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Abstract

This paper considers open-shop scheduling with no intermediate buffer to minimize total tardiness. This problem
occurs in many production settings, in the plastic molding, chemical, and food processing industries. The paper
mathematically formulates the problem by a mixed integer linear program. The problem can be optimally solved
by the model. The paper also develops a novel metaheuristic based on an electromagnetism algorithm to solve the
large-sized problems. The paper conducts two computational experiments. The first includes small-sized instances
by which the mathematical model and general performance of the proposed metaheuristic are evaluated. The
second evaluates the metaheuristic for its performance to solve some large-sized instances. The results show that
the model and algorithm are effective to deal with the problem.
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Introduction
Open-shop scheduling (OSS) can be defined by a set of
n jobs that need to be processed by a set of m machines.
Contrary to other shop scheduling, there are no prede-
termined processing routes for the jobs, which means
that jobs could visit machines by any order. In other
words, in open shops, there are two decisions to make:
the determination of the processing routes of the jobs as
well as job sequence on each machine (Pinedo 2008).
The following assumptions are usually characterized to
open shops. All the jobs are independent and available
for their process at time 0. All machines are continu-
ously available. Each machine can at most process one
job at a time. Each job can be processed by at most one
machine at a time. The process of a job on a machine
cannot be interrupted. There are infinite buffers between
all machines. There is no transportation time between
machines. The objective function is the minimization of
the total tardiness. The tardiness of each job is the
amount of time that job is completed after its due date.
Brisel et al. (2008) investigated OSS under minimization
of mean flow time and proposed three types of heuristics
based on matching heuristics, priority-dispatching rules,
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as well as insertion and appending algorithms combined
with beam search. They also presented a new encoding
scheme named rank matrices. Andresen et al. (2008) solved
OSS with two metaheuristics, simulated annealing and
genetic algorithms, with some operators. Like Brésel et al.
(2008), they used the rank matrix to encode a solution.
Low and Yeh (2009) addressed OSS with some practical
assumptions such as setup and removal times. To solve the
problem, they presented a hybrid genetic algorithm.

The literature of scheduling is filled with different ap-
plied industrial assumptions to better represent the real
nature of scheduling environments. One of the most
prevailing and extremely favored assumptions by many
researchers in real scheduling configurations is that
there is no buffer between machines. In many industrial
settings, due to characteristics of the jobs or the proces-
sing technology, the operations of a job must be per-
formed without any interruption between machines.
Applications of these scheduling problems can be found
in hot-metal-rolling industries, where the heated metal
has to undergo a set of operations at continuously high
temperatures before it is cooled in order to prevent
defects. Similarly, in the plastic molding and silverware
production industries, a set of operations must be per-
formed to immediately follow one another to prevent
degradation. Other examples include chemical and
pharmaceutical industries, food processing industries,
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and advanced manufacturing environments. Hall and
Sriskandarajah (1996) explained some other applications
of no-buffer scheduling problems. Despite their practical
applications, these problems are given far less attention
than the other scheduling problems.

The two-machine open shop with no buffer (OSNB)
was studied by Sidney and Sriskandarajah (1999). They
introduced an approximation heuristic with a worst case
performance ratio of 3:2 to solve the problem. Yao and
Soewandi (2000) proposed four heuristics. One of them
is a flowshop-based heuristic based on the Gilmore-
Gomory algorithm. Two other heuristics are based on
the ‘matching’ concept to minimize ‘potential’ idle time
on either machine. The other one is a random search al-
gorithm utilizing some features of other ‘soflcomputing’
metaheuristics. The experimental evaluation shows that
the random search algorithm outperforms the others.

Yao and Lai (2002) proposed a genetic algorithm for
the two-machine OSNB. The two-machine OSNB was
also studied by Liaw et al. (2005). They developed a
branch-and-bound with some dominance rules as well
as a two-phase algorithm. OSNB with movable dedicated
machines to minimize total occupation time of all the
machines was considered by Lin et al. (2008). They
introduced a mixed integer nonlinear program to model
the problem. As far as we reviewed, almost none of the
existing papers consider classical multi-machine OSNB.
There is no attempt to linearly model the problem.
There is only one metaheuristic (two-phase algorithm of
Lin et al. (2008)) for a relevant problem.

The two-machine OSNB is strongly nondeterministic
polynomial time-hard (NP-hard) (Sahni and Cho 1979).
Therefore, the general multi-machine OSNB is NP-hard.
The presentation of mathematical programs and heuris-
tics is commonly used to solve scheduling problems
(Stafford et al. 2005). We propose a mixed integer linear
programming model to formulate the OSNB. We also
carry out an experiment to analyze and compare the
performance of the proposed model. Besides the model,
the paper solves the large-sized instances by an effective
metaheuristic based on an electromagnetism-like algo-
rithm. Model's efficiency and metaheuristics' capability
to solve the problem studied here are investigated on
two computational evaluations including small- and
large-sized instances.

The rest of the paper is organized as follows. The
‘Problem formulation’ section develops the mixed integer
linear program. The ‘Proposed electromagnetism algo-
rithm’ section introduces the proposed metaheuristic.
The ‘Computational evaluation’ section describes the ex-
perimental design to evaluate the proposed method in-
cluding the mathematical model and algorithm. Finally,
the ‘Conclusions and future studies’ section gives some
interesting conclusions and future studies.
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Problem formulation

Even though mixed integer linear programming (MILP)
models might not be an efficient solution method for all
problem sizes, they are a natural way to attack schedul-
ing problems (Stafford et al. 2005). This section presents
a model to formulate OSNB problems. We analyze the
model by the number of binary and continuous variables
as well as the number of constraints required in formu-
lating the problem. The following notations are used in
the model:

Parameters:
e The number of jobs.
e m  The number of machines.
e O;; The operation of job j on machine i.
e p;; The processing time of O; .
e d;  The due date of job j.

e M A large positive number.

Binary variables (BVs) used in this model show the rela-
tive sequence of different operations of a job as well as the
relative order of the jobs on each machine. Due to the iden-
tity of these BVs, the model is called the sequence-based
model. Note that for every machine we introduce, a
dummy job 0 which precedes the first job on that machine
is present and that for every job, a dummy machine O that
precedes the first operation of that job is also present. It is
necessary to indicate that the model requires the big M.
The following notations are established:

Indices:

o k  Job index {0,1,2,...,n}.

o j Job index {1,2,. .., n}.

o [ Machine index {0,1,2,..., m}.

o i Machine index {1,2,..., m}.
Variables:

o0 Y;;; Binary variable that takes value 1 if Oj; is

processed immediately after O;;, and 0
otherwise. [ = i

0 Xj; Binary variable that takes value 1 if Oj; is
processed immediately after Oy ;, and 0
otherwise. k = j

o T; Tardiness of job j.
o §;; The starting time of O;;.
o B;  The starting time of job j.

The model formulates OSNB as follows:
Minimize Z T,

=1
which is subject to the following:

Sii—Bi< Y pu Vi.i (1)
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Constraint sets (1) and (2) are to assure that no-buffer
restrictions are held. Constraint set (3) ensures that O;;
cannot start before O;; completes if O;; precedes O;;.
Constraint set (4) specifies that if O;; is processed imme-
diately after Oy, it cannot begin before O ; completes.
Constraint set (5) calculates tardiness of jobs. Constraint
sets (6) and (7) state that every operation is scheduled
once. Constraint sets (8) and (9) ensure that every oper-
ation must have at most one succeeding operation in the
processing route of the jobs and in the job order of every
machine. Constraint sets (10) and (11) enforce that
dummy job 0 and machine 0 must have exactly one suc-
cessor. Ultimately, Constraint sets (12) and (13) define
the decision variables.

The model is analyzed with respect to the required
numbers of binary variables, continuous variables, and
constraints for a problem with # jobs and m machines.
The model requires nm(n + m) binary variables, i.e., O(nm
(n+m)), 2n+nm continuous variables, i.e., O(nm), and
nm (4 + 37” + 37’”) + 1 + m constraints, i.e., O(nm(n + m)).

The proposed electromagnetism algorithm

Electromagnetism algorithm (or EA) is a solution method
for optimization problems with bounded variables. It is a
population-based metaheuristic firstly proposed by Birbil
and Fang (2003). EA is inspired from the attraction-
repulsion mechanism of the electromagnetism theory.
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Each candidate solution is regarded as a particle whose
charge is related to its objective function value. The direc-
tion and magnitude of attraction or repulsion over each
candidate solution in the population are computed by this
charge. The direction of this charge for candidate solution
i is determined by vectorially adding the forces from each
of the other solutions on candidate solution i. In this
mechanism, a candidate solution with good objective
function value attracts the other ones, whereas a candidate
solution with worse objective function repels the other
candidate solutions. The better (or worse) the objective
function value is, the higher the size of attraction (or re-
pletion). After the movement for each candidate solution
in the current population is made, a new population is
generated. The procedure is repeated until a stopping cri-
terion is met.

Figure 1 shows the general outline of EA which includes
four phases: initialization of algorithm, computation of
total force exerted on each particle, movement along the
direction of the force, and local search.

Encoding scheme and initialization

The encoding scheme is the procedure of making a solu-
tion recognizable for algorithms and plays an important
role in the effectiveness of the algorithms. The decoding
scheme is a complementary procedure that turns an
encoded solution into a schedule. The proposed encod-
ing scheme has two main parts: a permutation showing
relative order of the jobs rather than the operations and
a matrix whose rows determine the relative sequence of
operations of each job. In this case, we just determine
the relative order of the jobs and the processing route of
each job. For each job permutation, we assign the ran-
dom key of 0 to the first job and 1 to the last one. The
jobs (ie., n — 2 other jobs) in between are assigned real
numbers of -1, .., =3,
assign the random key of 0 to the first operation and 1
to the last operation. The operations in between are

ni—2

12
m—17 m—1"""" 7 n—1’
For example, consider a problem with n =

respectively. For each job j, we

assigned real numbers respectively.

5. One

Procedure Electromagnetism_algorithm

Initialization

While stopping criterion is not met do
Local search
Computation of total forces
Movement by forces

End while

Figure 1 The general outline of an EA.
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Procedure Local_search

for K =1to popsize do
iter -
J =1
while / £ do
while iter < LSITER 4o

regenerated

iter = LSITER
f=n

elseif
iter = iter + 1

endif
endwhile
j=i+1
endwhile
endfor

The random key of job / in candidate solution K s randomly

if improvement is made then
The new generated random key is accepted

Figure 2 The procedure of the local search.

possible permutation is {4, 2, 5, 1, 3}. The real values
assigned to jobs 4 and 3 are 0 and 1, respectively. For
middle jobs, the values 1,2,
and 1, respectively.

The decoding scheme turns an encoded solution into a
schedule. We set the starting time of the first job in part 1
as 0. Then, to find the earliest possible starting time of the
subsequent job, we first set the starting time to be 0. The

and 2 is assigned to jobs 2, 5

first operation of that job is scheduled. If any overlap hap-
pens between this operation and previously scheduled
operations on the same machine, the starting time is set to
as the first possible starting time that avoids any overlap.
The second operation in the processing route of the job is
then scheduled. Again, if any overlap occurs between this
operation and previously scheduled operations on that
machine, we have to restart from the first operation in

for X =1 to popsize do
calculate §1%)
F = 0
endfor
fork =1to popsize do
for! =1to popsize do

endfor

Procedure Computation_of _total_forces

itl = k& flx) # flxy) do
if flx) < f(xz) then

Qx " Q1
F, = F, Xy — Xy )o—m—
* et G ©) W — 2 B (attraction)
else
Q% " @
Fo= Fpo= (@ —x)e—mm—m——
= EC ")lr; —xxIF  (repulsion)
endif
endif
endfor

Figure 3 The procedure of calculating total forces.
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Procedure Movement_by_ total_forces

for K =1to popsize do
if ¥ +# best then
.3 =random [0, 1]

"-;‘J) %™*; is random key of job / in solution

F X = i
[ 139 |
for/ =1to " do
itf5 >0 then
Xpj =X+ 8- !-:.;"(1 +m, =
k
else
.\';‘.j = .t';‘-l-' + 8 = [‘:.‘(.1‘;{).' - 1)
endif
endfor
endif
endfor

9% Normalization of the total forces

%‘p;‘ is / -th element of £ K

Figure 4 The procedure of movement by total forces.

order to hold no buffer constraints. The procedure repeats
until all the operations of the job are scheduled.

Local search

To enhance the algorithm's performance, EA is hybri-
dized with a local search. The procedure of this local
search can be described as follows: for each candidate
solution k, and then for a given job j, we generate a tem-
porary random number between 0 and 1. The jobs are
then sorted according to the random keys. Considering
the previous example, the real values are {3,1,1,0,2
Suppose the real value of job 2 is randomly regenerated
and it becomes 47, therefore, the new solution is as fol-
lows: {3,4,1,0,2}.

If the new sequence results in a better objective func-
tion value, then the new permutation is accepted. Other-
wise, it is left. This procedure iterates at most LSITER
times. If any improvement is made in an iteration less
than LSITER, then the search for the current candidate
solution terminates. Figure 2 shows the procedure.

Computation of total forces

To obtain the total force exerted from the other solu-
tions on candidate solution k, we first need to calculate
the charge of that candidate solution. The charge of each
candidate solution k is denoted by ¢, and calculated by
the following formula:

pojl;(ifek) _f(xbest) e k

=1 (f(xl) _f(xbest))

, popsize

qk = exp| —n xm

=1,2,...

where x; and xp.¢ are candidate solution k and the best
candidate solution. This formula ensures that solutions
with better objective values are assigned higher charges.
The total force (Fy) vector exerted on candidate solution
k is also obtained by the sum of all the forces exerted
from each of other solutions in the current population
on candidate solution k. If solution [ is better than solu-
tion k (i.e., if f (x;) <f (xx)), it attracts solution k by the

Table 2 The average RPD obtained by EA against TPSA in
the Brucker et al. (1997) benchmark

Table 1 The results obtained by the model for OSNB Instance EA TPSA
nxm Instances Time J3 0.02 269
3X3 3 0.07 j4 0.82 217
3x4 3 1.26 j5 1.61 2.51

4x3 3 271 j6 1.79 3.22
4 x4 3 218 j7 191 265
5x%x3 1 753 j8 243 473
5x4 0 - Average 143 2.99
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Table 3 The average RPD obtained by EA against TPSA in
the Guéret and Prins (1998) benchmark

Instance EA TPSA
gp03 0.75 2.55
gp04 0.89 3.89
gp05 147 542
gp06 1.99 539
gp07 208 5.14
gp08 1.36 320
gp09 1.64 435
gp010 274 418
Average 1.62 426

force of (x; — xx) %. Otherwise, (i.e., if flx) > flx),

it repulses solution k by the force of (x; — xl)%.
Figure 3 shows the procedure of calculation of total force
vector exerted on candidate solutions.

Let us further illustrate the procedure by an example.
Consider a problem with n = 4 and m = 2. We have
popsize = 5 where f(x;) = 120, f(x;) = 140, f(x3) = 90,
f(xq) = 100, and flxs) = 110. Therefore, we have ¢, =
0.11, g5 = 0.03, g3 = 1, q4 = 0.48, and g5 = 0.23. Suppose
x, = {2.87, 2.05, 1.82, 2.52} and x, = {1.22, 2.65, 1.43,
2.12}. The vector force exerted from x, on x; becomes
as follows:

1.22 2.87 —0.06
2.56 2.05 0.11 x 0.48 0.01
1.43 | | 1.82 1.84 ~ | —0.01
2.12 2.52 —0.02

Movement by total forces

To move according to the total forces obtained in the
previous step, we first normalize the vector Fy. If Ff >0
(Ff is the j th element of the normalized vector Fy), x;; is
increased (xy; is the random key of job j in solution k).
Otherwise, it is decreased. This move for each candidate
solution is in direction of total force exerted on it by a
random step length. This length is generated from a uni-
form distribution between [0, 1]. By selecting random

Table 4 The average RPD obtained by EA against TPSA in
the Taillard (1993) benchmark

Instance EA TPSA
Tail 4 x 4 042 3.16
Tail 5% 5 2.20 358
Tail 7x 7 1.86 249
Tail 10 X 10 2.10 458
Tail 20 x 20 2.03 6.10

Average 1.72 398
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FA TPSA

Figure 5 Mean plots and LSD intervals for the metaheuristics.

J

length, we can guarantee that candidate solutions have a
nonzero probability to move to the unvisited solution
along this direction. Moreover by normalizing total force
exerted on each candidate solution, we can avoid produ-
cing infeasible solutions. All the candidate solutions are
moved with the exception of the current best solution.
Figure 4 shows the outline of movement procedure.

Computational evaluation

This section first evaluates the efficiency of the proposed
MILP model on a computational experiment including
small-sized instances. Afterwards, it investigates the gen-
eral performance of the proposed metaheuristic against
the optimal points obtained by the model. Moreover, it
further evaluates the performance of the algorithms

7
¢l| —e—EA -m-TPSA o
’
/
5 g ’
a m -
4 1 ’ - ~ & _ ‘.’
o . -
¥ 3+ _ A
g
2 AN
1 +
0 f } f } } } t }
3 4 5 6 7 8 9 10 20
Problemsize (# = m)
Figure 6 Mean plots for the metaheuristics versus the problem
size.
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against benchmarks in the literature of basic open shops.
Since existing optimal solutions of the benchmarks are
for basic open shops, they cannot be used for the evalu-
ation. In this case, we use a performance measure
named relative percentage deviation (RPD) obtained by
the following formula:

_ Alg ., — Ming
Mingg)

RPD x 100,

where Ming, and Alg,, are the lowest total tardiness for
a given instance obtained by any of the algorithms and
the solution obtained by a given algorithm. We imple-
ment the MILP models in CPLEX 10 and the other algo-
rithms in Borland C++ and run on a PC with 2.0-GHz
Intel Core 2 Duo and 2 GB of RAM memory. The stop-
ping criterion used when testing all instances with the
metaheuristics is set to a computational time limit fixed
to n x m x 0.5 s. This stopping criterion permits for more
time as the number of jobs or machines increases. Our
proposed electromagnetism algorithm includes only one
parameter of popsize. To set this parameter, we consider
the sizes of 5, 10, and 20. We randomly generate 30
instances in different sizes and solve them by the three
EA obtained by different levels of popsize. The popsize
of 10 obtained the best results.

Evaluation of the MILP model

This section first evaluates the efficiency of the MILP
model to solve NW-OSS problems. We generate a set of
different instances as follows. We have 10 problem sizes
ranging from (n x m) = (3 x 3) up to (5 x 4). The pro-
cessing times are randomly distributed over (1, 99). For
each problem size, we generate three instances. The
MILP model is allowed a maximum of 900 s (15 min) of
computational time. Table 1 shows the results obtained
by the model including the number of instances solved
to optimality by the model in each problem size and the
average computational time required to solve the
instances. The model is capable of solving instances up
to (5 x 3).

Evaluation of the metaheuristic

This section evaluates the algorithm against the optimal
solution obtained by the model in the previous subsection.
EA optimally solves 12 instances out of 13 instances. After
having investigated the general performance of the pro-
posed electromagnetism algorithm, we further evaluate
the proposed algorithm against the adaptation of a rele-
vant algorithm, the two-phase solution algorithm (TPSA)
of Lin et al. (2008). To do so, we use standard benchmarks
in the literature, such as those of Taillard (1993), Brucker
et al. (1997), and Guéret and Prins (1998).
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We use RPD measure to compare the algorithms.
Tables 2, 3, and 4 show the results of the experiments
for benchmarks of Brucker et al. (1997), Guéret and
Prins (1998), and Taillard (1993), respectively. EA out-
performs TPSA in all the three benchmarks. It obtains
the RPD of 1.43%, 1.62%, and 1.72% in Brucker et al.
(1997), Guéret and Prins (1998), and Taillard (1993)
benchmarks, respectively. To further statistically analyze
the results, we carry out an ‘analysis of variance’ or
ANOVA. The results demonstrate that there are signifi-
cant differences between the two algorithms with the
p value very close to 0. Figure 5 shows the mean plots
and least significant difference or LSD intervals at 95%
confidence level for the different algorithms. As could
be seen, EA statistically outperforms TPSA. It is also
interesting to plot the performance of the algorithms
versus the problem size. Figure 6 shows the means
obtained by the algorithms in the different problem
sizes. As shown, EA significantly performs well in all the
problem sizes.

Conclusions and future studies

This paper studied the problem of open-shop schedul-
ing, with no intermediate buffer to minimize total tardi-
ness. To optimally solve the problem, one mathematical
model in the form of mixed integer linear program is
developed. Next, we proposed a metaheuristic in form of
an electromagnetism algorithm to solve the large-sized
problems in an acceptable computational time. We car-
ried out two computational experiments to evaluate the
performances of model and metaheuristic. In the first
one, we had some small-sized instances by which we
assessed the mathematical model and evaluated the gen-
eral performance of the proposed metaheuristic. In the
second experiment, the proposed algorithm was further
evaluated against an algorithm in the literature. All the
results supported that the model and metaheuristic were
effective to tackle open-shop problems with no inter-
mediate buffer between machines. As an interesting fu-
ture research, one can study the multi-objective case of
the problem under consideration. Another impressive
research is to present a branch-and-bound or any other
exact method for the problem.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

BN, EN, and MY formulated the problem of scheduling no-wait open shops
with no intermediate buffer. To solve the problem, we proposed a
metaheuristic in the form of electromagnetism-like algorithm. All authors
read and approved the final manuscript.

Author details
'Department of Industrial Engineering, Faculty of Engineering, University of
Kharazmi, Karaj, Iran. “Department of Industrial Engineering, Science &



Naderi et al. Journal of Industrial Engineering International 2012, 8:29
http://www jiei-tsb.com/content/8/1/29

Research Branch, Islamic Azad University, Tehran, Iran. *Department of
Industrial Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.

Received: 25 June 2012 Accepted: 21 November 2012
Published: 27 December 2012

References

Andresen M, Brésel H, Morig M, Tusch J, Werner F, Willenius P (2008) Simulated
annealing and genetic algorithms for minimizing mean flow time in an open
shop. Math Comput Model 48(7-8):1279-1293

Birbil I, Fang SC (2003) An electromagnetism-like mechanism for global
optimization. J Glob Optim 25:263-282

Brésel H, Herms A, Morig M, Tautenhahn T, Tusch T, Werner F (2008) Heuristic
constructive algorithms for open shop scheduling to minimize mean flow
time. Eur J Oper Res 189(3):856-870

Brucker P, Hurink J, Jurisch B, Wostmann BA (1997) A branch and bound
algorithm for the open-shop problem. Discret Appl Math 76:43-59

Guéret C, Prins C (1998) Classical and new heuristics for the open shop problem:
a computational evaluation. Eur J Oper Res 107:306-314

Hall NC, Sriskandarajah CA (1996) Survey of machine scheduling problems with
blocking and no-wait in process. Oper Res 44:510-525

Liaw CF, Cheng CY, Chen M (2005) Scheduling two-machine no-wait open shops
to minimize makespan. Comput Oper Res 32:901-917

Lin HT, Lee HT, Pan WJ (2008) Heuristics for scheduling in a no-wait open shop
with movable dedicated machines. Int J Prod Econ 111(2):368-377

Low C, Yeh Y (2009) Genetic algorithm-based heuristics for an open shop
scheduling problem with setup, processing, and removal times separated.
Robot Comput Integr Manuf 25(2):314-322

Pinedo ML (2008) Scheduling: theory, algorithms, and systems, 3rd edn.
Springer Science + Business Media, New York

Sahni S, Cho Y (1979) Complexity of scheduling shops with no-wait in process.
Math Oper Res 4:448-457

Sidney JB, Sriskandarajah C (1999) A heuristic for the two-machine no-wait open
shop scheduling problem. Nav Res Logist 46:129-145

Stafford EF Jr, Tseng FT, Gupta JND (2005) Comparative evaluation of MILP
flowshop models. J Oper Res Soc 56:88-101

Taillard E (1993) Benchmarks for basic scheduling problems. Eur J Oper Res
64:278-285

Yao MJ, Lai CW (2002) A genetic algorithm for the two machine open shop
scheduling problem with blocking. In: The second Japanese-Sino
optimization meeting (JSOM 2002), Rihga Royal Hotel Kyoto, Kyoto,
25-27 Sept 2002

Yao MJ, Soewandi H (2000) Simple heuristics for the two machine open shop
problem with blocking. J Chin Inst Ind Eng 17(5):537-547

doi:10.1186/2251-712X-8-29

Cite this article as: Naderi et al: An electromagnetism-like metaheuristic
for open-shop problems with no buffer. Journal of Industrial Engineering
International 2012 8:29.

Page 8 of 8

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Abstract
	Introduction
	Problem formulation
	The proposed electromagnetism algorithm
	Encoding scheme and initialization
	Local search
	Computation of total forces
	Movement by total forces

	Computational evaluation
	Evaluation of the MILP model
	Evaluation of the metaheuristic

	Conclusions and future studies
	Competing interests
	Authors’ contributions
	Author details
	References

