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Abstract
This paper aims to prove the efficiency of an adapted computationally intelligence-based behavior of cats called the cat 
swarm optimization algorithm, that solves the open shop scheduling problem, classified as NP-hard which its importance 
appears in several industrial and manufacturing applications. The cat swarm optimization algorithm was applied to solve some 
benchmark instances from the literature. The computational results, and the comparison of the relative percentage deviation 
of the proposed metaheuristic with other’s existing in the literature, show that the cat swarm optimization algorithm yields 
good results in reasonable execution time.

Keywords Scheduling problem · Swarm optimization · Behavior of cats · Computationally intelligence · Discrete

Introduction

To solve real optimization problems such as in industrial and 
manufacturing applications, the problem should be formulated 
as a theoretical problem. In 1974, Gonzalez and Sahni (1976) 
had introduced one of the most known complex combinatorial 
problem called the open shop scheduling problem (OSSP). 
There are several real-world applications of the OSSP, such 
as system-on-a-chip testing (Iyengar and Chakrabarty 2002), 
the area of satellite-switched time-division multiple access 
(Dell’Amico and Martello 1996), routing packets (Suel 1995), 
the scheduling and wavelength assignment problem in optical 
networks that are based on the wavelength-division-multiplex-
ing technology (Bampis and Rouskas 2002), routing in opti-
cal transpose interconnect system (Lucas 2010), in routing in 

heterogeneous networks to model communications schedules 
(Bhat et al. 2000).

The OSSP problem is classified as NP-hard (Gonzalez and 
Sahni 1976), that is why some researchers had tried to solve it 
by introducing some methods, such as exact methods, polyno-
mial time algorithm proposed by Gonzalez and Sahni (1976), 
and the branch and bound developed by Brucker et al. (1997). 
In general, the exact methods can attain some local solutions 
and rarely a global solution. The metaheuristic has proven its 
efficiency to reach the global solution of some problems such 
as the OSSP. Some metaheuristics are used to solve the OSSP 
problem, such as simulated annealing (Liaw 1999a) and Tabu 
search algorithm proposed by Liaw (1999b), genetic algo-
rithm proposed by Prins (2000), extended genetic algorithm 
proposed by Rahmani Hosseinabadi et al. (2018), hybrid ant 
colony optimization proposed by Blum (2005), bee colony 
optimization proposed by Huang and Lin (2011), particle 
swarm optimization proposed by Sha and Hsu (2008).

This paper presents a new approach for solving the open 
shop scheduling problem, which is called the cat swarm 
optimization. In order to prove that the proposed method is 
efficient, the result obtained by its application to solve some 
benchmarks instances is compared with those existing in the 
literature. The rest of the paper is organized as follows; Section 
two is a description and formulation of the open shop schedul-
ing problem, with an example. Section three presents the cat 
swarm optimization algorithm, its used parameters, and its 
process. Section four describes the proposed adaptation of cat 
swarm optimization to solve the open shop scheduling problem. 
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Section five shows the results obtained by the application of 
the adapted cat swarm optimization to solve some benchmark 
instances and a discussion. Finally, a conclusion is presented.

Open shop scheduling problem

Presentation of the problem

The OSSP (Gonzalez and Sahni 1976) involves a collec-
tion of m machines M =

{
M1,… ,Mm

}
 and a collection of 

n jobssss 
{
J1,… , Jn

}
 . Each job  Ji ( i ∈ [1, n] .) consists of 

m operations Ji =
{
oi1, oi2,… , oim

}
 , and each operation oij 

from b Ji executed on a dedicated machine Mj(j ∈ [1,m]) 
must be processed in a determined process time pij.

The OSSP consists of n jobs, J, should be processed at 
most m machines, M, each job I consists of n*m operations 
O =

{
oi1, oi2,… , oim

}
 , each operation oij =

(
mij, tij

)
 from job 

Ji should be executed in machine mij ∈ M in a determinate 
execution time tij . One performance measure which is con-
sidered to be minimized is the total execution time of all 
process called makespan.

Problematic assumptions

• All operations should be processed.
• Each machine can process at most one operation at a time 

in determining operation process time.
• The operations in the same job cannot process simultane-

ously.
• Two operations of the same job cannot be processed at 

the same time.

Formulation of the problem

Let’s consider n jobs J = {J1,…, Jn} and m machines 
{M1,…, Mm}, and each job consists of n × m operations 
O = 

{
o11, o12,… , onm

}
 , each operation tij from the job I should 

be executed in machine j at a determinate execution time. The 
solution is a schedule presented by a sequence of n*m opera-
tions, numbered from 1 to n × m. To calculate the makespan, the 
data is presented with a matrix of information Minfo that has 
m*n four columns and four rows. The Minfo matrix presenting 
the information of each operation is described in Fig. 1. Let’s 
use:

Oi: The name (number) of operation i in schedule 
( i ∈ [1, (n ∗ m)].). Joi : The job of selected operation oi. Moi

 : 
The machine name where the operation oi should be pro-
cessed. Toi : The processing time of operation oi.

Example

Let’s consider the following: 3*3 OSSP, where n = 3, m = 3, 
J = {J1,J2,J3}, M = {1,2,3}, and for every Ji in J, Ji = {(mik, 
tik)} for k ∈ [1, 3],

Let’s choose a random solution: x = {7, 5, 3, 2, 9, 1, 6, 4, 8}.
The representation of information matrix is shown in 

Fig. 2:
To present the solution, the Gantt chart is used in Fig. 3 

by respecting all OSSP problem assumptions and the total 
makespan of the solution x is:

Makespan (x) = 13.

Cat swarm optimization algorithm

Cat swarm optimization (CSO) algorithm is a computational 
intelligent algorithm, inspired from the behavior of cats. The 
CSO algorithm was introduced by Chu and Tsai (2006). This 
algorithm is divided into two modes which are the seeking 
mode and the tracing mode. The seeking mode presents the 
rest mode in real life of a cat, where it spends the majority 
lifetime and the tracing mode, when the cat hunts a prey or 
any moving object. Every cat is characterized by its own 
position, its velocity, and the flag to identify whether the cat 
is in the seeking mode or the tracing mode.

The CSO algorithm proposed by Chu and Tsai (2006) was 
improved by some researchers to ameliorate its efficiency, as 
using average-inertia weight suggested by Orouskhani et al. 
(2011), introducing an adaptive parameter control by Wang 
et al. (2015), parallel cat swarm optimization by PW Tsai et al. 
(2008), solving combinatorial optimization problem by Bouzidi 
and Riffi (2013), solving the clustering problem improved by 
Razzaq et al. (2016), enhanced parallel cat swarm optimization 
based on the Taguchi method by Tsai et al. (2012). It was also 
extended to solve multi-objective problems in 2012 by Pradhan 
and Panda (2012). These improvements were applied to solve 
some difficult application problems, such as IIR system identi-
fication by Panda et al. (2011b), optimizing least-significant-bit 

J1 = {(3, 2), (1, 3), (2, 5)}

J2 = {(1, 5), (3, 7), (2, 1)}

J3 = {(1, 4), (2, 5), (3, 1)}

Fig. 1  Informations matrix

Fig. 2  The schedule information matrix
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substitution by Wang et al.(2012), optimal placement of multi-
ple UPFC’s in voltage stability enhancement under contingency 
by Kumar and Kalavathi (2014), direct and inverse modeling of 
plants by Panda et al. (2011a), single bitmap block truncation 
coding of color images by Cui et al. (2013), linear antenna array 
synthesis by Pappula and Ghosh (2014), improved metaheuris-
tic techniques for simultaneous capacitor and DG allocation in 
radial distribution networks by Kawtar et al. (2015).

This paper aims to give an improved CSO algorithm to 
solve the OSSP problem, and to prove its efficiency, it was 
applied to solve some benchmark problems.

CSO to OSSP

To solve the OSSP problem by the CSO, its operators and 
operations (elementary and global) were enhanced. The 
improvements are described as follows:

Cat’s parameters

In CSO algorithm, the solution presents the global best solu-
tion (Gbest) found by the cats in the swarm; for each cat, the 
position presents the solution that should be a schedule in 
OSSP problem. The velocity is used to move from a position to 
another; in OSSP, a novel solution is obtained by applying a set 
of swaps to the solution, and thus, the set of swaps is presented 
by the velocity, and the flag is used to know the cat mode. To 
sum up, the used operators of each cat in a swarm are:

Mode Parameter Role

SM and TM Position The schedule solution presented by a 
sequence of all operations

Flag The cat mode (seeking or tracing mode)
TM Velocity Set of couple permutation (i,j) that will be 

applied to a position, where i and j are 
a range of two velocities in the selected 
position

SM SMP Number copies of cats in the SM
CDC Percent length of the mutation
SRD First rang in the selected solution vector
SPC A Boolean value

Cat’s process

The metaheuristic is known by its intelligent combination 
of two principal concepts which are exploring and exploit-
ing. For the CSO metaheuristic, in each mode, we find the 
concept of exploration and exploitation. The two modes are 
combined intelligently with the mixture ratio (MR). The pro-
posal CSO process respects the definition proposed by Chu 
and Tsai (2006), but some improvements are provided to solve 
the open shop scheduling problem, and these improved modes 
are described as follows:

Seeking mode

The seeking mode (SM) presents the cat at rest and also as 
being alert-looking around its environment for its next move. 
The position is presented by a vector of schedule, and for 
that the four parameters of this mode were adapted, and the 
new role of each one is:

The seeking mode steps can be described as follows:

1. Put j copies of the present position of the cat k, with 
j = SMP. If the value of SPC is true or j = SMP-1, and 
retain the cat as one of the candidates.

2. Generate a random value of SRD
3. If the fitness (FS) is not equal, calculate the probability 

of each candidate by Eq. (a), and the default probability 
value of each candidate is 1.

4. Perform mutation and replace the current position.

where  FSi is the fitness of  cati,  FSmax is the maximum fitness 
in the swarm and the  FSmin is the minimal fitness in the swarm.

Example
Let’s consider in the SM, that the position (solution) 

x = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} . The size is n = 12

,SMP = 5,SPC = True and the first value of SRD = 2.
Step 1: The program makes four copies of the selected cat 

position and considering the selected position as a candidate, 
because SPC = True.

(a)Pi =
||FSi − FSmin

||
FSmax − FSmin

where 0 < i < j

Fig. 3  Gant chart

M3 5 9 1 

M2 3 6 8 

M1 7 2 4 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 makespan

With :       Job1  Job2  Job3 
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Step 2: For each copy, according to the CDC, randomly 
increase or decrease the current SRD percentage value, and 
replace the old values b the application of a swap between the 

SRD position and the second position that is (CDC + SRD) 
if the sum is less than 12 (the total size of the problem), else 
the second position is (CDC + SRD) − (12 + 1).
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The tracing mode

The mode tracing (TM) presents the cat at the quick move-
ment, according to its own velocity, while chasing a pray 
or any moving object. This section is devoted to describ-
ing the parameters, the process and elementary operations 
used in this mode

Tracing mode parameters
The used parameters in this mode are:

Xbest  The best solution/position of the cat who has the best 
fitness value

Vk  The old speed value (current value)
V′k  The new value velocity of the  catk
w  The inertia weighted parameter
c  A constant
r  A random value in the range [0, 1]
X′k  The new value of the position of the  catk
Xk  The actual position of the  catk
Vk  The velocity of the  catk

(a) Tracing mode process:

The process of TM is given as:

(1) Update the velocities of each  catk According to the 
equation:

(2) check if the velocities are of the highest order.

(3) update the position of the  catk according to equation:

Elementary operations:
The elementary operations (addition, subtraction and 

multiplication) used in tracing mode to solve the OSSP are 
not the same as those defined by Chu and Tsai (2006) to 
solve continuous optimization problem. The used opera-
tion is like the elementary operations defined to PSO algo-
rithm, by Clerc (2004), to solve the combinatorial optimi-
zation problem. These operations will be performed on 
the velocity and the position of each cat in the TM mode.

Let’s put x and x’ two positions (schedules), and a 
velocity v represents all permutations to perform.

Let’s put: X = {1, 2, 3, 4, 5} and v = {(2, 5),(3, 1),(4, 3)}
Opposite of velocity:
Let’s put |v| presents the size (number of permutations 

couple (i, j)) of the velocity v = {(ik, jk)[k: 0 →|v|]}.
The opposite is defined by: ¬v = {(ik, jk)[k:|v|→0]},with: 

v + ¬v = ø.

(a)V �
k
= w ∗ Vk + r ∗ c ∗

(
Xbest − Xk

)

(b)X�
k
= Xk + Vk

Addition:
This is done between a position x and velocity v, in 

order to have a new position x’.

Adding operation which translates the movement repre-
sents the set of permutations to be applied to the position 
x to getting a new position x’.

Example

Subtraction (position–position):
This operation is performed between two positions to 

get a velocity.

The subtraction is the opposite of the addition operation 
(x′−x = v ⇔x + v = x′). In this case, by two positions x and 
x′, the result is all permutations performed on x, to obtain 
x′. These pairs of permutations are the velocity v.

Example
Let′s x′ = x + v = {4, 5, 1, 3, 2} ⇒ x′ − x = v
Multiplication:
This operation is performed between a real r and veloc-

ity v = (ik, jk)[k:0 →|v|]; the result is a velocity. The differ-
ent possible cases, according to the real r, are:

• If r = 0: r × v = 0
• If ((r > 0) and (r  ≤1)): Then r × v = (ik,jk)[k: 0 → 

(c × |v|)]
• If (r > 1): then separate. Decimal and integer part, r = n +x. 

Where n is the integer part of r, and x corresponds to deci-
mal parts. And returns to each party to the previous cases.

• If (r < 0): r × v = (− r) × ¬v. Now (− r) > 0, and you will 
consider one of the previous case.

Example
 Let′s put v= {(2, 5), (3, 1), (4, 3)}and r= 0, 4 ⇒ 
r × v = {(2, 5)}.
The complete mode process:
The flowchart represents the description of the complete 

CSO process as shown in Fig. 4.

Computational results and discussion

This section presents the obtained results and the discussion 
of the proposal of CSO to solve some benchmark instances 
proposed by Taillard (1993) and Guéret and Prins (1999). 
This proposed adaptation is coded in Visual C++, which 
runs on an Ultrabook characteristic′s 2.1 GHz 2.59 Ghz Intel 
Core i7 PC with 8G of RAM. Each instance runs for 10 
times in the maximum time of 1 h.

x + v = x�

x + v = {4, 5, 1, 3, 2}

x� − x = v
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Parameter tuning

The used parameters values in CSO process are the SMP, CDC 
used in the seeking mode, the parameters w, r and c used in 
tracing mode, and the MR used in the general process.

For respecting the real life of cats, this paper dose not have 
to change the SMP, CDC, MR, c values and also the range of 
the variation of the random value r.

About the inertia weighted parameter w, this paper had 
used a fix parameter values such that it was consider in the 
proposal of CSO to solve combinatorial problem (Bouzidi 
and Riffi 2014b), that values were analyzed and discussed by 
the application to solve the TSP problem (Bouzidi and Riffi 
2013). After that it was applied to solve other combinatorial 
problems by using this parameters values, such as the QAP 

(Riffi and Bouzidi 2014), JSSP (Bouzidi and Riffi 2014a) and 
FSSP (Bouzidi and Riffi 2015).

To resume, the used parameters values are shown in 
Table 1.

Evaluation of the proposed algorithm

This section presents two tables that show the collected results 
by the application of the adapted CSO algorithm to the bench-
mark instances of Taillard (1993) in Table 2, and Guéret and 
Prins (1999) in Table 3. For each instance, the number of job 
J and machines M is defined (J × M), the best-known fitness 
solution (BKS) is found by the existing methods to solve the 
OSSP to the selected problem instance, the best obtained solu-
tion (BS) is found by applying CSO algorithm got in ten runs 
of the program, and the BS lower than the BKS is marked by 
* after the instance name. To prove the efficiency of the CSO, 
the relative percentage deviation (RPD) is calculated. And the 
average execution time (Aver_T) is taken into seconds.

The RPD is calculated by:

Table 2 shows the obtained results by the application of pro-
posed CSO to solve the Taillard (1993) benchmark instances.

Table 2 shows that the application of CSO to solve all pro-
posed Taillard instances problems has a lower-to-negligible 
RPD value, and each instance problem solution is obtained in 
a reasonable execution time.

Table 3 shows the obtained results by the application of 
CSO to solve the OSSP benchmark instances proposed by 
Guéret and Prins (1999).

Also the CSO can find the optimal solution of many 
benchmark instance problems of Guéret and Prins that have 
the lower values of RPD, and the solutions are obtained in a 
reasonable execution time. Also, when the application takes 
more time running, the CSO algorithm gives better solutions 
to all selected benchmark instances. Table 4 proves that CSO 
application with more time (more than 900 s) can find the best 
optimal solutions. Table 4 shows some benchmark instance, 
its size (number of jobs J and number of machines M), the 
best-known solution BKS for each one, the best solution (BS) 
found by the application of CSO method, the number of jobs J 
and the number of machines M; the RPD1 presents the relative 
percentage deviation by executing the application for a maxi-
mal time 900 s, and the RPD2 presents the relative percentage 
deviation by executing the application more than 900 s, and 

RPD =
BS − BKS

BKS

Cat 
k
 is in 

the SM? 

Apply catk into SM 

Evaluate the cats 
according to the fitness 

Apply catk into TM 

Re-pick number of cats and set them into TM 
according to MR, and set the others into SM

Terminate

End

Begin 

Generate N cat 

Initialize the position, 
velocity, and flag of every cat 

no

no 
yes 

yes 

Fig. 4  CSO process flowchart

Table 1  Used parameter′s 
values in CSO

Parameter SMP CDC MR w r c

Value 5 0.8 0.3 0.7 [0,1] 2.05
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Table 2  Result obtained by 
applying CSO to solve OSSP 
instances proposed by Taillard

Instance J × M BKS BS. WS RPD Aver_T (s)

tail41 4 × 4 193 193 193 0.00 0.001
tail42 4 × 4 236 236 236 0.00 0.001
tail43 4 × 4 271 271 271 0.00 0.001
tail44 4 × 4 250 250 250 0.00 0.156
tail45 4 × 4 295 295 295 0.00 0.125
tail46 4 × 4 189 189 189 0.00 0.003
tail47 4 × 4 201 201 201 0.00 0.109
tail48 4 × 4 217 217 217 0.00 0.359
tail49 4 × 4 261 261 261 0.00 0.219
tail410 4 × 4 217 217 217 0.00 0.156
Average RPD: 0.00
tail51 5 × 5 300 300 300 0.00 0.610
tail52 5 × 5 262 262 262 0.00 0.735
tail53 5 × 5 323 323 323 0.00 2.235
tail54 5 × 5 310 310 310 0.00 8.906
tail55 5 × 5 326 326 326 0.00 1.344
tail56 5 × 5 312 312 312 0.00 13.813
tail57 5 × 5 303 303 303 0.00 14.688
tail58 5 × 5 300 300 300 0.00 35.236
tail59 5 × 5 353 353 353 0.00 4.032
tail510 5 × 5 326 326 326 0.00 2.453
Average RPD: 0.00
tail71 7 × 7 435 435 435 0.00 24.375
tail72 7 × 7 443 443 444 0.00 26.065
tail73 7 × 7 468 468 477 0.00 51.658
tail74 7 × 7 463 463 464 0.00 227.313
tail75 7 × 7 416 416 416 0.00 169.751
tail76 7 × 7 451 452 458 0.22 640.466
tail77 7 × 7 422 426 432 0.95 349.208
tail78 7 × 7 424 424 424 0.00 21.567
tail79 7 × 7 458 458 458 0.00 83.953
tail710 7 × 7 398 398 398 0.00 112.39
Average RPD: 0.12
tail101 10 × 10 637 645 650 1.26 160.762
tail102 10 × 10 588 588 588 0.00 474.782
tail103 10 × 10 598 599 606 0.17 68.567
tail104 10 × 10 577 577 577 0.00 41.04
tail105 10 × 10 640 640 645 0.00 679.018
tail106 10 × 10 538 538 538 0.00 126.936
tail107* 10 × 10 616 616 619 0.00 22.877
tail108 10 × 10 595 595 601 0.00 375.292
tail109 10 × 10 595 595 599 0.00 263.801
tail1010 10 × 10 596 596 600 0.00 112.65
Average RPD: 0.14
tail151 15 × 15 937 937 937 0.00 250.323
tail152 15 × 15 918 920 926 0.22 501.669
tail153 15 × 15 871 871 871 0.00 498.766
tail154 15 × 15 934 934 934 0.00 112.994
tail155 15 × 15 946 952 959 0.63 834.63
tail156 15 × 15 933 933 933 0.00 149.578
tail157 15 × 15 891 891 898 0.00 867.539
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Table 2  (continued)

Instance J × M BKS BS. WS RPD Aver_T (s)

tail158 15 × 15 893 893 893 0.00 176.073
tail159 15 × 15 899 913 931 1.56 658.615
tail1510 15 × 15 902 902 910 0.00 891.272
Average RPD: 0.24
tail201 20 × 20 1155 1166 1170 0.95 457.839
tail202 20 × 20 1241 1260 1267 1.53 618.409
tail203 20 × 20 1257 1257 1257 0.00 340.266
tail204 20 × 20 1248 1253 1259 0.40 816.467
tail205 20 × 20 1256 1256 1256 0.00 432.391
tail206 20 × 20 1204 1204 1204 0.00 806.064
tail207 20 × 20 1294 1310 1317 1.24 859.499
tail208 20 × 20 1177 1210 1234 2.80 695.772
tail209 20 × 20 1289 1289 1289 0.00 207.641
tail2010 20 × 20 1241 1241 1241 0.00 489.458
Average RPD: 0.69

Best results are shown in bolditalics

Table 3  Result obtained by 
applying CSO to solve OSSP 
instances of Guéret and Prins

Instance J × M BKS BS. WS %RPD Aver_T (s)

gp03-01 3 × 3 1168 1168 1168 0.00 0.001
gp03-02 3 × 3 1170 1170 1170 0.00 0.001
gp03-03 3 × 3 1168 1168 1168 0.00 0.001
gp03-04 3 × 3 1166 1166 1166 0.00 0.001
gp03-05 3 × 3 1170 1170 1170 0.00 0.001
gp03-06 3 × 3 1169 1169 1169 0.00 0.001
gp03-07 3 × 3 1165 1165 1165 0.00 0.001
gp03-08 3 × 3 1167 1167 1167 0.00 0.001
gp03-09 3 × 3 1162 1162 1162 0.00 0.001
gp03-10 3 × 3 1165 1165 1165 0.00 0.001
Average RPD: 0.00
gp04-01 4 × 4 1281 1281 1281 0.00 0.002
gp04-02 4 × 4 1270 1270 1270 0.00 0.002
gp04-03 4 × 4 1288 1288 1288 0.00 0.001
gp04-04 4 × 4 1261 1261 1261 0.00 0.003
gp04-05 4 × 4 1289 1289 1289 0.00 0.003
gp04-06 4 × 4 1269 1269 1269 0.00 0.001
gp04-07 4 × 4 1267 1267 1267 0.00 0.007
gp04-08 4 × 4 1259 1259 1259 0.00 0.002
gp04-09 4 × 4 1280 1280 1280 0.00 0.005
gp04-10 4 × 4 1263 1263 1263 0.00 0.001
Average RPD: 0.00
gp05-01 5 × 5 1245 1245 1245 0.00 0.008
gp05-02 5 × 5 1247 1247 1247 0.00 0.003
gp05-03 5 × 5 1265 1265 1265 0.00 0.006
gp05-04 5 × 5 1258 1258 1258 0.00 0.009
gp05-05 5 × 5 1280 1280 1280 0.00 0.005
gp05-06 5 × 5 1269 1269 1269 0.00 0.009
gp05-07 5 × 5 1267 1267 1269 0.00 0.002
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Instance J × M BKS BS. WS %RPD Aver_T (s)

gp05-08 5 × 5 1287 1287 1287 0.00 0.002
gp05-09 5 × 5 1262 1262 1262 0.00 0.003
gp05-10 5 × 5 1254 1254 1254 0.00 0.422
Average RPD: 0.00
gp06-01 6 × 6 1264 1264 1264 0.00 0.281
gp06-02 6 × 6 1285 1285 1285 0.00 1.014
gp06-03 6 × 6 1255 1255 1255 0.00 0.484
gp06-04 6 × 6 1275 1275 1275 0.00 0.390
gp06-05 6 × 6 1299 1299 1299 0.00 0.187
gp06-06 6 × 6 1284 1284 1284 0.00 0.250
gp06-07 6 × 6 1290 1290 1290 0.00 0.140
gp06-08 6 × 6 1265 1265 1265 0.00 0.506
gp06-09 6 × 6 1243 1243 1243 0.00 0.203
gp06-10 6 × 6 1254 1254 1254 0.00 0.234
Average RPD: 0.00
gp07-01 7 × 7 1159 1159 1159 0.00 0.406
gp07-02 7 × 7 1185 1185 1185 0.00 0.375
gp07-03 7 × 7 1237 1237 1237 0.00 0.391
gp07-04 7 × 7 1167 1167 1167 0.00 5.756
gp07-05 7 × 7 1157 1157 1157 0.00 0.797
gp07-06 7 × 7 1193 1193 1193 0.00 0.688
gp07-07 7 × 7 1185 1185 1185 0.00 1.030
gp07-08 7 × 7 1180 1180 1180 0.00 12.813
gp07-09 7 × 7 1220 1220 1220 0.00 0.437
gp07-10 7 × 7 1270 1270 1270 0.00 0.250
Average RPD: 0.00
gp08-01 8 × 8 1130 1130 1130 0.00 27.373
gp08-02 8 × 8 1135 1135 1135 0.00 3.646
gp08-03 8 × 8 1110 1110 1110 0.00 76.871
gp08-04 8 × 8 1153 1153 1153 0.00 6.652
gp08-05 8 × 8 1218 1218 1218 0.00 5.288
gp08-06 8 × 8 1115 1115 1115 0.00 198.506
gp08-07 8 × 8 1126 1126 1126 0.00 214.562
gp08-08 8 × 8 1148 1148 1148 0.00 13.500
gp08-09 8 × 8 1114 1114 1114 0.00 240.140
gp08-10 8 × 8 1161 1161 1161 0.00 50.338
Average RPD: 0.00
gp09-01 9 × 9 1129 1129 1129 0.00 209.037
gp09-02 9 × 9 1110 1110 1112 0.00 72.290
gp09-03* 9 × 9 1116 1115 1116 0.00 9.028
gp09-04 9 × 9 1130 1130 1130 0.00 57.012
gp09-05 9 × 9 1180 1180 1180 0.00 3.723
gp09-06 9 × 9 1093 1193 1093 0.00 122.432
gp09-07* 9 × 9 1091 1090 1090 0.00 89.763
gp09-08* 9 × 9 1106 1105 1105 0.00 200.877
gp09-09 9 × 9 1123 1123 1139 0.00 84.270
gp09-10 9 × 9 1112 1120 1121 0.72 741.101
Average RPD: 0.07
gp10-01 10 × 10 1093 1111 1121 1.65 273.601
gp10-02 10 × 10 1097 1097 1097 0.00 84.298

Table 3  (continued)
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until it obtains the best solution, and the average time execu-
tion in ten runs (Aver_T) to seconds.

Comparison with other metaheuristics 
and discussion

This part aims to compare the average RPD of seven meth-
ods, including the one obtained by applying CSO to OSSP. 
Those other methods are two of hybrid variable neighbor-
hood search methods (VNS), which are VNS-based curtailed 
fashion VNS (CLS) and VNS-based greedy local search 
VNS (GLS), two-phase solution method (TPSM), genetic 
algorithm (GA), the genetic algorithm incorporating the 
mutation (MGA) (Naderi and Zandieh 2014) and the elec-
tromagnetism algorithm (EA). All these methods run in a PC 
with 2.0 GHz Intel Core 2 Duo and 2 GB of RAM memory.

The average RPD obtained by each metaheuristic for the 
different problem size of two known benchmark instances 
(Taillard 1993; Guéret and Prins 1999) is presented as 
follows:

In order to do the comparative study, the best way used 
is the graphical representation that provides a visual display 
to more assess the collected average RPD results to solve 

the differents benchmark instances by the metaheuristics in 
study. For this reason, the results in Table 5 were translated 
into two graphs; Fig. 5 represents the variation of RPD of the 
seven methods for the different size of Taillard benchmark 
instances problems; Fig. 6 is like the first but of the bench-
mark instances are of Guèret and Prins.   

Figure 5 shows that the CSO algorithm had the lower 
RPD for the different problem size instances, which means 
that it has more efficiency than the others.

Again, Fig. 6 shows that the CSO algorithm had the lower 
RPD for the different problem sizes, which means that the 
CSO is more efficient than other methods.

Conclusion

To conclude, this paper presented the efficiency of the 
cat swarm optimization algorithm to solve the theoreti-
cal problem, open shop scheduling problem, by its abil-
ity to find the best-known solution for some benchmark 
instances and to find the new best solutions. The com-
parison of the results of the CSO method to some recent 
existing methods to solve OSSP problem has also proved 
the efficiency of the CSO algorithm to solve the OSSP 

Table 3  (continued) Instance J × M BKS BS. WS %RPD Aver_T (s)

gp10-03 10 × 10 1081 1110 1151 2.68 356.432
gp10-04 10 × 10 1083 1090 1109 0.65 428.704
gp10-05 10 × 10 1073 1090 1108 1.58 567.397
gp10-06 10 × 10 1071 1100 1120 2.71 600.557
gp10-07 10 × 10 1080 1084 1117 0.37 475.311
gp10-08 10 × 10 1095 1117 1119 2.01 465.301
gp10-09 10 × 10 1115 1122 1127 0.63 285.534
gp10-10 10 × 10 1092 1113 1123 1.92 262.229
Average RPD: 1.42

Best results are shown in bolditalics

Table 4  Results in more than 
900 s of CPU time

Instance J × M BKS BS. RPD2 RPD1 Aver_T (s)

in152 15 × 15 918 918 0.00 0.76 5391.31
in155 15 × 15 946 946 0.00 0.85 1763.04
in201 20 × 20 1155 1155 0.00 0.95 2089.60
in204 20 × 20 1248 1248 0.00 0.40 1248.00
in207 20 × 20 1294 1294 0.00 0.53 5050.18
gp10-08 10 × 10 1095 1097 0.18 2.01 1486.45
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problem. That is why, the aim is to extend the proposed 
metaheuristic to be applied to various real applications 
based on OSSP.
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