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Abstract
Loss-averse behavior makes the newsvendors avoid the losses more than seeking the probable gains as the losses have more 
psychological impact on the newsvendor than the gains. In economics and decision theory, the classical newsvendor models 
treat losses and gains equally likely, by disregarding the expected utility when the newsvendor is loss-averse. Moreover, the 
use of unbounded utility to model risk attitudes fails to explain some decision-making paradoxes. In contrast, this paper 
deals with the utility maximization of the newsvendor using a class of bounded utility functions to study the effect of loss 
aversion on the newsvendor certainty equivalents and risk premiums. New formulas are introduced to find the utility-optimal 
order quantity of the normal distribution. The results show that when an exponential loss aversion exists, the classical news-
vendor optimal quantity serves as a lower bound when the overage costs are high and as an upper bound when the underage 
costs are high. In addition, we show that high loss aversion entails higher risk premiums. Similar conclusion holds when the 
overage/underage costs increase. Higher standard deviations, on the other hand, mean lower utility-optimal quantities and 
higher risk premiums. The presented formulas are advantageous in finding the optimal order quantities and risk premiums 
of a stochastic short-shelf life inventory when the loss is a key factor in the decision-making process.

Keywords Newsvendor · Loss aversion · Risk aversion · Utility · Inventory

Motivation

The management of stochastic inventories is a critical issue 
for the success of modern business, particularly in retail 
industry. While profit maximization/cost minimization 
served as a milestone objective for so long, in economics, 
the default assumption is that the decision makers are usu-
ally risk-averse, meaning that the individuals have a posi-
tive and diminishing marginal utility of money. Risk-averse 
behavior of the decision makers affects their future choices 
and decisions, a matter which has been acknowledged by a 
good deal of the literature. It intensely influences ordering, 
pricing and other marketing decisions in business environ-
ments. Risk attitudes are modeled by the utility functions. 
The “utility” is an economic term referring to the total 
satisfaction attained from consuming a good or a service. 
Therefore, the satisfaction of a surplus made by some trade/

business is not necessarily well assessed by the expected 
value; rather, the utility is the rational valuation of the sur-
plus from the decision makers’ perspective. For instance, 
if some individuals are to choose between a cash money 
of $500 or a probable payoff of (−$1000 or $5000) both of 
equal chances, many will choose the sure amount of $500 
while the expected value of the second option is $2000. This 
shows the failure of expected value theory and demonstrates 
the need for a theory that explains such a behavior. Note that 
even when the probability of the maximum reward is high, 
say 0.95, some will prefer the cash of $500 (those who are 
highly loss-averse). Utility theory has successfully explained 
the natural/cognitive behavior of individuals who are making 
decisions. In the classical problem, the newsvendor must 
decide how much to order under the assumption of risk-
neutral behavior. However, few percent of individuals in the 
globe may be found risk-neutral. Indeed, most of us tend to 
be more loss-averse than risk-averse (Wei et al. 2014; Meng 
et al. 2017; Dalalah et al. 2016).

For this reason, this paper deals with the newsvendor 
problem with the utilities taken care of. However, the selec-
tion of the utility function is not a straightforward task. In 

 * Doraid Dalalah 
 doraid@just.edu.jo

1 Industrial Engineering Department, Jordan University 
of Science and Technology, Irbid, Jordan

http://crossmark.crossref.org/dialog/?doi=10.1007/s40092-019-0312-z&domain=pdf


668 Journal of Industrial Engineering International (2019) 15:667–678

1 3

fact, it has been emphasized by a significant deal of the lit-
erature that the utilities should be bounded; otherwise, a 
classical Petersburg paradox cannot be explained neither by 
the expected value nor by unbounded utilities (Pfiffelmann 
2011). Consequently, the category of exponential functions 
(shown in “The utility and certainty equivalents” section) 
serves as a good utility choice that has asymptotic lower 
and upper bounds.

Utilities have a significant impact on the newsvendor 
choices. Recently, the topic of risk attitudes has attracted a 
remarkable attention by researchers from supply chain and 
revenue management fields (Dalalah and Khaled 2016). 
However, few studies have addressed the utility in the news-
vendor problem; to the best of our knowledge, none consid-
ered bounded utilities. Moreover, the normal distribution has 
not been taken into consideration for utility maximization 
of bounded exponential functions. Consequently, this paper 
addresses the problem of maximizing the expected expo-
nential utilities for a normal demand. The impact of loss 
aversion is analyzed to help the newsvendor find the best 
stocking quantity according to his/her risk behavior. In addi-
tion, the factors that affect the resulting risk premiums such 
as the parameters of loss aversion, the costs and demand 
standard deviations are analyzed.

This paper is organized as follows: A literature review 
is presented in “Literature review” section followed by the 
utility and certainty equivalents in “The utility and certainty 
equivalents” section. The expected utility of normally dis-
tributed rewards is presented in The expected utility of the 
normal distribution section, followed by the newsvendor 
problem under risk aversion in “Utility of loss-averse news-
vendor of normal demand” section. Later, the effect of risk 
aversion on the optimal order quantity is given in “The effect 
of loss aversion on the optimal stocking quantity” section. 
Risk premiums are discussed in “Risk premiums: a sensitiv-
ity analysis” section. Finally, the conclusions are presented 
in “Conclusions” section.

Literature review

The classical newsvendor (NV) model is a prevalent frame-
work in operations management. The simplest and most 
elementary version of the newsvendor problem is to opti-
mize the costs/profits by finding stocking quantity a news-
vendor should order when the future demand is stochastic. 
The problem deals with the maximization of the expected 
profits which are measured by the surplus of money end 
of the day. The classical NV model has served as a main 
structure for several real applications that can be found in 
different aspects of business. In fact, the newsvendor prob-
lem can be found in inventory management, supply chain 
management, manufacturing sectors, scheduling, option 

pricing models, sports, fashion, telecom and many other 
areas (Chen et al. 2004; Liu et al. 2006; Dalalah et al. 2015; 
Khorasani and Almasifard 2018; Mahsa and Ata 2018). The 
classical version of the newsvendor problem has been exten-
sively studied in the literature under the consideration of 
different conditions such as multiple products and different 
pricing methods. Due to its closed-form solution, the clas-
sical problem represents an elegant structure of stochastic 
inventory models.

Good surveys of the newsvendor problem can be found in 
the handbook of Tsan-Ming (2012) which demonstrates the 
use and implications of the newsvendor models in realistic 
applications. For example, at the firm level, one important 
extension is the interface between marketing and operations 
that influences the decision making. In some newsvendor 
problems, the demand is stimulated by sale prices; in others, 
the demand is driven by the inventory or by some marketing 
instruments. Newsvendor pricing techniques can be found in 
Petruzzi and Dada (1999). Pricing under stochastic demand 
that is characterized by an increasing generalized failure 
rate has been addressed by Yao et al. (2006). In Lariviere 
and Porteus (2001) as an example, the coordination with 
wholesale price contracts was addressed for the classical 
newsvendor model. Recently, Hardik and Ashaba (2018) 
proposed a joint pricing model for an inventory of deterio-
rating items with stochastic demand and promotional efforts. 
In the same context, Panda et al. (2019) presented a credit 
policy approach in a two-warehouse inventory model for 
deteriorating items with price- and stock-dependent demand 
under partial backlogging.

In the past, some papers considered the inventory as a 
marketing performance measure such as Gerchak and Wang 
(1994). In their study, they considered endogenous demand 
and exogenous prices. In the same context, Balakrishnan 
et al. (2004) investigated the deterministic complement 
for the newsvendor problem. The same problem has been 
extended by Balakrishnan et al. (2008) to general inventory-
dependent demand. In Dana and Petruzzi (2001), optimiz-
ing both the stocking quantity and the price for demand-
stimulating products was considered to jointly solve for 
both variables, i.e., price and quantity. It has been shown 
that when the demand is affected by retailer’s sales efforts, 
a win–win situation for both the customer and the retailer 
may be achieved, Taylor (2002). Similar analysis has been 
conducted by Krishnan et al. (2004) to address the impact 
of retailers on altering the demands.

Mirbahador et al. (2013) developed a model for solving 
two-echelon inventory system of perishable items in a sup-
ply chain via a case study scenario. A similar study was 
presented by Naser Ghasemi (2015) to develop economic 
production quantity (EPQ) models for non-instantaneous 
deteriorating items. Two-warehouse system of non-instan-
taneous deterioration products with promotional effort and 
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inflation over a finite time horizon is presented by Palanivel 
et al. (2018). Demand’s means that are increasing as a func-
tion of the advertising expenditures have been considered 
in an early work of Gerchak and Parlar (1987) where mixed 
optimization has been used to solve the decision variables. 
The model of Gerchak and Parlar (1987) has been extended 
by Khouja and Robbins (2003) to address three different 
cases, namely the demand of constant variance, the demand 
of constant coefficient of variation and an increasing coef-
ficient of variation. In Wang et al. (2010a, b and Wang and 
Zhou 2011), an advertisement-sensitive demand has been 
considered for revenue sharing contract for the entire supply 
chain coordination.

Maximization of the expected utility was considered 
by Dana and Petruzzi (2001). In their model, the demand 
is stimulated by the inventory and prices. They found that 
higher inventories held may attract the customers. Differ-
ent newsvendor objective functions were studied in Tie 
and Qiying (2013) such as maximizing the expected utility 
and maximizing the probability of achieving some level of 
profit. Under the consideration of concave and differenti-
able utility function, Eeckhoudt et al. (1995) showed that 
the optimal order quantity will be smaller for risk-averse 
persons as compared to risk-neutral ones. The first order 
optimality conditions for risk-averse expectations of utility 
were demonstrated by Keren and Pliskin (2006), particu-
larly for uniform demand. Risk aversion and pricing along 
with emergency ordering have been studied by Agrawal and 
Seshadri (2000). The utilities used are strictly increasing and 
twice differentiable as a function of the potential rewards. 
In addition to above, Federgruen and Chen (2000) and Choi 
et al. (2008) addressed the trade-offs of the mean variance 
where the later explored different attitudes toward risk. 
The conditional value at risk (CVaR)—one of the special 
risk metrics—has been also considered in the newsvendor 
problem. For instance, Gotoh and Takano (2007) proposed 
an optimality model to minimize the CVaR and to find the 
optimal order quantities. We can also find different pricing 
and ordering strategies that have been introduced by Chen 
et al. (2009). Their results were compared to risk-neutral 
newsvendors.

The management of the newsvendor problem from the 
behavioral aspects has been studied in the literature, specifi-
cally, from the social and cognitive theories point of view as 
in Gino and Pisano (2008) and Bendoly et al. (2010), where 
the later studied the behavioral economics and judgment 
in decision making. Dynamic pricing of finite inventories 
and heterogeneous population was a successful approach 
of Su (2008). He showed that the compositions of custom-
ers’ population may affect the optimal results. Puspita et al. 
(2018) studied the optimal replenishment and credit policy 
in a supply chain inventory model under two levels of trade 
credit with time- and credit-sensitive demand and default 

risk. Their major objective was to determine the retailer’s 
optimal credit period and cycle time such that the total profit 
per unit time is maximized.

Loss aversion, as another perspective of decision mak-
ing, is intuitively appealing and well supported in market-
ing, finance and organizational behavior. Indeed, most of the 
references listed in this article demonstrate that the decision-
making behavior of managers is consistent with loss aver-
sion. Moreover, it has been verified by literature studies that 
loss aversion has a substantial impact on the newsvendor 
decisions. Loss-averse models have been slightly explored 
under the utility theory. Wang and Webster (2009) and Hui 
et al. (2016) are among the first to study such a problem.

The newsvendor problem of seasonal demand has been 
addressed by Aviv and Pazgal (2008) with the presence of 
forward-looking customers. Their work falls under the con-
cept of strategic customers who to a certain extent can coop-
erate with the seller. Further analysis of strategic customers 
has been presented by Xuanming and Zhang (2008). They 
showed that the optimal stocking quantities can be lower 
than those found in the case of the classical newsvendor 
problem due to strategic customers. Strategic customers 
of risk aversion were considered in Tie and Qiying (2013) 
where different utility functions have been employed to 
find the optimal stocking quantity when the customers are 
exposed to the seller prices but not the quantities.

To study the newsvendor’s risk attitude, many research-
ers have adopted the utility approach such as (Meng et al. 
2017; Hui et al. 2016; Wang and Webster 2009; Guo and 
Chen 2000; Eeckhoudt et al. 1995). For instance, Meng et al. 
(2017) employed anchoring as an approach for competitive 
newsvendors. Loss-averse newsvendor’s problem has been 
solved using a robust optimization in Hui et al. (2016) which 
has been formerly considered in Wang and Webster (2009). 
Eeckhoudt et al. (1995) studied the newsvendor problem 
with risk-averse decision makers. Other researchers have 
used the possibility theory instead of the conventional prob-
ability theory as in Guo and Chen (2000). Alkhaledi et al. 
(2018) used a scaled utility function to highlight the impact 
of losses as compared to gains in the newsvendor problem.

While the utility theory has been considered in several 
studies in the literature, yet, to the best of our knowledge, 
no existing study has considered risk premiums of the news-
vendor problem that maximizes the expected utility of nor-
mal demand distribution. In contrast, this paper presents a 
model to maximize the utility under normal demands, where 
an elegant formulation is established for the solution of the 
optimal stocking quantity. The effect of different loss-averse 
attitudes on the optimal stocking quantity is analyzed under 
the assumption of normal demand and exponential utilities. 
Moreover, the resulting risk premiums versus the value of 
risk aversion, cost components and demand standard devia-
tions are analyzed.
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The utility and certainty equivalents

The theory of utility is a methodological framework for the 
assessment of alternatives/options/choices that are made 
by individuals, firms or any businesses process. The utility 
refers to the satisfaction that a choice offers to the decision 
maker. Therefore, the utility theory assumes that any deci-
sion is made based on the principle of utility maximization. 
The best choice is the one that provides the highest satisfac-
tion (utility) to the decision maker. It is usually described 
by a function that maps the monetary values to their utility 
values, where u(x) is the utility of a quantity x. For example, 
consider a discrete gamble L that is denoted by its payoffs 
and probabilities, i.e., L(x1, p1; …; xn, pn). The expected util-
ity of this gamble is given by E[u(x)] =

∑n

1
u(xi)pi.

Risk aversion is described by a strictly increasing concave 
function for positive net wealth. Loss aversion, on the other 
hand, is described by a strictly decreasing but convex func-
tion for negative net wealth. Loss aversion is a debatable 
matter that is still under research investigation. The general 
conditions of loss aversion can be found in many references 
in our references list. Note that the exponential function can 
satisfy some of these conditions to a certain extent. Due to 
the evidence that the utilities must be bounded (the reader 
is referred to Petersburgh paradox), the exponential utility 
function has become one interesting formulation that sup-
ports bounded utilities. A classical form of the exponential 
function as a utility of the net wealth is given by:

where 𝜈, 𝜆 > 0 . The coefficient of the absolute risk aversion 
is defined as:

While the exponential function captures all risk-averse 
characteristics, loss-averse characteristics are moderately 
captured by the same exponential category. Two main coef-
ficients are considered in our study, namely the coefficient 
of risk aversion (ν) and the coefficient of loss aversion (λ). 
Higher values of ν mean higher risk aversion, and similarly, 
higher values of λ mean higher loss aversion to a certain 
extent. When ν = λ, loss aversion will have the same impact 
as that of risk aversion (i.e., the newsvendor fears the loss 
as much as he regrets the possible gains). However, when 
ν > λ, the decision maker tends to be more risk-averse; con-
trariwise, he/she will be more loss-averse if ν < λ (i.e., more 
anxiety from loss). Figure 1 shows the bounded utility.

The certainty equivalents (CE) are estimated by the utility 
functions. CE is the sure payoff that an agent/investor would 
have to receive to be indifferent between that sure payoff and 

(1)u(x) =

{
1 − e−𝜈x, x ≥ 0

e𝜆x − 1, x < 0

(2)A(x) =
u��(x)

u�(x)

(probabilistic payoffs). Clearly, the individuals will guess 
their CE’s according to their risk attitudes. Those who are 
risk-averse tend to underestimate the expected value, while 
those who are risk seekers tend to overestimate the proba-
bilistic payoffs.

To rationally explain some decision-making behaviors, 
the utilities should be bounded. The evidence of bounded 
utilities can be demonstrated easily via the simple gamble 
of Petersburg paradox. Petersburg paradox is thoroughly 
explained in Pfiffelmann (2011). In short, consider a gam-
ble in which the player will win $2n when a coin lands heads 
up, where n refers to the nth throw at which the coin lands 
heads up for the first time. The gamble is terminated at the 
first landing of heads. Clearly, the expected value of such a 
gamble is ∞ which brings a violation to the expected value 
theory, where

Although the expected value is unimaginable, real experi-
ments revealed that an individual only pays an amount of 
almost $3 for such a gamble (Pfiffelmann 2011). To explain 
this, we can show easily that the expected utility has a limit 
for this gamble when the exponential utility function is 
employed.

The certainty equivalents can be found using the inverse 
of the expected utility function (Fig. 2). The reason for this 
is owed to the assumption that both the expected utility value 
and CE will have the same utility from the perspective of 
the evaluator. Therefore, the certainty equivalent of a risky 
asset is given by:

The expected utility of the normal 
distribution

For a continuous potential reward X of the probability den-
sity function f(x), the expected utility is expressed by the 
form:

(3)

EV =
1

2
× 2 +

(
1

2

)2

× 22 +⋯ +
(
1

2

)n

× 2n +⋯ = ∞

(4)CE = u−1(E[u(x)])

(5)E[u(x)] = ∫
∞

−∞

u(x)f (x)dx

Fig. 1  Risk and loss aversion of bounded utilities
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Let X ~ N(µ,σ), where f (x) = e
−
(x−�)2

2�2√
2��2

 and F(x) is the cor-

responding cumulative function. By considering the above 
utility in (1), the expected utility can be found by the 
following:

which is simply expressed as:

Write the power part in the integration as:

The expected utility can be expressed as:

However, ∫ ∞

−∞

e
−
(x−��)2

2�2√
2��2

dx = 1 , where �� = � − ��2 , and 

accordingly, the expected utility reduces to the expression:

The above expected utility applies only when the payoffs 
are normally distributed. The utility can be increased by 
maximizing the quantity � − �

�2

2
 . Equation (9) states that 

an agent who is facing continuous and normally distributed 
probable payoffs should seek those of lower variances and 

(6)E[u(x)] =
1√
2��2 ∫

∞

−∞

(1 − e−�x)e
−(x−�)2

2�2 dx

E[u(x)] =
1√
2��2 ∫

∞

−∞

e
−(x−�)2

2�2 dx −
1√
2��2 ∫

∞

−∞

e
−
�
�x+

(x−�)2

2�2

�
dx

(7)�x +
(x − �)2

2�2
=

(
x − � + ��2

)2
2�2

+ �

(
� − �

�2

2

)
,

(8)E[u(x)] = 1 − e
−�

�
�−�

�2

2

�

∫
∞

−∞

e
−
(x−�+��2)

2

2�2√
2��2

dx

(9)E[u(x)] = 1 − e
−�

(
�−�

�2

2

)

higher averages. This result conforms to the findings in risk 
management where less risk is observed in the probable pay-
offs of narrow ranges and higher values. The above interest-
ing formula has been repeatedly reported in the literature.

Utility of loss‑averse newsvendor of normal 
demand

In this section, a loss-averse newsvendor model is consid-
ered along with a normally distributed demand. In par-
ticular, we consider a single risk-averse retailer who must 
determine how many units to order of some product. The 
demand is i.i.d. (i.e., independent and identically distributed) 
which is denoted by a random variable X, where X ~ N(µ,σ). 
The demand data represent a sequence of random vari-
ables that have the same probability distribution of mutual 
independence.

The retailer’s utility function is given by (1), where 
u�(x) > 0 and u��(x) < 0 . The retailer faces a cost of c per 
unit of the product which can be sold to customers at a full 
price of p. Leftover units will be salvaged at a price of s, 
where s < c < p. Since the demand is random, the retailer 
must determine the optimal stocking quantity to maximize 
his expected utility instead of maximizing the expected prof-
its. No strategic planning between the retailer and customers 
may take place in this setting. For a specific order quantity, 
if the realized demand is low, the leftover quantities will 
be sold at the salvage value; hence, the cost of overage is 
given by co = c − s . On the other hand, when the stocked 
quantities are low, lost opportunities may arise; hence, the 
cost of underage is given by cu = p − c . While the classical 
newsvendor problem results in an elegant structure, with 
utility maximization, the solution of the problem gets more 
intricate where more efforts are required to find the optimal 
stocking quantity.

Let the stocking quantity be Q . When the demand x is less 
than Q in a cost newsvendor model, the retailer’s drop in 
wealth will be given by: co(Q − x) and therefore the expected 
utility is given by ∫ Q

−∞
u
(
−co(Q − x)

)
f (x)dx . Similarly, when 

the demand is greater than the order quantity Q , the expected 
drop in wealth is cu(x − Q) and the expected utility is given 
by ∫ ∞

Q
u
(
−cu(x − Q)

)
f (x)dx . By summing the two terms, 

we get:

Since a cost model is considered, here, the second part of 
the utility function is used (i.e., x < 0). Substitute both the 
utility and the demand distribution in (10) to get the follow-
ing expression:

(10)

E[u(Q)] = ∫
Q

−∞

u
(
−co(Q − x)

)
f (x)dx + ∫

∞

Q

u
(
−cu(x − Q)

)
f (x)dx

Fig. 2  Risk attitudes illustrated, where CE denotes certainty equiva-
lent, RP risk premium, EV expected value, and u−1(⋅) the inverse 
transform of the utility function u 
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Let K = −co� and L = cu� , hence, the above expands to 
the following:

Note that the second and fourth integration parts sum to 
1, and hence, we get:

Using the simplified expression in (7), we get the 
following:

For simplicity, let �a = � − K�2 ,  �b = � − L�2 , 
O = � − K

�2

2
 and U = � − L

�2

2
 to get the following:

By taking the constants out of the integration, the above 
is simplified to:

(11)

E[u(Q)] = ∫
Q

−∞

�
e−co�(Q−x) − 1

� e
−(x−�)2

2�2√
2��2

dx

+ ∫
∞

Q

�
e−cu(x−Q) − 1

� e
−(x−�)2

2�2√
2��2

dx

E[u(Q)] = ∫
Q

−∞

eKQ
e
−
�
Kx+

(x−�)2

2�2

�

√
2��2

dx − ∫
Q

−∞

e
−(x−�)2

2�2√
2��2

dx

+ ∫
∞

Q

e
LQ

e
−
�
Lx+

(x−�)2

2�2

�

√
2��2

dx − ∫
∞

Q

e

−(x−�)2

2�2√
2��2

dx.

(12)

E[u(Q)] = ∫
Q

−∞

e
KQ

√
2��2

e

−
�
Kx+

(x−�)2

2�2

�
dx

+ ∫
∞

Q

eLQ√
2��2

e

−
�
Lx+

(x−�)2

2�2

�
dx − 1

E[u(Q)] = ∫
Q

−∞

eKQ
e

−

�
(x−�+K�2)

2

2�2
+K

�
�−K

�2

2

��

√
2��2

dx

+ ∫
∞

Q

eLQ
e

−

�
(x−�+L�2)

2

2�2
+L

�
�−L

�2

2

��

√
2��2

dx − 1

(13)

E[u(Q)] = ∫
Q

−∞

eKQ
e
−

�
(x−�a)

2

2�2
+KO

�

√
2��2

dx + ∫
∞

Q

eLQ
e
−

�
(x−�b)

2

2�2
+LU

�

√
2��2

dx − 1

(14)

E[u(Q)] = e−KO ∫
Q

−∞

eKQ
e
−

�
(x−�a)

2

2�2

�

√
2��2

dx

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
A(Q)

+ e−LU ∫
∞

Q

eLQ
e
−

�
(x−�b)

2

2�2

�

√
2��2

dx − 1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
B(Q)

A visual inspection of the above expression shows that it 
has a unique maximum as a function of Q . The optimal order 
quantity can be found by d

dQ
E[u(Q)] = 0 ,  where 

d

dQ
E[u(Q)] =

dA(Q)

dQ
+

dB(Q)

dQ
 . Using Leibniz law for the first 

part, we get:

The above is also equivalent to:

Recall that �a = � − K�2 and O = � − K
�2

2
 , and using a 

similar operation in (7), the power in the first expression 
will be:

Accordingly, the expression (13) reduces to the following 
form:

which also equals to:

As for the integration part above, it represents another 
normal distribution of a mean �a and a standard deviation 
of σ. Let a be a cumulative density function of this normal 
distribution where

Therefore, we have:
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For part B of the expression in (14), a similar procedure 
can be followed, where

which by similar analysis of the first part will result in:

It should be noted that the integration part above repre-
sents a normal distribution with a mean of �b and a standard 
deviation of σ. Therefore, a new normal distribution given 
by the cumulative density function Ψb(x) is expressed as:

where

Finally, summing the derivatives of parts A and B and 
equating by “0” result in the following optimality formula:

By solving the above, we get an elegant formulation as 
follows:

where  �a = � − K�2  ,  �b = � − L�2  ,  O = � − K
�2

2
 , 

U = � − L
�2

2
 , and both Ψa and Ψb have the same standard 

deviation of σ. An alternative formulation of the above is 
given by:

The above expression is an implicit function of Q . 
Closed-form solution of Q is not attainable, and hence, a 
simple algorithm can be implemented, which can be done by 
a simple incremental search in Excel. More importantly, the 
two resulting cumulative distributions Ψa and Ψb have the 
same standard deviation of σ; however, with shifted means 
around µ, recall that K and L have opposite signs. Figure 3 
depicts the two distributions, where Ψa(Q) = ∫

Q
�a(x)dx 

refers to the cumulative distribution of the expected utility 
in the case of overstocking and Ψb(Q) = ∫
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the cumulative distribution of utilities upon understocking. 
The distance between the two distributions is ��2

(
co + cu

)
.

More importantly, the two distributions approach the 
exact demand distribution when λ approaches “0” (i.e., risk 
neutrality); indeed, a value of “0” reduces the model to the 
classical newsvendor problem, where

We also have lim
�→0

Ψa(Q) = F(Q) and lim�→0 Ψ(Q) = F(Q) for 
the same reason above. In this case, we know that 
Ψa(Q) = Ψb(Q) = F(Q) , and hence, the solution reduces to 
the following where � = 0:

The above analysis shows that when an exponential utility 
function is used, the optimal order quantity of the classical 
newsvendor will serve as an upper limit of utility-optimal 
quantity when cu > co and as a lower limit when co > cu . 
This is if the optimal order quantity of the classical newsv-
endor is denoted by either Q(co>cu)

 or Q(cu>co)
 and that of our 

model is Qu , then for any positive values of co , cu , � , λ and σ 
we have Q(co>cu)

< Qu < Q(cu>co)
.

The effect of loss aversion on the optimal 
stocking quantity

In this section, we will explore the relationship between 
the risk aversion parameter λ and the optimal order quan-
tity Q which can be easily estimated for any selected costs 
values, demand means and standard deviations. Evidently, 
the loss aversion (λ) yields higher quantity than Q(co>cu)

 and 
smaller quantity than Q(cu>co)

 with an asymptotic approach 
to the mean (µ) as λ increases. The effect of the loss aver-
sion parameter (λ) on the optimal order quantity is shown 
in the numerical example presented in Fig. 4. The bottom 

lim
�→0

−
cu

co
eQ(L+K)e

�(K−L)+(L+K)(L−K)
�2

2 =
cu

co

(24)
Ψa(Q)

1 − Ψb(Q)
=

cu

co
.

(25)F(Q) =
cu

co + cu

Fig. 3  The three distributions: the demand (middle), overage (right) 
and underage (left), all having the same standard deviation (σ)
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curve shows the optimal quantities as a function of (λ) where 
co = 25 , cu = 5 , µ = 100, σ = 25, while the curve on the top 
shows the utility-optimal quantities when co = 5 , cu = 25 , 
µ = 100, σ = 25.

The closer to risk neutrality, the closer the optimal order 
quantity to that of the classical newsvendor problem. This 
behavior is explained in the limit given in (24). Figure 4 
and 5 show that the optimal order quantity of the utility 
model approaches the optimal order quantity of the classical 
newsvendor problem (100 units for the case of equal under-
age and overage costs). Higher risk attitudes entail smaller 
optimal quantity if cu > co . Contrariwise, it will result in 
higher optimal quantity if co > cu , all owed to high overage/
underage costs.

The optimal order quantity will be less than the mean 
value (µ) when the overage cost is higher than the underage 
cost. Contrarily, the utility-optimal quantity will be higher 
than (µ) when the underage cost is higher than the overage 
cost. By increasing the loss aversion, the newsvendor tends 
to order as much as the mean value of (µ). Clearly, low loss 
aversion means that the newsvendor tends to be risk-neutral; 
thereby, the NV behaves like the classical newsvendor prob-
lem. The classical newsvendor problem yields an optimal 
quantity of 183 for the first case and 217 for the second 
case. Of note, these two quantities serve as the minimum 

and the maximum bounds of the utility-optimal quantity for 
the same values that are given in Fig. 4.

For any loss aversion value (λ), the utility-optimal quan-
tity is always less than the classical optimal quantity when 
the underage cost is high. Contrarily, also, it is always higher 
than the classical optimal quantity when the overage cost is 
high. Clearly, low loss aversion means getting closer to risk 
neutrality, i.e., the classical newsvendor.

For further sensitivity analysis, the overage and under-
age costs ( co and cu ) were tested for different values using 
Eq. (5). Figure 5 shows that as the overage cost co increases, 
the peak of the objective function gets lower; thereby, lower 
optimal quantities are computed. Of note, the utility objec-
tive function is bounded by its highest profile when co = cu ; 
therefore, the highest utility is achieved when both cost com-
ponents are same. On the other hand, when the underage 
cost ( cu ) increases, it will result in higher utility-optimal 
quantities. However, the magnitude of the decrease/increase 
in the optimal quantities gets smaller as the difference in the 
cost components gets higher (Fig. 6).

Figure 7 depicts the behavior of the optimal order quan-
tity of the exponential utility as a function of the standard 
deviation. The results conform to the findings of Eq. (9), 
where high σ values result in low utility-optimal quantity. 
It is noteworthy mentioning that smaller standard deviation 
will make the two distributions �a(Q) and �b(Q) approach 

Fig. 4  Utility-optimal order quantity versus the loss aversion param-
eter λ. For this numerical example, µ = 100, σ = 25 and co = 25 , cu = 5 
for the bottom curve and co = 5 , cu = 25 for the top curve

Fig. 5  The objective function of 
the expected utility for different 
newsvendor settings, where 
λ = 0.04, µ = 100, σ = 25

Fig. 6  Utility-optimal order quantity versus the demand standard 
deviation, where co = 25 , cu = 5 , µ = 100, λ = 0.04
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each other; therefore, the optimal value will approach the 
mean value (µ) as σ decreases.

Risk premiums: a sensitivity analysis

Risk premiums are defined in economics as the additional 
return an investor expects from holding a risky asset (i.e., 
probable payoffs) rather than holding a risk-free one (i.e., 
sure payoffs). It also refers to the extra amount of money an 
investor would take to hold the risky investment. Essentially, 
this is the difference between the total expected return from 
the investment and the proper estimated risk-free return. 
Risk premiums are measured by:

where RPi is the risk premium, EVi is the expected value, 
and CEi is the certainty equivalent of a risky asset i.

The utility newsvendor model has been considered from 
the cost point of view which justifies the negative values of 
risk premiums while, in fact, the magnitude of risk premi-
ums is the issue that matters. An increase in the magnitude 
refers to higher amount of money that is requested by the 
newsvendor to hold this business. Higher risk premiums also 
make the sales unattractable to the customers. Hence, risk-
averse investors tend to raise their prices. To explore the 
effect of loss aversion parameter (λ) on the risk premiums, 
first we consider a utility model of the given parameters: 
co = 25 , cu = 5 , µ = 100, σ = 25. The results are demonstrated 
in Table 1 which shows the resulting optimal order quanti-
ties, the optimal utility value, the certainty equivalents and 
finally the risk premiums. Equation (4) is used for the cer-
tainty equivalents and Eq. (26) for the risk premiums. Dif-
ferent values of λ were tested to study the effect of loss aver-
sion on the risk premiums. The expected costs were found 
according to the calculated optimal quantity using the same 
parameters above for the classical newsvendor of normal 

(26)RPi = EVi − CEi

demand, i.e., no utility is taken into consideration. Risk pre-
miums are simply the difference between the expected value 
and the certainty equivalent.

The absolute values of the risk premiums increase by 
increasing the loss aversion. This behavior is not preferred 
to customers as higher loss aversion increases the premiums; 
thereby, higher expectations and returns are anticipated by 
the newsvendor. High risk premiums will not encourage an 
individual to hold the risky asset compared to risk-free one. 
The behavior of certainty equivalent versus the parameter λ 
is shown in Fig. 7. Indeed, the magnitude of the certainty 
equivalents increases by increasing the loss aversion parame-
ter. This also increases the gap between the expectations and 
the certainties which results in an increase in the magnitudes 
of risk premiums, i.e., an indication of lower willingness to 
carry the risky asset.

Another example is presented to test the effect of under-
age cost, where co = 5 , µ = 100, σ = 25, λ = 0.04. Different 
underage cost values were tested, and the resulting certainty 
equivalents and risk premiums are shown in Table 2. The 
magnitude of risk premiums increases as the underage cost 
increases. This pattern is depicted in Fig. 8. Clearly, for both 
the certainty equivalents, the expected values will get higher 
when the underage costs increase. That said, by increasing 
the underage cost, the newsvendor willingness to hold this 
inventory problem will decrease.

As for the overage cost, similar patterns of the certainty 
equivalents and the risk premiums can be observed. For 
instance, when cu = 5 , µ = 100, σ = 25 and λ = 0.04, the 
magnitude of RP will increase as shown in Fig. 9. In short, 
the risk premiums will increase when the gap between the 
overage and the underage costs gets wider.

As for the effect of the demand standard deviation (σ), 
our results conform to the findings of Eq. (9), where lower 

Fig. 7  The resulting risk premiums and certainty equivalents versus 
the loss aversion parameter λ, where co = 25 , cu = 5 , µ = 100, σ = 25

Table 1  Risk premiums versus the loss aversion parameter (λ) where 
co = 25 , cu = 5 , µ = 100, σ = 25

λ Utility model Classical 
newsvendor 
model

Utility opt. 
Q

Expected 
utility

CE Exp. cost |RP|

0.01 88.9 − 0.6836 − 115.07 217.130 102.055
0.02 93.1 − 0.8209 − 85.991 241.435 155.445
0.03 95.1 − 0.8765 − 69.717 255.838 186.121
0.04 96.3 − 0.9061 − 59.138 265.379 206.241
0.05 97 − 0.9244 − 51.646 271.260 219.614
0.06 97.5 − 0.9367 − 45.998 275.602 229.605
0.07 97.9 − 0.9456 − 41.591 279.162 237.571
0.08 98.1 − 0.9524 − 38.062 280.971 242.91
0.09 98.3 − 0.9576 − 35.118 282.799 247.681
0.1 98.5 − 0.9618 − 32.649 284.646 251.997
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standard deviations are more preferred. The results of dif-
ferent σ values are shown in Table 3, Figs. 9 and 10. Clearly, 
the gap between the expected costs and the certainty equiv-
alents increases by increasing σ. Therefore, higher uncer-
tainty yields higher risk premiums, a matter which may not 
be preferred by the investors and the customers. Figure 10 
shows the risk premiums versus the standard deviation. Less 
willingness to hold the risky asset will result in the increase 
in σ. The parameters used for this instance are: co = cu = 5 , 
µ = 100 and λ = 0.04.

To summarize, risk premiums will increase as loss aver-
sion increases. In other words, loss-averse investors request 
additional fund to be inspired to hold the newsvendor prob-
lem. Moreover, increasing the gap between the overage and 
underage costs will increase the risk premium. Similarly, 
higher uncertainties in the payoffs will also result in higher 
risk premiums indicating more unwillingness to hold the 
risky newsvendor problem.

Conclusions

In this paper, loss aversion in the newsvendor problem 
is addressed under the assumption of bounded utility. 
Two of models have been considered, namely the normal 
and the exponential functions. To the best of our knowl-
edge, no existing study has dealt with this combination of 
bounded exponential utilities along with a normal demand 
distribution.

The expected utility of normally distributed payoffs was 
derived first to help later in the derivation of the utility-
optimal formula. An elegant formulation was found, and 
the optimal quantities were calculated by simple numeri-
cal search owed to the implicit expression of the optimal 

Table 2  The results of the 
classical newsvendor and the 
utility newsvendor models, 
where co = 5 , µ = 100, σ = 25, 
λ = 0.04

Classical newsvendor 
model

Utility model |RP|

cu Optimal Q Exp. cost Utility opt. Q Exp. utility CE

5 100 − 99.7029 100.1 − 0.8461 − 46.7863 52.9166
6 102.8546 − 109.2934 101.6 − 0.8705 − 51.1019 58.1915
7 105.2607 − 118.4302 102.4 − 0.8831 − 53.6609 64.7693
8 107.3345 − 127.2488 102.9 − 0.8907 − 55.3415 71.9073
9 109.1527 − 135.7235 103.3 − 0.8958 − 56.5361 79.1874
10 110.7682 − 144.2424 103.5 − 0.8994 − 57.4151 86.8273
11 112.2194 − 152.3536 103.7 − 0.9022 − 58.1208 94.2328
12 113.5349 − 160.4837 103.8 − 0.9044 − 58.6896 101.794
13 114.7364 − 168.7556 103.9 − 0.9061 − 59.1381 109.617
14 115.841 − 176.9399 104 − 0.9075 − 59.5137 117.426
15 116.8622 − 184.6405 104.1 − 0.9087 − 59.8401 124.8

Fig. 8  Risk premiums and the certainty equivalents of the utility 
newsvendor versus the underage cost, where co = 5 , µ = 100, σ = 25, 
λ = 0.04

Fig. 9  Risk premiums versus overage cost, where cu = 5 , µ = 100, 
σ = 25, λ = 0.04



677Journal of Industrial Engineering International (2019) 15:667–678 

1 3

quantity Q . The analysis showed that the classical newsven-
dor optimal quantity represents a lower/upper bound on the 
utility-optimal quantities when (co > cu)∕(cu > co) . As loss 
aversion vanishes by decreasing the parameter λ, the utility 
model approaches that of the classical newsvendor model.

For the case of normal demand, two other normal dis-
tributions of shifted means but similar standard deviations 
resulted in the last optimality form. The gap between the two 
distributions is affected by the magnitude of loss aversion, 
where low loss aversion entails closer distributions. The two 
distributions will coincide when loss aversion disappears. 
Conversely, higher demand standard deviation will place the 
two distributions further apart, which also entails more risk 
and therefore lower utility-optimal quantities.

As for the risk premiums (RP), the magnitude of RP 
increases as loss aversion, overage and underage costs 

increase. Higher demand standard deviations will also 
increase the magnitude of RP. Higher risk premiums mean 
that the newsvendor willingness to hold the risky asset 
decreases as compared to risk-neutral case.

The formulas in (22) and (23) represent a new pair of 
equations that contribute to the literature related to the news-
vendor problem under loss aversion. The presented formulas 
are advantageous for finding the optimal order quantities of 
short-shelf life products when loss is an important factor in 
the decision-making process.

This study addressed the utility newsvendor of a single 
period and fixed prices. Future extensions can be directed 
toward multiperiod models and pricing schemes. Other 
directions may involve discount models and strategic sup-
pliers of long-term commitments. Time series demand pat-
terns and other utility functions are also possible for future 
extensions.
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tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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