1

lryro; a3
Xs

r¼1

lryro; . . .; aQ
Xs

r¼1

lryro

 !

Subject to :

Xs

r¼1

lryrj �
Xm1

i¼1

tqi x
q
ij � 0 j ¼ 1; . . .; n; q ¼ 2; . . .;Q

Xmq

i¼1

tqi x
q
ij ¼ 1 j ¼ 1; . . .; n; q ¼ 1; . . .;Q

tqi ; lr [ 0; r ¼ 1; . . .; s; i ¼ 1; . . .;mq; q ¼ 1; . . .;Q

ð2Þ

where aq is the ratio of sum of weighted inputs in the first

category to sum of weighted inputs in the qth category.

Several studies have made use of the MODEA model in

various applications. For instance, Golany (1988) first

presented a MODEA model which is designed as an

interactive multi-objective linear programming (MOLP)

procedure to select the preferred output targets given the

input levels. Another variation of a MOLP problem is

solved by Jahanshahloo et al. (2005) which consists of a

one-stage algorithm for obtaining efficient solutions. On

the other hand, Carrillo et al. (2016) presented a new

method for ranking the evaluated DMUs according to its

performance. This method uses common-weight DEA

under a multi-objective optimization approach. Most

studies apply a two-stage process wherein network DEA is
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applied first to obtain the efficient solutions for a MOLP

problem. With each iteration of the DEA model, one

problem is solved and a new constraint is added.

On the other hand, Kao et al. (2014) proposed a multi-

objective programming model as an alternative approach to

solving network DEA. The divisional and overall effi-

ciency of the organization is formulated as separate

objective functions. The overall efficiency of DMUs is

evaluated without neglecting the efficiencies of its sub-

units. A network DEA approach is also presented by

Despotis et al. (2015) in dealing with efficiency assess-

ments in a two-stage process. This method uses multi-ob-

jective programming as its modeling framework. In another

efficiency assessment problem, Mashayeki and Omrani

(2015) presented a novel multi-objective model which aims

to be used for effective portfolio selection. The model

incorporates DEA cross-efficiency into Markowitz mean–

variance model and deliberates return, risk, and efficiency

of the portfolio. Then, Carayannis et al. (2016) presented a

cohesive assessment and classification framework for

national and regional innovation efficiency. The model

proposed is based on DEA and is formulated as a multi-

objective mathematical model to consider the objectives

and constraints of the different stages of the innovation

process.

Aside from the crisp MOLP model, the concept of the

fuzzy set theory is also integrated such that various levels

of uncertainty may be considered. In the study of Wu et al.

(2010), they presented a fuzzy multi-objective program-

ming model to select a reliable supplier in the presence of

risk factors. A fuzzy dynamic multi-objective DEA model

is presented by Jafarian-Moghaddam et al. (2011) in

assessing the performance of railways as a numerical

example to evaluate the results of the model. Then, Zhou

et al. (2016) proposed a type-2 fuzzy multi-objective DEA

model to evaluate sustainable supplier performance by

combining effectiveness and efficiency and used the inte-

grated productivity values to determine the sustainability of

suppliers.

In real-life scenarios, the application of the MODEA

approach as an evaluation tool is perceived to be interest-

ing; however, it might be hampered due to the limitations

of the conventional DEA in terms of the number of DMUs

and its decision variables. Previously presented studies on

MODEA are not also able to address this limitation, thus,

the introduction of Shapley values in a MODEA approach

(Rezaee 2015).

MODEA introduced by Rezaee (2015) uses multi-cate-

gory of inputs and outputs to measure the technical effi-

ciency of each DMUs. The approach applies Shapley

value, a concept in a cooperative game theory, to deter-

mine the efficacies of each category. Shapley value index is

an approach used to measure the power of coalitions in a

cooperative game. It is calculated as the distribution of

power among the categories in coalitions. The Shapley

value measures a set of categories that are formed a

coalition, according to its power. The approach starts with

the classification of the inputs and outputs to different

categories. Then, the efficacy of each category in coalitions

is determined. In calculating the efficacy of each category,

the impact of each category of a DMU is determined.

Afterward, Shapley value is used as a criterion to deter-

mine the efficacy of the categories. The Shapley value

helps to assign an appropriate weight to each objective

function to obtain unique efficiency score. Lastly, technical

efficiency scores of DMUs are calculated using Shapley

values. With the use of MODEA, hierarchical efficiencies

can be modeled flexible given that there might be different

scenarios with decision variables not applicable to a gen-

eral case (Carayannis et al. 2016).

The MODEA approach

This section describes how the MODEA approach based

from Rezaee (2015) is carried out. The application of this

methodology is motivated by the viability of this approach

in the context of assessing the efficiency of university

departments. In consideration of the very nature of uni-

versity departments which involve a number of decision

variables that is essentially greater than the number of

DMUs, the implementation of the MODEA approach in

this paper is also guaranteed to lead to more accurate

results compared to that of the conventional DEA model:

Step 1: List possible coalitions. The list of coalitions of

the categories is obtained by exhausting all

possible sets from one category to n categories.

Step 2: Solve the efficacy of each category in

coalitions. The objective efficacy degree (OED)

of each coalition for DMUj;OEDj Kð Þ,
denotes the marginal contribution of the

coalition on the efficiency evaluation of

DMUj. The OEDj Kð Þ is acquired using (3):
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OEDj Kð Þ ¼
ej Xð Þ � ej

X
K

� �

ejðXÞ

����

����;

8K � X j ¼ 1; . . .; n ð3Þ

where the function ej Xð Þ is the optimal

efficiency of DMUj for the set of categories,

and ej
X
K

� �
is the optimal efficiency of DMUj for

the set of categories excluding the coalition, K.

While the OED for DMUj if the qth category

is excluded from

K, OEDj
K
qf g

� �
, is acquired using (4):

OEDj

K

qf g

� �
¼

ej Xð Þ � ej X
.

K
qf g

� �� �

ejðXÞ

������

������
;

8K � X j ¼ 1; . . .; n ð4Þ

The ej Xð Þ, ej X
K

� �
, and ej X

.
K
qf g

� �� �
is

calculated as in (5):

Maximize
1

Kj j
X

q2K
aq
Xs

r¼1

lryr0

 !

Subject to

Xs

r¼1

lryrj �
Xm1

i¼1

v1i x
1
ij � 0 j ¼ 1; . . .; n

aq
Xs

r¼1

lryrj �
Xmq

i¼1

v
q
i x

q
ij � 0 j ¼ 1; . . .; n

2 K; q 6¼ 1

Xmq

i¼1

v
q
i x

q
ij ¼ 1 j ¼ 1; . . .; n q 2 K

v
q
i ; lr � e r ¼ 1; . . .; s i ¼ 1; . . .;mq

q 2 K

ð5Þ

where aq is the ratio of the sum of inputs in

the first category and the sum of inputs in the

qth category. The worth of coalition K, V (K),

is obtained by (6):

V Kð Þ ¼
Xn

j¼1

OEDj Kð Þ ð6Þ

while the worth of coalition K when the qth

category is excluded from V K
qf g

� �
, is

obtained through (7):

V
K

qf g

� �
¼
Xn

j¼1

OEDj

K

qf g

� �
ð7Þ

Step 3: Calculate the Shapley value. The efficacy

of each category of inputs is taken by

calculating the Shapley value, ’q; using (8):

uq ¼
X Kj j � 1ð Þ! Xj j � Kj jð Þ!

Xj jð Þ! V Kð Þ � V
K

qf g

� �� �

ð8Þ

Step 4: Solve for the weights. After generating

the Shapley values of each category, these

values are applied in (9) to determine the

weights, !q, of each category:

xq ¼
uq

PQ
q¼1 uq

ð9Þ

Step 5: Calculate the technical efficiency. The weights

generated for each category are used in the

model shown in (10) for measuring the

technical efficiency of DMU0, for instance:

Maximize
XQ

q¼1

xqkq ð10Þ

Subject to

k1 �
Xs

r¼1

lryr1 q ¼ 1
ð11Þ

kq � aq
Xs

r¼1

lryr1 q ¼ 2; . . .;Q ð12Þ

Xs

r¼1

lryrj �
Xm1

i¼1

v1i x
1
ij � 0 j ¼ 1; . . .; n q ¼ 1

ð13Þ

aq
Xs

r¼1

lryrj �
Xmq

i¼1

v
q
i x

q
ij � 0 j ¼ 1; . . .; n

q ¼ 2; . . .;Q ð14Þ

Xmq

i¼1

v
q
i x

q
ij ¼ 1 j ¼ 1; . . .; n q ¼ 1; . . .;Q ð15Þ

v
q
i ; lr; kq � e r ¼ 1; . . .; s i ¼ 1; . . .;mq

q ¼ 1; . . .;Q

ð16Þ

where aq is the ratio of the sum of inputs

in the first category and the sum of inputs

in the qth category. The objective function (10)

measures the technical efficiency of DMU1.

Constraint (11) ensures that the value for each of the

category of inputs for DMU1 is not greater than 1. Con-

straints (12) through (14) guarantee that the efficiency
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score of each DMU is lesser than or equal to 1. In other

words, these constraints are imposed to ensure that no

DMUs and no category of inputs exceed the maximum

efficiency level, which has been set equal to 1. Constraint

(15) implies that the total value of the category of inputs of

DMUj is equal to 1. Constraint (16) ensures that each of the

value of the input, category of inputs, and output variables,

are strictly non-negative. This condition guarantees that the

solution set in these variables are non-negative since the

model cannot detect inefficiency when the values for the

input and output variables are negative integers. The gen-

erated value for each DMU will determine whether the

department is performing efficiently or not. If the efficiency

score is equal to 1, it implies that the DMU is efficient,

otherwise, it is inefficient. The results from the MODEA

approach will also present the efficiency score of each of

the category of inputs pertaining to a particular DMU.

Case study and analyses

In this section, an illustrative example is presented in order

to show how the MODEA approach is applied in evaluat-

ing the efficiency of an academic institution in the

Philippines for a particular academic year (note that to

preserve the confidentiality of the case presented, the actual

name of the university and its academic departments under

a particular school is not divulged). A structured interview

with the department chairperson is conducted to obtain

relevant data relating to both input and output variables

expended on the said department. Its results and findings

are presented as follows.

Suppose that a university has six academic departments

under a particular school. These departments (i.e., consid-

ered as DMUs) are, by nature, homogeneous since these

use similar inputs and produce the same outputs. Addi-

tionally, these perform the same task and have similar

objectives and goals. In selecting the decision variables, the

category of inputs and outputs considered is in accordance

with the views of the university’s stakeholders in relation

to its contribution to the overall efficiency of a department.

The inputs are divided into three categories—human

resource, facilities, and financial—while outputs are cate-

gorized as desirable factors (see Table 2).

Input variables

The academic staff is the main human resource utilized by

every department that concentrates in both teaching and

research activities. Their ranking is based on their expertise

which is reflective of their highest educational attainment

(i.e., doctorate degree, master’s degree, and baccalaureate

degree). For the purpose of proper aggregated measure

composition of academic staff (Tzeremes and Halkos

2010), a pre-assigned weight is given to each rank. An

academic staff who has a doctorate degree is assigned a

weight of 0.60, while those who hold a master’s degree is

assigned a weight of 0.30. For an academic staff who is a

baccalaureate degree holder, a weight of 0.10 is assigned.

Another indicator for human resource is non-academic staff

such as secretaries and working students. Every department

has its own non-academic staff who does auxiliary errands

to facilitate teaching and research activities. They also

provide assistance to academic staff and student concerns.

Another input category is facilities used by academic

staff and students to aid teaching and research activities. It

includes classrooms and specialized laboratories.

The financial category is comprised of resources such as

research grants and department expenditures which are

utilized to produce a specific output. Research grants are

awarded to academic staffs who apply for funding to

conduct their research and have it submitted for publica-

tion. Department expenditures account for all teaching and

research activities that aim to produce graduates.

Output variables

Two desirable outputs (i.e., graduates and publications) are

targeted to be achieved by every department upon efficient

utilization of all necessary input resources. Increasing the

number of graduates at the end of every academic year

reflects the quality of teaching performance rendered by the

human resources available in each department. In terms of

research activity, the increase in the number of publications

is reflective of a department’s research advancement. The

forms of publication (i.e., dependent on its type) and

authorship (i.e., dependent on author contribution) are pre-

assigned with weights to properly aggregate the measure of

publications (Tzeremes and Halkos 2010). In this illustra-

tive example, journal articles and articles in conference

proceedings are evident. Due to the fact that journal articles

have undergone several strict, rigorous revisions according

Table 2 List of decision variables used to measure academic

efficiency

Type Category Variables

Input Human resource (HR) Academic staff

Non-academic staff

Facilities (FA) Classrooms

Laboratories

Financial (FI) Research grants

Department expenditure

Output Desirable factors Graduates

Publications
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to referees’ suggestions and criticisms, it is assigned a

higher weight compared to conference articles (Zobel

2000). A weight of 0.75 is given to journal articles while

0.25 is assigned to conference articles. For authorship

merits, the weights depend on the extent of contribution

each author has made. A higher weight, 0.75, is assigned to

the main author while co-authors are given a weight of

0.25.

Case data and results

All succeeding computations are performed using Micro-

soft Excel� 2016 run in a Windows 8 64-bit operating

software with Intel� Celeron� CPU 10170 at 1.60 GHz as

its processor. To keep the confidentiality of data provided

by the DMUs considered in this paper, all data used as

decision variables in the MODEA model are normalized as

listed in Table 3.

Following the steps in the MODEA approach presented

in Sect. 3, three coalitions are listed under each category as

shown in Table 4. Once the coalitions are known, the

objective efficacy degree, OEDjðKÞ, of each coalition are

solved as in Table 5. Then, given in Table 6 are the effi-

cacy of the category of inputs, its corresponding Shapley

value, uq, and weights, xq. The efficacy of each category

of inputs is taken by calculating the Shapley value. The

Shapley value helps assign an appropriate weight to each of

the category of inputs and obtain a unique efficiency score.

These weights are used as coefficients of the objective

function of the MODEA model.

Based on the calculated weights, it shows that the

human resource category has the highest significance,

followed by facilities, and financial category. The ranking

of categories is in parallel with the results obtained by

Rezaee (2015) in his study. The human resource (i.e.,

academic staff and non-academic staff) has the highest

significance since it is recognized as the principal asset of a

department that organizes the teaching and research

activities for a specific course of a program. Its main task is

to produce graduates by a combination of various resources

which includes the facilities (Ferrari and Laureti 2005).

The facilities category (i.e., classrooms and laboratories)

has the second highest significance in recognition to the

fact that this aids the human resource in its teaching and

research activities (Agasisti and Dal Bianco 2009). Lastly,

the financial category (i.e., research grants and department

expenditures) garnered the lowest significance since it is

dependent on the teaching and research activities organized

by the human resource (Mantri 2006).

To proceed with the MODEA approach, an optimization

model is developed in solving the efficiency score of each

DMU. In solving for the efficiency score of each DMU

involving its respective optimization models, Lingo for

Windows Software version 16.0 is run on a Windows 8

64-bit operating software with Intel� Celeron� CPU 10170

at 1.60 GHz as its processor.

The results of the MODEA model for each DMU are

shown in the column under the technical efficiency of

Table 7. The efficiency score of each of the category of

inputs is presented in the column under the efficiency using

MODEA approach. Table 7 also provides the comparison

of the efficiency score results using MODEA approach and

the conventional DEA approach.

Discussion

The limitations of the conventional DEA models suggest

that at least 24 university departments are needed to

measure the efficiency score of the DMUs more accurately.

Table 3 Data collected for SOE departments’ decision variables

DMU Academic

staff

Non-academic

staff

Classrooms Laboratories Research

grants

Department

expenditures

Graduates Publications

DMU 1 0.1234 0.2500 0.1667 0.1282 0.6667 0.0531 0.1055 0.1935

DMU 2 0.2468 0.1875 0.3333 0.1795 0.0000 0.2732 0.2612 0.0000

DMU 3 0.1646 0.0625 0.0952 0.2308 0.0000 0.1507 0.2401 0.0000

DMU 4 0.1709 0.1875 0.1905 0.2051 0.3333 0.0713 0.2111 0.0984

DMU 5 0.0949 0.1250 0.1429 0.1538 0.0000 0.1482 0.1293 0.0387

DMU 6 0.1994 0.1875 0.0714 0.1026 0.0000 0.3033 0.0528 0.6694

Table 4 Possible coalitions of each category

Category (q) Coalition (K)

HR (HR), (HR, FA), (HR, FI)

FA (FA), (FA, HR), (FA, FI)

FI (FI), (FI, HR), (FI, FA)
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However, in the case study, only six university departments

are evaluated. Hence, the results when using the conven-

tional DEA models for this data set may be insufficient.

The MODEA approach introduced by Rezaee (2015) is

used to overcome this limitation. In Table 7, the efficiency

scores of DMUs using DEA model and MODEA model are

shown. The DMUs that garnered an efficiency score equal

to 1.0000 are regarded as efficient, otherwise, it is not fully

efficient.

In a comparison of results obtained using the conven-

tional DEA model and MODEA model, it can be seen that

there is a significant difference in the results. Based on the

conventional DEA model, all DMUs are performing effi-

ciently although not all category of inputs under each DMU

is efficient. In contrary, results of the MODEA model

reveal that no DMU is actually efficient. The fact that the

number of DMUs considered is lesser than the number of

decision variables makes the conventional DEA model

give less discriminating ability thereby leading to a less

accurate measure of efficiency. Correspondingly, the

MODEA model showed a sufficient result compared to the

conventional DEA model where clear discrimination

among DMUs is made.

Table 5 Objective efficacy

degree for three categories of

inputs

Category (q) Coalition (K) DMU1 DMU2 DMU3 DMU4 DMU5 DMU6

HR (HR)

ej Xð Þ 0.5795 0.4537 0.6214 0.7114 0.5437 0.6567

ej X=Kð Þ 0.2618 0.6867 0.9066 0.7835 0.4436 0.6088

OEDj Kð Þ 0.5483 0.5047 0.4589 0.1014 0.1841 0.0729

(HR, FA)

ej Xð Þ 0.5795 0.4537 0.6214 0.7114 0.5437 0.6567

ej X=Kð Þ 0.6218 0.5775 1.0000 1.0000 0.5690 1.0000

OEDj Kð Þ 0.0731 0.2729 0.6092 0.4058 0.0467 0.5228

(HR, FI)

ej Xð Þ 0.5795 0.4537 0.6214 0.7114 0.5437 0.6567

ej X=Kð Þ 0.7560 0.7472 1.0000 0.7758 0.5033 1.0000

OEDj Kð Þ 0.3046 0.6470 0.6092 0.0906 0.0743 0.5228

FA (FA)

ej Xð Þ 0.5795 0.4537 0.6214 0.7114 0.5437 0.6567

ej X=Kð Þ 0.9096 0.4639 0.6939 0.9285 0.6589 0.6443

OEDj Kð Þ 0.5696 0.0226 0.1166 0.3053 0.2120 0.0189

(FA, HR)

ej Xð Þ 0.5795 0.4537 0.6214 0.7114 0.5437 0.6567

ej X=Kð Þ 0.6218 0.5775 1.0000 1.0000 0.5690 1.0000

OEDj Kð Þ 0.0731 0.2729 0.6092 0.4058 0.0467 0.5228

(FA, FI)

ej Xð Þ 0.5795 0.4537 0.6214 0.7114 0.5437 0.6567

ej X=Kð Þ 0.8775 0.7255 1.0000 0.9643 1.0000 1.0000

OEDj Kð Þ 0.5142 0.5992 0.6092 0.3555 0.8394 0.5228

FI (FI)

ej Xð Þ 0.5795 0.4537 0.6214 0.7114 0.5437 0.6567

ej X=Kð Þ 0.5603 0.5495 0.7384 0.6639 0.6667 0.8763

OEDj Kð Þ 0.0332 0.2112 0.1883 0.0667 0.2262 0.3344

(FI, HR)

ej Xð Þ 0.5795 0.4537 0.6214 0.7114 0.5437 0.6567

ej X=Kð Þ 0.7560 0.7472 1.0000 0.7758 0.5033 1.0000

OEDj Kð Þ 0.3046 0.6470 0.6092 0.0906 0.0743 0.9756

(FI, FA)

ej Xð Þ 0.5795 0.4537 0.6214 0.7114 0.5437 0.6567

ej X=Kð Þ 0.8775 0.7255 1.0000 0.9643 1.0000 1.0000

OEDj Kð Þ 0.5142 0.5992 0.6092 0.3555 0.8394 0.5228
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In reference to the results of the efficiency score of

DMUs using the MODEA approach, DMU4 has the highest

efficiency followed by DMU6, DMU5, DMU2, DMU3, and

DMU1. As for the efficiency score on each category of

inputs, it is remarkable that DMU3 and DMU6 have

obtained an efficient score on HR and FA category,

respectively. Even with such efficiency score on a partic-

ular category of inputs, it did not guarantee a high overall

efficiency due to the fact that efficiency scores of other

categories of input are taken into account as well. Table 7

also shows that DMU2 has the lowest efficiency score as

influenced by its very low efficiency score in FA category

compared to other DMUs; it also scored second lowest in

terms of efficiency in both HR and FI categories.

The inefficiency of DMUs can be traced back to how

well input resources are utilized to produce desired outputs

(Coelli et al. 2005). For DMU1 and DMU4, the main source

of its inefficiency is FA category. While for DMU2, DMU3,

DMU5, and DMU6, the main source of its inefficiency is FI

category. Another contributory factor to the inefficiency of

DMU2 and DMU3 is its failure to produce at least one

publication for the evaluated academic year.

Conclusion

In measuring the efficiency, there may be instances when

the number of DMUs under evaluation is lesser than the

number of decision variables considered as such in an

academic institution. When this is the case, the conven-

tional DEA drops its discriminative power and accuracy in

measuring the efficiency of DMUs. To address this limi-

tation, this paper presents the MODEA approach using

Shapley values that enable the use of a large set of decision

variables and more accurately measure efficiency.

This approach has been implemented in an academic

institution in the Philippines where six DMUs are evalu-

ated given six inputs and two outputs. The conventional

DEA approach has been likewise used to measure effi-

ciency in the same case study. The results have proven that

the MODEA approach is more accurate as it showed a

more distinguished efficiency score of each DMU as

compared to the conventional DEA approach which spec-

ified that all DMUs are efficient despite an inefficient score

on all category of inputs. Furthermore, since the MODEA

approach can also provide the sources of inefficiency, it is

able to suggest which DMU should be emulated by an

inefficient DMU for probable improvement on its overall

efficiency. However, for this case, since no DMU is effi-

cient, inefficient DMUs may refer to DMUs which has a

higher efficiency score for benchmarking purposes.

In its realistic application, DMUs (i.e., university

departments) considered in this case may further focus

improvement efforts on decision variables from which a

low efficiency score is obtained. Note that efficiency does

not only involve inputs; it also requires maximization of

outputs (Rogers 1998). Therefore, university departments

should also look into the outputs produced given the set of

inputs and carefully evaluate if they are able to maximize

the outputs. Otherwise, there might be a possibility of

underutilization of inputs.

Table 7 Efficiency scores of DMUs

Departments Efficiency score computed from the

conventional DEA

Efficiency using the

conventional DEA model

Efficiency using the

MODEA model

Efficiency score computed from

the MODEA

HR FA FI HR FA FI

DMU1 1.0000 0.9851 1.0000 1.0000 0.5875 0.6755 0.4450 0.6179

DMU2 0.6855 1.0000 0.6001 1.0000 0.4808 0.7255 0.3730 0.2703

DMU3 1.0000 1.0000 1.0000 1.0000 0.6557 1.0000 0.4769 0.3873

DMU4 0.7951 0.9035 1.0000 1.0000 0.7247 0.8710 0.4572 0.8063

DMU5 0.6855 0.7073 0.5476 1.0000 0.5801 0.9410 0.3923 0.2991

DMU6 1.0000 1.0000 1.0000 1.0000 0.6679 0.7527 1.0000 0.2174

Table 6 Efficacy for three categories of inputs

Category (q) Coalition (K) V(K) V(K/{q}) uq xq

HR (HR) 1.8703 0.0000 0.9357 0.3684

(HR, FA) 1.9304 1.2450

(HR, FI) 2.2484 1.0601

FA (FA) 1.2450 0.0000 0.8217 0.3235

(FA, HR) 1.9304 1.8703

(FA, FI) 3.4403 1.0601

FI (FI) 1.0601 0.0000 0.7823 0.3080

(FI, HR) 2.2484 1.8703

(FI, FA) 3.4403 1.2450
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For future work, other probable input and output vari-

ables (i.e., number of students and operating expenses) can

be incorporated in the MODEA model to assess the per-

formance of university departments. Additionally, data

from the previous academic years can be looked into just so

a direct comparison can be made, thus, serving as a basis

for a probable point of improvement depending on which

variable each DMU fell short for any given period. Another

area that could be interestingly considered in the future is

to incorporate uncertainty that may be present in data

gathering of actual values of inputs and outputs. For

instance, this may be made possible by introducing the

fuzzy set theory in the context of the MODEA framework.
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