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Abstract 

Many real-world issues are based on multivariate processes with descriptive characteristics that are represented by 

contingency tables. A contingency table is a tool for showing the simultaneous relationship of two or more 

descriptive variables that is modeled by the log-linear communication function and monitored over time. In some 

statistical process monitoring (SPM) applications, we are faced with the multiplicity of variables and, of course, the 

number of nominal classifications of the response variable. To model them, a log-linear model based on large-scale 

contingency tables is used that are called nominal large-scale descriptive multivariate processes. In monitoring this 

type of process, we face the negative impact of large dimensions of contingency tables on the performance of control 

charts. For this purpose, a new approach based on the clustering approach in correspondence analysis have been 

developed to reduce the effect of large dimensions and improvement performance of the control charts in diagnosing 

out of control status. It is noted that, the main contribution of this paper is to develop some approaches to monitor 

the large dimension based multivariate nominal processes which is not considered by previous researches. The 

performance of control charts has been evaluated using simulated studies and the results indicate the appropriate 

efficiency of the proposed approach in reducing the impact of the contingency table dimensions on the performance 

of the control charts. In addition, to demonstrate the performance efficiency of the proposed methods, a real case 

study in the field of renewable energy has been used, the results of which indicate the proper performance of the 

proposed control charts in diagnosing out of control status.  
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INTRODUCTION 

Nowadays, control charts are utilized as a useful tool to monitor process parameters with different statistical distributions. 

 One of the best opportunities for increasing productivity is the scheduling of preventive maintenance and the use of control 

charts (Farahani et al., 2020). One of the types of process monitoring that has been considered by researchers in recent years is 

the monitoring of multivariate categorical processes based on polynomial statistical distribution that first developed by Li et al. 

(2012) and Yashchin (2012). These processes contain at least two correlated descriptive attributes that are displayed using a 

tool called a contingency table. But what has been categorized by various researchers in the field of multivariate process 

monitoring, including Li et al. (2013), Li et al. (2014), Kamranrad et al. (2017a and 2017b) and Kamranrad et al. (2019) is to 

present control charts just for the purpose of statistical monitoring of these types of processes. 

In this study, we seek to design control charts for monitoring multivariate descriptive processes based on large-scale 

contingency tables. Therefore, in this section, we will examine the research conducted in the field of descriptive multivariate 

process monitoring. Yashchin (2012) presented the regenerative likelihood ratio control chart to diagnose changes in the 

possible behavior of particles in a semiconductor component plant (contingency-based table) over specific time periods in 

Phase 2. To monitor, he considered the two main parameters of the contingency tables, i.e. λ (the effect of each variable) and 

pij (the estimated value of the observation likelihood in cell (i, j). In this research, the variable of the type of particles in the air 

with four levels of metal, organic, inorganic and others has been considered as the first categorical response variable. Also, the 

variable of the level of particles in the environment, which were divided into three levels, is the second response variable. In 

another study by Li et al. (2012), multivariate binomial and polynomial processes in phase-2 were investigated using the log-

linear model. They presented the error diagnosis process to determine the shifts in the parameters of the model in question. 

They also used the Generalized Likelihood Ratio Test (GLRT) to diagnose changes in the model parameter and determine if 

the process was under control. They state that their proposed method for diagnosing small shifts in the model parameters is not 

very efficient and therefore to solve this problem, they combined the GLRT approach with the EWMA approach and presented 

it as EWMA-GLRT. Tsung and Zou (2013) proposed a binary spatial model for modeling multistage processes with binary 

responses. They also applied the monitoring and diagnosis approach using hierarchical likelihood and direct information based 

on the binary spatial model. Their proposed approach not only considers the correlation in and between stages, but also 

eliminates the consequences of the complexity of this method in monitoring and diagnosing the signal factor from one stage to 

another.  

Li et al. (2013) presented a multivariate nonparametric control chart for shape parameter monitoring. This chart is based 

on a combination of a multivariate signal test chart and a EWMA chart for continuous on-line monitoring. They eventually 

concluded that the proposed nonparametric chart could only be used for the main observations and was not very efficient at 

diagnosing very large shifts, a feature common to all nonparametric charts. Li et al. (2014) also presented a multivariate 

binomial / polynomial control chart for monitoring multivariate processes categorical in Phase-2. In their research, they 

considered multivariate processes categorical with the assumption of correlation among variables and using the log-linear 

model, improved the relationship among existing categorical variables in the form of multivariate binomial and multinomial 

distributions. Kamranrad (2017a) presented a control chart based on generalized linear test (GLT) statistics for monitoring 

multivariate processes categorized in phase 2. They also combined the GLT statistic with the EWMA statistic to improve the 

performance of their proposed method in small and medium shifts, and proposed a new control chart called EWMA-GLT. In 

addition, they developed a signal factor parameter diagnosis method based on GLT statistics. Kamranrad et al. (2017b) offered 

two new control charts based on Wald and Rao score test statistics to monitor processes based on contingency tables in phase 

1. To improve the performance of their charts, they combined the mentioned statistics with the EWMA statistics and compared 

the results with the two EWMA-GLRT and Multinomial/Binomial control charts. In addition, they provided a new method to 

diagnose the signal factor cell that has led to an out-of-control status.  

The same authors (2019) developed F and SLRT control charts for monitoring multivariate processes based on phase 1 

contingency tables and evaluated the performance of the proposed control charts with three types of step, drift and outlier 

changes. In their research, they also developed an SLRT-based approach to estimate the real-time change point in this type of 

process. In order to demonstrate the efficacy of the proposed methods in practical applications, they evaluated the performance 

of the methods in a real case study in the field of health care focusing on kidney patients. The results of the calculations have 

showed the appropriate efficiency of these methods. The research that has been studied by researchers in this field so far has 

been mainly on nominal multivariate descriptive processes. But there are also researchers who have worked in the field of 

multivariate process monitoring based on sequential contingency tables. For example, Zafar et al. (2013) used a sequential log-

linear model with correspondence analysis in the pharmaceutical industry to predict the amount of drugs in medicinal diagnosis 

processes. Farahani et al. (2019) have presented an integrated model for optimizing statistical process control policies (sampling 
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interval, sample size and control limit) and preventive maintenance (the preventive maintenance interval).Yamamoto and 

Murakami (2014) presented a model for evaluating square contingency-based tables processes with sequential variables. In this 

study, their hypothesis on the unbalanced normal distribution in the field of tooth decay was used. Brzezinska (2016) also 

proposed a model for sequential contingency tables considering linear effects, rows, columns, and concurrent effects. In 

addition to the above research, Wang et al. (2017) presented multivariate process monitoring based on sequential log-linear 

model. In their research, they provided a Generalized Likelihood Ratio Test (GLRT) control chart for monitoring these types 

of processes. Their proposed control chart has good efficiency for diagnosing spatial shifts and dependency shifts in hidden 

continuous variables with sequentially categorical features based on multilevel values. In addition, Hakimi et al. (2019) 

developed a new approach to monitor multivariate processes based on ordinal contingency tables in Phase 2. In their study, 

they presented the generalized-p control chart provided by Li et al. (2014) for monitoring sequential uni-variate processes in 

order to monitor multivariate sequential processes and, using simulated studies, they evaluated the efficiency of their proposed 

method. The results of the simulations show the proper performance of the proposed method in diagnosing various changes in 

the parameters of the sequential log-linear model.  

Hakimi et al. (2021) proposed two control charts including simple ordinal categorical and Generalized-p to monitor the 

multivariate ordinal processes in Phase II. Performance of the proposed charts has been evaluated through simulation studies 

and a real numerical example. Results showed that, the simple ordinal categorical based control chart had better performance 

than the other chart under most shifts in ordinal log-linear model parameters. Hakimi et al. (2022) proposed new statistics for 

Phase I monitoring the multivariate categorical processes based on ordinal contingency tables. To this aim, two control charts 

called LRT and MR have been developed and results showed that MR control chart had better performance than LRT under 

small and moderate shifts in model parameters. In addition, they used a real case study in drug industry to monitor the drug 

dissolution process and results also confirmed the simulation outputs. In all of the above investigations, multivariate processes 

categorized according to small-scale contingency tables have been monitored. In this research, we intend to present a new 

approach to monitor nominal multivariate processes based on large-scale contingency tables. The main research question is 

what effect will the size of the contingency tables have on the performance of control charts in process monitoring, and how 

can the effects of large-scale be controlled? 

In this research, first, the correspondence analysis approach is proposed to reduce the large scale of the contingency table. 

Then, control charts F and T2 based on the proposed approach for monitoring processes of contingency-based tables in phase 

2 are presented.The structure of the paper is as follows: In the next section, a review of multivariate categorical processes based 

on small-scale contingency tables is given. In the third section, the technique of reducing the size of large-scale contingency 

tables based on the clustering technique is presented in order to reduce the negative effects on process monitoring. In the fourth 

section, proposed control charts for monitoring large-scale descriptive processes in Phase 2 are presented. The performance of 

the proposed methods is evaluated using simulated studies in the fifth section. Also, to show the efficiency of the proposed 

methods, a real data set in the field of renewable energy has been used, the results of which are examined and analyzed in the 

sixth section. Finally, conclusion and future suggestions will be presented in the seventh section. 

A REVIEW OF MULTIVARIATE DESCRIPTIVE PROCESSES BASED ON NOMINAL CONTINGENCY TABLES 

Nominal categorical multivariate processes are processes in which at least two categorical variables with a nominal 

characteristic are simultaneously correlated, and contingency tables are used to illustrate this correlation. In order to model 

such contingency tables, a communication function called the nominal log-linear model is used as the following equation 

(Kamran Rad et al., 2019). 

If 𝒏 = (𝑛1, 𝑛2, . . . , 𝑛𝑁)𝑇 and 

𝝁 = (𝜇1, 𝜇2, . . . , 𝜇𝑁)𝑇represent the column vector of observations and the expected values for the cells of the contingency table, 
respectively, then the matrix form of the log-linear model is defined as follows. 

𝐿𝑜𝑔𝜇 = 𝑿�̂�                                                                     (1) 

or equivalent to 

𝐿𝑜𝑔𝜇 = 𝟏�̂�0 + ∑ 𝑿�̂�𝑖
2𝑝−1
𝑖=1                                                 

 

Where p is the number of variables in the contingency table. In addition, X and 𝛽 are design matrix and column vector of the 

model parameters, respectively. Note that, in Phase 2 of Monitoring Processes, it is assumed that the process parameters are 

http://research.shahed.ac.ir/WSR/WebPages/Report/PaperView.aspx?PaperID=159299
http://research.shahed.ac.ir/WSR/WebPages/Report/PaperView.aspx?PaperID=159299
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known and do not need to be estimated. For review and more information on monitoring nominal contingency tables in phase 

2, refer to (Kamran-Rad et al., 2017b). 

DEVELOPMENT OF CORRESPONDENCE ANALYSIS BASED ON CLUSTERING TECHNIQUE TO REDUCE THE CONTINGENCY 

TABLES SCALE 

One of the important issues in monitoring processes based on large-scale contingency tables is the low efficiency of control 

charts in diagnosing out-of-control status despite the large amount of data. In fact, large dimensions of contingency tables will 

have a negative impact on the performance of control charts. The main component analysis technique is used to solve the 

problem of large data volumes in continuous space. However, since contingency tables contain discontinuous categorical 

datasets, it is not possible to use this method. According to the studies, the efficient method in analyzing and reducing the 

dimensions of contingency tables is the correspondence analysis technique. In this research, the correspondence analysis has 

been developed based on the clustering technique. 

I. Clustering in correspondence analysis 

Correspondence analysis is one of the types of data analysis methods, the most important part of which is data grouping. 

Greencre (2007) has proposed two methods for grouping rows and columns of a contingency table in the CA method. In the 

first method, the integration is based on the logical proximity of rows or columns, and in other words, the rows and columns 

are integrated and collected without any special calculation. The second method considered in this research is the clustering 

method. In this method, rows or columns are compared based on proximity criteria based on total inertia, and the most similar 

rows or columns of the contingency table are selected for integration. Total inertia is calculated using the following equation. 

∑ 𝑟𝑖𝑑𝑖
2 = ∑ �̅�𝑔�̅�𝑔

2 + ∑ ∑ 𝑟𝑖𝑑𝑖𝑔
2

𝑖∈𝑔𝑔𝑔𝑖                               (2)  

 

Where  𝑟𝑖  is the mass of i row, 𝑑𝑖  the chi-square distance between the row i profile with the mean of the row profiles,  �̄�𝑔 the 

mass of the members of group g, �̄�𝑔 the chi-square distance of the group with the mean of the row profiles, and the intergroup 

inertia can be obtained from the total inertia. At the beginning of the clustering process, all rows and columns are separated and 

the intergroup inertia is equal to the total inertia. With each integration between categories, the inertia between groups 

decreases. So the first step is to identify the two rows (columns) that need to be integrated. Equation (3) is used to achieve the 

best rows for integration. According to the following equation, the smaller the distance for two rows (two columns), the two 

rows (columns) will integrate with each other (Greencre, 2007). 

�̅�𝑔 �̅�ℎ

�̅�𝑔+�̅�ℎ
‖�̅�𝑔 − �̅�ℎ‖                                                          (3)  

 

Where 

‖𝑎𝑖 − 𝑎𝑖′‖ = √∑ (𝑎𝑖𝑗 − 𝑎𝑖′𝑗)2/𝑐𝑗𝑗                              (4)  

 

It should be noted that the above equations show the distance between the two rows of the contingency table and can be 

generalized to the column distance by changing the row parameters to a column. The distance between the two rows is 

calculated using equation (3). In this method, first the similarity criterion of two rows (or two columns) is obtained and then 

two rows (or columns) with the shortest distance are merged with each other. This continues until the number of rows and 

columns reaches the desired number. It should be noted that the magnitude of the intergroup inertia index indicates the proper 

integration of the merged groups. The following figure illustrates well the clustering schematic in the contingency tables based 

on correspondence analysis for a four-sided table. 

 
h1 … 3 2 1  X1 

X3   

h3 … 3 2 1 X4 X2 

O h1 1 h3 1 … O1131 O1121 O1111 1 1 

O h1 2 h3 2 … O3232 O2222 O1212 2 2 

O h1 3 h3 3 … O3333 O2323 O1323 3 3 
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              
O h1 h2 h3 h4 … O3 h2 3 h4 O2 h2 2 h4 O1 h2 1 h4 h4 h2 

 

The figure above shows that rows 1, 2 and 3 and columns 1 and 2 are merged; In this case, the number of remaining rows will 

be equal to h1-2 and the number of remaining columns equal to h2-1. Also, Oijkl for i=1,2,…,h1  ،j=1,2,…,h2 ،k=1,2,…,h3 and l 

= 1,2,…, h4 represent the observed frequency of cells (i, j, k, l) from the contingency table. 

II. Calculation of Eigenvalues 

Suppose there is a contingency table with row I and column J. In this case, the expected frequency values of cells (i, j) of the 

contingency table are calculated as 

𝑒𝑖𝑗 =
𝑛𝑖.𝑛.𝑗

𝑁..
; 𝑖 = 1,2, . . . , 𝐼 𝑎𝑛𝑑 𝑗 = 1,2, . . . , 𝐽.           (5)                                               

 

where ni. And n.j are the sum of the observations values of row i and column j, respectively, and N .. is the sum of all 

observations. In this regard, the matrix K with elements kij is calculated as follows: 

𝑘𝑖𝑗 =
(𝑛𝑖𝑗−𝑒𝑖𝑗)

√𝑒𝑖𝑗
                                           (6)                                               

 

Then the SVD matrix for the K matrix can be defined as follows: 

𝑲 = 𝑼 𝑫 𝑽𝑻                                            (7)                                               

 

In this case, the Eigenvalues are calculated as follows: 

𝜆𝑘 = 𝑒𝑖𝑔(𝐾𝐾𝑇)                                      (8)                                               

 

where k=min{I-1,J-1}. 

DEVELOPMENT OF GENETIC META-HEURISTIC ALGORITHM TO REDUCE THE DIMENSIONS OF CONTINGENCY TABLES 

In this section, a meta-heuristic method based on genetic algorithm is developed to reduce the dimensions of contingency tables. 

As mentioned earlier, the large size of the contingency table has a negative effect on, firstly, the estimation of the parameters 

of the log-linear model in phase 1 and secondly, in phase 2, the performance of control charts to detect out-of-control conditions 

is weakened. For this purpose and to reduce the effect of large dimensions of the contingency table, a genetic algorithm has 

been used. 

In this algorithm, the design space is transformed into a genetic reproduction space that works with a series of coded 

variables. Depending on the randomization nature of genetic algorithms, the produced responses can be good, bad, or possibly. 

Therefore, determining the appropriate parameters plays an important role in obtaining the correct response over a period of 

time. This algorithm includes initial population selection, proportionality function calculation, parent selection, cross-child 

selection, and replacement of children with parents (Kamran Rad and Bashiri, 2015).The initial pre code of genetic algorithm 

to reduce the dimensions of contingency tables in this study is given in the figure 1.  

It should be noted that the fit index of the bilateral contingency table in order to determine the best combination of children 

or in other words the best dimensions of the contingency table is obtained from the following equation. 
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Initial population 

1. Design the initial large contingency table based on the 

collected observations 

2- Form the initial matrix cells to form contingency 

tables with different dimensions 

3- Randomly form the initial matrix after aggregating 

the rows of the initial contingency table 

4- Randomly form the initial matrix after aggregation 

the columns of the initial contingency table 

Determine the fit function 

5. Obtain the fit index of the contingency table 

(Equation 9) after aggregating the rows and columns. 

repeat 

6- Continue until the fitness index is not less than a small 

desired number 

7- Randomly select two children including two 

aggregated contingency tables by the minimum mean 

squared error. 

8- Do clause 7, provided that the dimensions of the two 

selected tables are equal and also the sum of the 

dimensions of the two tables is not larger than the 

dimensions of the initial contingency table. 

9- Obtain the fit of two new children 

10. If the fitness of the new contingency table is less than 

the value specified in clause 6, stop the algorithm and 

otherwise go to clause 7. 

11- If the fitness index of the new children of clause 10 

is less than that of the two children of clause 9, save the 

children of clause 10, otherwise save the previous 

children and go to clause 7 again. 

12- Continue clause 11 until the condition of clause 6 is 

fulfilled. 

13- Display the best contingency table with reduced 

dimensions. 

FIGURE 1 

PRE-CODE OF GENETIC ALGORITHM TO REDUCE THE DIMENSIONS OF LARGE-SCALE CONTINGENCY TABLE 

 

𝑀𝑆𝐸 = ∑ ∑ (𝑂𝑖𝑗 − 𝐸𝑖𝑗)2ℎ2
𝑗=1

ℎ1
𝑖=1                           (9)                                               

 

As Oij and Eij are observed frequency and the expected frequency of cells (i, j), respectively. Also, the values of expected cell 

observations (i, j) can be calculated as follows. 
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𝐸𝑖𝑗 =
𝑂𝑖.×𝑂.𝑗

𝑂..
                                            (10)                                               

As Oi. And O.j is the sum of the observations of row i and column j, respectively, and O .. is the sum of all observations. 

MULTIVARIATE DESCRIPTIVE PROCESS MONITORING APPROACHES BASED ON LARGE-SCALE CONTINGENCY TABLES IN 

PHASE 2 

Multivariate descriptive process monitoring approaches based on large-scale contingency tables in phase 2. 

I. T2 approach for monitoring non-metric processes based on large-scale contingency tables 

In this section, the T2 control chart for monitoring processes based on large-scale contingency tables in phase 2 based on the 

statistics introduced by Yeh et al. (2009) has been developed. The null hypothesis of this statistic is based on the equality of 

process parameters with the mean parameters over time and is written as follows. 

  𝐻0:  𝜷 = 𝜷0                                             

            (11)                                               

  𝐻1:  𝜷 ≠ 𝜷𝟎 

To test the above hypothesis, the following statistic is developed. 

 𝑇2 = (𝛽𝑖 − �̂�)𝑇𝛴𝛽
−1(𝛽𝑖 − �̂�)                        (12)  

Where 

�̂� =
∑ 𝛽𝑖

𝑚
𝑖=1

𝑚
                                           (13)  

𝑐𝑜𝑣( 𝛽) = {𝑿′[𝑑𝑖𝑎𝑔(𝜇) − 𝜇𝜇′/𝑁]𝑿}−1.              (14)  

where �̂� is a vector of expected values and is obtained from the equation (10). In addition, in the variance-covariance matrix, 

the above relation is N number of the total data. It should be noted that the upper limit of the T2 statistic is obtained by simulation 

so that the mean value of the controlled sequence length is equal to a certain value.  

 

I. CMH approach for monitoring non-metric processes based on large-scale contingency tables 

Suppose 𝒏𝑘  is the observed frequency vector of a large-scale contingency table and 𝜇𝑘 = 𝐸(𝒏𝑘) the expected observation 

vector corresponds to the cells of the same contingency table. Let   is the covariance matrix of the observations (which can be 

calculated from Equation 14). Now if we have  

𝒏 = ∑ 𝒏𝑘 , 𝜇 = ∑ 𝜇𝑘 , 𝑽 = ∑ 𝑽𝑘 

Then the CMH test statistics will be as follows: 

𝐶𝑀𝐻 = (𝒏 − 𝜇)𝑇𝑽−1(𝒏 − 𝜇).                              (15)  

It should be noted that the upper limit of the CMH statistic is obtained by simulation so that the mean value of the controlled 

sequence length is equal to a certain value. To better understand of presented methodology, following points should be 

considered. First, we develop two algorithms including clustering-CA and GA to reduce dimension of the large contingency 

table. Then, two statistics, named CMH and T2 have been developed to monitor the multivariate categorical processes in Phase 

II. 

EVALUATING THE PERFORMANCE OF THE PROPOSED APPROACHES 
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In this section, the performance of two proposed approaches for monitoring classified multivariate processes based on large-

scale contingency tables is evaluated. For this purpose, first, a bilateral large-scale contingency table with dimensions of 16 x 

21 is considered as follows. Then, with each of the two clustering algorithms in the correspondence analysis and genetic meta-

innovation, the dimensions of this table are reduced. We then evaluate and compare the performance of each of the two control 

charts in detecting the out-of-control status of multivariate processes based on large-scale contingency tables. 
 

TABLE I 

LARGE-SCALE INITIAL CONTINGENCY TABLE  

X2 

 

X1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 24 30 19 9 1 30 8 12 15 30 12 22 4 15 20 6 

2 29 9 23 20 15 11 30 16 20 3 10 22 7 19 28 15 

3 3 11 17 26 19 26 21 24 3 20 12 23 0 20 7 16 

4 7 28 22 7 1 23 15 18 0 12 17 24 30 20 24 3 

5 0 17 11 20 4 8 8 6 15 21 22 1 6 5 23 7 

6 30 16 0 26 25 22 27 13 18 30 17 11 22 1 21 1 

7 22 13 4 27 3 12 24 6 1 26 3 11 13 12 8 4 

8 9 10 6 6 20 10 17 6 3 21 22 4 10 12 28 17 

9  26 20 20 12 5 10 2 8 7 26 0 7 27 15 22 0 

10 22 0 14 30 17 1 24 11 16 18 9 27 23 5 21 9 

11 9 12 25 8 27 12 29 6 16 24 10 8 30 27 23 12 

12 12 22 18 2 9 13 4 30 18 26 30 5 26 14 6 30 

13 7 28 18 1 6 7 26 20 0 1 17 15 8 25 15 30 

14 0 2 3 3 0 2 20 25 29 25 25 23 13 13 10 15 

15 29 26 14 12 30 6 24 23 26 17 30 13 16 17 23 29 

16 20 3 16 14 24 9 10 14 16 21 10 8 6 16 23 13 

17 5 21 17 27 25 8 27 26 24 2 14 3 4 23 21 5 

18 3 1 7 18 14 15 19 5 22 14 29 23 2 22 6 1 

19 24 14 3 11 15 11 20 19 7 8 22 2 15 9 11 29 

20 22 26 27 1 27 8 22 29 20 26 3 28 30 26 12 13 

21 10 8 21 5 23 17 11 20 11 12 18 4 23 29 10 28 

I. Evaluating the performance of the proposed control charts based on the correspondence analysis approach 

In this section, the performance of the two proposed control charts for monitoring large-scale multivariate processes is evaluated 

and compared using the ARL index-based correspondence analysis approach. For this purpose, first, the dimensions of the 

large-scale contingency table are reduced using the correspondence analysis approach, and then a classified multivariate process 

is formed based on the small-scale table. Finally, the proposed control charts will be used to monitor this process. It should be 

noted that the upper limit of control of these two control graphs is calculated so that the mean value of the sequence length in 

the controlled state is 200. Accordingly, the upper limit values of the two proposed control graphs equal to 222.12 and 12.88 

have been calculated for CMH and T2, respectively, which will be used in the simulations. 

      Using the correspondence analysis approach, the initial contingency table is reduced to a 9 x 5 table. Based on this table, 

the values of the parameters of the bivariate log-linear model should be estimated using the Newton-Raphson recursive 

algorithm (Kamran Rad et al., 2019). The final relation of this algorithm is given below. 

�̂�(𝑡+1) = �̂�(𝑡) + [𝑿𝑇𝑑𝑖𝑎𝑔(�̂�(𝑡))𝑿]
−1

𝑿𝑇(𝒏 − �̂�(𝑡)),     (16)  

where �̂�(𝒕+𝟏)  is (T + 1)th of the estimated vector of the parameters of the log-linear model in phase 1 and �̂�(𝟎) also the initial 

estimate of β which can be calculated based on the estimation of Ordinary Least Square (Yeh et al., 2009). X is the design 

matrix and n the observation vector of the contingency table so that 𝒏𝑻𝟏 = 𝑵 . Also, �̂�(𝒕) is the estimated vector of the expected 

observations vector in the contingency table that can be calculated as follows: 
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�̂�(𝑡) = 𝑒𝑥𝑝( 𝑿�̂�(𝑡)) 

If ‖�̂�(𝑡) − �̂�(𝒕−𝟏)‖/‖�̂�(𝑡−1)‖ ≤ 𝜀, where ‖�̂�(𝑡)‖ is the Euclidean norm of an estimated parameter at time t and ɛ also a very 

small constant (for example ɛ = 10-5), then 

�̂� = �̂�(𝑡)  will be desirable estimated parameters. Based on the reduced table, the parameters of the log-linear model based on 

the bilateral reduced contingency table are estimated as, 𝛽0 = 3.35 , 𝛽1 = 0.02 , 𝛽2 = 0.13 , and  𝛽12 = 0.05. It should be 

noted that the results of the simulation studies are presented in the next section along with the results of using the genetic 

algorithm in tables 2 to 6. 

II. Evaluating the performance of the proposed control charts based on genetic algorithm 

In this section, the performance of two proposed control charts for monitoring large-scale multivariate processes using an ARL 

index-based genetic algorithm is evaluated and compared. For this purpose, the dimensions of the large-scale contingency table 

are first reduced using a genetic algorithm, and then a classified multivariate process is formed based on the small-scale table. 

Finally, the proposed control charts will be used to monitor this process. It should be noted that the upper limit of control of 

these two control graphs is calculated so that the mean value of the sequence length in the controlled state is 200. Accordingly, 

the upper limit values of the two proposed control graphs equal to 50.70 and 12.38 have been calculated for CMH and T2, 

respectively, which will be used in the simulations.  Also, using the correspondence analysis approach, the initial contingency 

table is reduced to a 5 x 6 table. Based on the reduced table, the parameters of the log-linear model based on the bilateral 

reduced contingency table are estimated as 𝛽0 = 9.38 , 𝛽1 = −1.2 , 𝛽2 = −0.70 , and 𝛽12 = 0.02 . The results of the simulated 

studies in tables 2 to 4 are presented in order to evaluate the performance of the proposed control charts under different positive 

and negative individual shifts in parameters β1, β2 and β12. It is worth noting that the performance of the two proposed control 

charts CMH and T2 has been investigated based on using the two genetic algorithms and correspondence analysis. 
TABLE 2 

ARL VALUES UNDER DIFFERENT SHIFTS IN β1 

Shift 

Control 

chart/Method 
 

-2.0 -1.5 -1.0 -0.5 -0.2 0.0 0.2 0.5 1.0 1.5 2.0 

CMH/GA 1.00 

(0.00) 

1.00 

(0.00) 
1.02 

(0.00) 
9.35 

(0.29) 
142.75 

(4.39) 
206.71 

(6.63) 
151.20 

(5.03) 
11.33 

(0.32) 
1.39 

(0.01) 
1.00 

(0.00) 
1.00 

(0.00) 

CMH/CA 
1.00 

(0.00) 
1.00 

(0.00) 
1.26 

(0.01) 
10.57 

(0.27) 
140.32 

(5.01) 
203.21 

(6.92) 
153.97 

(5.52) 
12.52 

(0.36) 
1.79 

(0.01) 
1.00 

(0.00) 
1.00 

(0.00) 

T2 /GA 
1.00 

(0.00) 
1.00 

(0.00) 
1.23 

(0.01) 
10.29 
(0.18) 

146.25 
(4.99) 

200.77 
(6.91) 

152.33 
(5.21) 

12.67 
(0.29) 

1.92 
(0.01) 

1.00 
(0.00) 

1.00 
(0.00) 

T2 /CA 1.00 

(0.00) 
1.00 

(0.00) 
1.19 

(0.01) 
10.82 

(0.22) 
141.33 

(4.61) 
202.89 

(6.18) 
152.82 

(5.02) 
12.29 

(0.27) 
1.55 

(0.01) 
1.00 

(0.00) 
1.00 

(0.00) 

 

TABLE 3 

ARL VALUES UNDER DIFFERENT SHIFTS IN β2 

Shift 

Control 

chart/Method 
 

-2.0 -1.5 -1.0 -0.5 -0.2 0.0 0.2 0.5 1.0 1.5 2.0 

CMH/GA 1.00 
(0.00) 

1.32 
(0.02) 

6.67 
(0.21) 

95.56 
(3.02) 

181.86 
(5.86) 

206.71 
(6.63) 

182.32 
(5.77) 

99.37 
(3.11) 

7.92 
(0.33) 

1.52 
(0.02) 

1.00 
(0.00) 

CMH/CA 
1.00 

(0.00) 
1.67 

(0.03) 
7.75 

(0.35) 
99.35 

(3.20) 
183.44 

(5.92) 
203.21 

(6.92) 
185.25 

(5.99) 
100.0

8 

(3.91) 
8.93 

(0.41) 
1.69 

(0.03) 
1.00 

(0.00) 
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T2/GA 
1.00 

(0.00) 
1.71 

(0.03) 
7.02 

(0.32) 
96.32 

(3.17) 
180.72 

(5.62) 
200.77 

(6.91) 
181.01 

(5.39) 
99.02 

(3.08) 
7.99 

(0.31) 
1.50 

(0.02) 
1.00 

(0.00) 

T2/CA 1.00 

(0.00) 
1.28 

(0.02) 
6.92 

(0.22) 
96.22 

(3.01) 
181.95 

(5.79) 
202.89 

(6.18) 
183.20 

(5.59) 
99.82 

(3.43) 
8.02 

(0.37) 
1.54 

(0.02) 
1.00 

(0.00) 

TABLE 4 

ARL VALUES UNDER DIFFERENT SHIFTS IN β12 

Shift 

Control 

chart/ 

Method 
 

-0.2 -0.15 -0.1 -0.05 -0.02 0.0 0.02 0.05 0.1 0.15 0.2 

CMH/GA 1.00 

(0.00) 

1.00 

(0.00) 
1.21 

(0.02) 
10.77 

(0.32) 
20.92 

(0.82) 
206.7

1 
(6.63) 

19.55 

(0.59) 
1.07 

(0.01) 
1.00 

(0.00) 
1.00 

(0.00) 
1.00 

(0.00) 

CMH/CA 
1.00 

(0.00) 
1.00 

(0.00) 
1.56 
(0.03) 

10.77 
(0.32) 

21.45 
(0.93) 

203.2

1 

(6.92) 
20.24 
(0.81) 

1.13 
(0.01) 

1.00 
(0.00) 

1.00 
(0.00) 

1.00 
(0.00) 

T2/GA 
1.00 

(0.00) 
1.00 

(0.00) 
1.45 

(0.02) 
10.03 

(0.30) 
20.35 

(0.77) 
200.7

7 
(6.91) 

19.01 

(0.51) 
1.27 

(0.01) 
1.00 

(0.00) 
1.00 

(0.00) 
1.00 

(0.00) 

T2/CA 1.00 
(0.00) 

1.00 
(0.00) 

1.31 
(0.02) 

10.15 
(0.29) 

21.03 
(0.79) 

202.8

9 

(6.18) 
19.92 
(0.63) 

1.19 
(0.01) 

1.00 
(0.00) 

1.00 
(0.00) 

1.00 
(0.00) 

As can be seen from Tables 2 to 4, the performance of the two proposed control charts under different shifts has been evaluated 

in the parameters of the log-linear model. It should be noted that in order to more accurately evaluate the performance of the 

two control charts, negative shifts from the parameters of the applied model to the effect of such shifts have been observed. 

The results of the above tables show that in the negative individual shifts in the parameters of the log-linear model, the 

performance of the CMH control graph along with the genetic algorithm outperforms the same control graph along with the 

correspondence analysis algorithm. In addition, based on the negative shifts in the parameters of the log-linear model, the T2 

control chart along with the genetic algorithm performs better under small shifts than the same control chart along with the 

correspondence analysis algorithm under medium and large shifts.  

    Looking at the results of Tables 2 to 4 based on positive shifts in the model parameters, such results can be observed and 

repeated. On the other hand, the comparison of ARL values in the above tables under positive and negative shifts indicates a 

greater impact of negative shifts than positive shifts in individual impact parameters because the mean sequence length values 

in negative shifts are less than the corresponding small and medium positive shifts. But in large shifts in model parameters, 

similar performance can be seen in both positive and negative shifts. In what follows, the performance of the proposed control 

diagrams under simultaneous shifts in the parameters of the log-linear model is evaluated. Thus, first the performance of CMH 

control chart along with two genetic algorithms and correspondence analysis are given in Table 5 and then in Table 6, the 

results of T2 control chart performance are presented and analyzed. 

As can be seen in Table 5, different shifts with positive and negative values have been applied to the parameters of the log-

linear model simultaneously. In order to evaluate and analyze the results, several different modes must be considered, which 

we will discuss in this section. First, simultaneous negative shifts (first state) in two parameters are examined. In this mode, as 

in the mode of individual shifts, the performance of the CMH control chart alongside the genetic algorithm has caused a better 

performance for this control chart than the performance alongside the correspondence analysis algorithm. In the mode of 

positive simultaneous shifts in the first slope parameter and negative in the second slope parameter, the results of the first mode 

are repeated. These results are true for comparing the performance of two proposed control charts under positive simultaneous 

shifts in the slope parameters of the log-linear model. 

In addition, the results of the above table show the better performance of the CMH control chart along with the genetic 

algorithm under negative simultaneous shifts in the slope parameters of the log-linear model, compared to the same control 

chart with correspondence algorithm. These results have been repeated for positive simultaneous shifts in model slope 

parameters. 
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In what follows, the results of the simulations to evaluate the performance of the proposed T2 control chart along with the 

two genetic algorithms and the correspondence analysis under simultaneous shifts in the model slope parameters are reported 

in Table 6. 

 

 
TABLE 5 

ARL VALUES OF CMH CONTROL CHART UNDER 

SHIFTS IN β1 AND β2 DIFFERENT SIMULTANEOUS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control 

chart/ 

Method 

Shift 

in                                                                                                                                                     

--β2 

β1 

-

2.0 

-

1.5 

-

1.0 

-

0.5 

-

0.2 
0.2 0.5 1.0 1.5 2.0 

CMH/GA 

-2.0 

1.00 

(0.0

0) 

1.00 

(0.0

0) 

1.00 

(0.0

0) 

1.18 

(0.0

1) 

1.89 

(0.0

2) 

1.91 

(0.0

2) 

1.22 

(0.0

2) 

1.02 

(0.0

0) 

1.00 

(0.0

0) 

1.00 

(0.0

0) 

-1.5 

1.00 

(0.0
0) 

1.00 

(0.0
0) 

1.09 

(0.0
0) 

1.31 

(0.0
2) 

2.08 

(0.0
4) 

2.12 

(0.0
5) 

1.39 

(0.0
2) 

1.21 

(0.0
2) 

1.00 

(0.0
0) 

1.00 

(0.0
0) 

-1.0 

1.00 

(0.0

0) 

1.00 

(0.0

0) 

1.22 

(0.0

1) 

3.20 

(0.1

2) 

6.26 

(0.1

9) 

7.18 

(0.2

1) 

4.23 

(0.2

2) 

3.43 

(0.1

9) 

1.78 

(0.1

3) 

1.00 

(0.0

0) 

-0.5 

1.00 

(0.0

0) 

1.00 

(0.0

0) 

1.72 

(0.0

0) 

7.16 

(0.2

1) 

38.6

2 
(1.1

8) 

51.3

2 
(1.9

1) 

12.7

6 
(1.0

9) 

2.79 

(0.2

6) 

1.66 

(0.0

8) 

1.04 

(0.0

1) 

-0.2 

1.00 

(0.0
0) 

1.00 

(0.0
0) 

1.91 

(0.0
0) 

7.81 

(0.2
2) 

88.6

2 

(2.7

3) 

91.8

9 

(2.0

3) 

18.9

8 

(1.9

3) 

11.2

5 

(1.2

1) 

1.64 

(0.4
8) 

1.05 

(0.0
1) 

0.2 

1.00 

(0.0

0) 

1.02 

(0.0

0) 

9.23 

(0.1

1) 

19.3

3 
(0.2

7) 

89.9

5 
(2.9

4) 

97.9

0 
(2.5

4) 

21.4

5 
(1.7

9) 

12.7

6 
(1.6

6) 

1.80 

(0.7

1) 

1.08 

(0.0

1) 

0.5 

1.00 

(0.0
0) 

1.00 

(0.0
0) 

1.02 

(0.0
0) 

10.2

9 

(0.3

1) 

73.0

9 

(2.2

1) 

80.3

4 

(2.3

2) 

16.3

6 

(1.0

3) 

5.07 

(0.5
6) 

1.84 

(0.0
9) 

1.04 

(0.0
1) 

1.0 

1.00 

(0.0

0) 

1.00 

(0.0

0) 

1.00 

(0.0

0) 

10.0

5 
(0.1

3) 

29.4

6 
(2.0

3) 

29.3

5 
(2.1

4) 

21.5

0 
(1.8

0) 

4.09 

(0.9

9) 

1.78 

(1.0

2) 

1.00 

(0.0

0) 

1.5 

1.00 

(0.0
0) 

1.00 

(0.0
0) 

1.00 

(0.0
0) 

5.59 

(0.2
8) 

12.0

8 

(1.0

2) 

15.9

3 

(1.9

3) 

10.3

2 

(0.8

3) 

2.68 

(0.0
8) 

1.16 
(0.9
3) 

1.00 

(0.0
0) 

2.0 

1.00 

(0.0

0) 

1.00 

(0.0

0) 

1.00 

(0.0

0) 

2.67 

(0.1

9) 

6.57 

(0.4

4) 

9.22 

(0.8

9) 

2.93 

(0.2

3) 

1.09 

(0.0

2) 

1.00 
(0.0

0) 

1.00 

(0.0

0) 

CMH/CA 

-2.0 

1.00 

(0.0
0) 

1.00 

(0.0
0) 

1.01 

(0.0
0) 

1.22 

(0.0
1) 

1.93 

(0.0
3) 

1.95 

(0.0
3) 

1.24 

(0.0
2) 

1.02 

(0.0
0) 

1.00 

(0.0
0) 

1.00 

(0.0
0) 

-1.5 

1.00 

(0.0
0) 

1.00 

(0.0
0) 

1.21 

(0.0
2) 

1.38 

(0.0
3) 

2.32 

(0.0
5) 

2.44 

(0.0
6) 

1.42 

(0.0
3) 

1.24 

(0.0
2) 

1.01 

(0.0
0) 

1.00 

(0.0
0) 

-1.0 

1.00 

(0.0
0) 

1.01 

(0.0
0) 

1.32 

(0.0
1) 

3.44 

(0.1
7) 

6.97 

(0.2
9) 

7.82 

(0.2
8) 

5.11 

(0.2
1) 

3.91 

(0.1
4) 

1.71 

(0.1
1) 

1.00 

(0.0
0) 

-0.5 

1.00 

(0.0

0) 

1.02 

(0.0

0) 

1.04 

(0.0

1) 

7.72 

(0.2

3) 

39.9

1 
(1.3

3) 

53.0

1 
(1.8

8) 

13.2

1 
(1.0

7) 

5.13 

(0.2

0) 

1.79 

(0.0

8) 

1.04 

(0.0

1) 

-0.2 

1.00 

(0.0
0) 

1.00 

(0.0
0) 

1.02 

(0.0
0) 

7.99 

(0.2
6) 

90.0

4 

(2.8

9) 

92.1

9 

(2.2

4) 

20.0

3 

(1.9

4) 

10.9

9 

(1.2

9) 

1.69 

(0.4
7) 

1.07 

(0.0
1) 

0.2 

1.00 

(0.0

0) 

1.04 

(0.0

0) 

2.00 

(0.0

9) 

19.5

8 
(0.2

2) 

95.4

5 
(2.9

1) 

96.2

4 
(2.6

7) 

25.7

5 
(1.8

8) 

12.9

8 
(1.6

7) 

1.99 

(0.6

2) 

1.10 

(0.0

1) 

0.5 

1.00 

(0.0
0) 

1.00 

(0.0
0) 

1.08 

(0.0
0) 

10.4

1 

(0.4

8) 

75.2

9 

(2.3

3) 

82.2

4 

(2.4

1) 

17.0

2 

(1.0

0) 

5.44 

(0.5
9) 

1.92 

(0.0
8) 

1.03 

(0.0
1) 

1.0 

1.00 

(0.0

0) 

1.00 

(0.0

0) 

1.00 

(0.0

0) 

9.94 

(0.1

2) 

29.7

9 
(2.1

1) 

28.7

3 
(1.7

8) 

13.2

9 
(1.3

2) 

4.39 

(0.9

7) 

1.39 

(0.8

9) 

1.00 

(0.0

0) 

1.5 
1.00 
(0.0

0) 

1.00 
(0.0

0) 

1.00 
(0.0

0) 

5.92 
(0.2

6) 

12.4

4 

(0.7

7) 

18.3

3 

(1.7

2) 

9.59 
(0.9

9) 

2.77 
(0.0

9) 

1.13 
(0.8

2) 

1.00 
(0.0

0) 

2.0 
1.00 

(0.0

0) 

1.00 

(0.0

0) 

1.00 

(0.0

0) 

2.99 

(0.1

4) 

5.49 

(0.0

0) 

9.69 

(0.8

1) 

3.28 

(0.2

1) 

1.11 

(0.0

2) 

1.00 

(0.0

0) 

1.00 

(0.0

0) 
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TABLE 6 

ARL VALUES OF T2 
CONTROL CHART UNDER 

SHIFTS IN β1 AND β2 DIFFERENT SIMULTANEOUS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control 

chart/ 

Method 

Shift 

in                                                                                                                                                     

--β2 

β1 

-

2.0 

-

1.5 

-

1.0 

-

0.5 

-

0.2 
0.2 0.5 1.0 1.5 2.0 

T2/GA 

-2.0 

1.00 

(0.0
0) 

1.00 

(0.0
0) 

1.02 

(0.0
0) 

1.68 

(0.0
4) 

1.92 

(0.0
8) 

1.99 

(0.0
7) 

1.28 

(0.0
2) 

1.03 

(0.0
1) 

1.00 

(0.0
0) 

1.00 

(0.0
0) 

-1.5 

1.00 

(0.0

0) 

1.00 

(0.0

0) 

1.10 

(0.0

2) 

1.86 

(0.0

4) 

2.32 

(0.0

6) 

2.71 

(0.1

1) 

1.41 

(0.0

4) 

1.39 

(0.0

3) 

1.02 

(0.0

0) 

1.00 

(0.0

0) 

-1.0 

1.00 

(0.0
0) 

1.01 

(0.0
0) 

1.36 

(0.0
5) 

3.02 

(0.1
2) 

6.88 

(0.2
8) 

8.09 

(0.2
9) 

4.97 

(0.2
1) 

3.82 

(0.1
8) 

1.71 

(0.1
2) 

1.00 

(0.0
0) 

-0.5 

1.00 

(0.0
0) 

1.01 

(0.0
0) 

1.82 

(0.0
9) 

7.00 

(0.2
7) 

35.7

7 

(1.0

2) 

50.0

3 

(1.8

9) 

12.2

5 

(1.0

7) 

5.57 

(0.2
9) 

1.89 

(0.0
9) 

1.04 

(0.0
1) 

-0.2 

1.00 

(0.0

0) 

1.03 

(0.0

0) 

1.99 

(0.1

8) 

7.97 

(0.3

2) 

86.3

2 
(2.2

8) 

90.2

1 
(2.1

9) 

19.4

5 
(1.7

2) 

10.3

1 
(1.0

2) 

1.99 

(0.1

6) 

1.06 

(0.0

1) 

0.2 

1.00 

(0.0
0) 

1.04 

(0.0
0) 

9.02 

(0.1
0) 

11.7

5 

(0.2

3) 

88.2

5 

(2.7

4) 

93.2

9 

(2.4

2) 

20.0

5 

(1.6

6) 

11.1

9 

(1.0

7) 

2.01 

(0.4
2) 

1.07 

(0.0
1) 

0.5 

1.00 

(0.0

0) 

1.01 

(0.0

0) 

1.08 

(0.0

1) 

9.93 

(0.2

2) 

69.5

9 
(2.0

3) 

72.5

5 
(2.2

1) 

15.0

2 
(0.9

9) 

7.78 

(0.5

1) 

1.97 

(0.0

7) 

1.03 

(0.0

1) 

1.0 

1.00 

(0.0
0) 

1.00 

(0.0
0) 

1.01 

(0.0
0) 

7.49 

(0.1
9) 

28.2

1 

(1.8

0) 

27.7

9 

(2.0

0) 

13.3

2 

(0.9

7) 
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The results of table 6 can be examined in several modes (as in Table 5). First, simultaneous negative shifts (first mode) in two 

parameters are examined. In this mode, as in the mode of individual shifts, the performance of the T2 control chart along with 

the genetic algorithm has created better performance for this control chart than the performance alongside the correspondence 

analysis algorithm under small shifts and the better performance of the T2 control chart along with the correspondence analysis 

algorithm can be observed under simultaneous medium and large negatives shifts. In the mode of simultaneous positive shifts 

in the first slope parameter and negative in the second slope parameter, the results of the first mode are repeated. But the results 

of the above table to compare the performance of the two proposed control charts under most of the simultaneous positive shifts 

indicate better performance of the control chart along with the genetic algorithm in the slope parameters of the logarithm model. 

In addition, the results of the above table represent the better performance of the T2 control chart along with the genetic 

algorithm under simultaneous negative shifts in the slope parameters of the log-linear model, compared to the same control 

chart along with algorithm. The results of which have been also repeated for simultaneous positive shifts in model slope 

parameters. Based on the general results observed from Tables 2 to 6, it is clear that the proposed control charts along with the 

genetic algorithm have a greater ability to detect out-of-control conditions in most different shifts in process parameters, which 

is important in that in this study, we were able to develop the performance of the existing correspondence analysis approach by 

improving a meta-heuristic algorithm in order to improve the efficiency of reducing the dimensions of the contingency table, 

as well as improving the performance of control charts. In addition, general studies show that the CMH control chart 

outperformed the T2 control chart under various shifts in process parameters based on the log-linear model. 

A PRACTICAL EXAMPLE IN THE RENEWABLE ENERGY INDUSTRY 

One of the most important issues in the renewable energy industry is the amount of energy sales, especially electricity, which 

our country has suffered from frequent failure circuit in the summer due to the lack of power plants. As you know, energy 

consumption takes place in different areas (X1) such as domestic, public, agricultural, industrial, commercial and street lighting. 

One of the classified variables in this case study is the energy consumption variable which is classified into the six above 

categories. Also in this study, there are two other classified variables (X2) including peak load and city consuming energy. Peak 

load is divided into two categories: synchronous peak load and asynchronous peak load. In addition, the city of consuming (X3) 

is also divided into 14 cities or categories, which their names along with the relevant data in a tripartite contingency table with 

dimensions of 14 x 2 x 12 are listed in the following table. 
TABLE 7 

LARGE-SCALE CONTINGENCY TABLE IN THE RENEWABLE ENERGY INDUSTRY 

X1 X2  
X3_6 X3_5 X3_4 X3_3 X3_2 X3_1 X3_6 X3_5 X3_4 X3_3 X3_2 X3_1 

City 

(X3) 
85499.85 18899 20186.79 41943.23 17487.01 6655.496 72846.15 16102 17199.21 35735.77 14898.99 5670.504 1 

99515.54 19067.38 26563.87 22492.22 20138.78 10223.79 80957.46 15511.62 21610.13 18297.78 16383.22 8317.212 2 

119726.9 22263.96 13071.09 18331.1 26309.94 10253.47 97238.14 18082.04 10615.91 14887.9 21368.06 8327.527 3 

88246.03 23402.26 8202.588 19952.02 25139.97 8822.612 62477.97 16568.74 5807.412 14125.98 17799.03 6246.388 4 

19467.85 1619.023 1191.367 1849.383 3630.471 2755.104 16449.15 1367.977 1006.633 1562.617 3067.529 2327.896 5 

55078.81 9839.911 14973.75 9640.388 19525.52 4699.151 48441.19 8654.089 13169.25 8478.612 17172.48 4132.849 6 

109922.8 19339.84 32257.25 10902.5 24330.74 9269.062 91492.24 16097.16 26848.75 9074.5 20251.26 7714.938 7 

53366.53 10277.68 6421.124 15780.35 13425.99 6301.466 45643.47 8790.321 5491.876 13496.65 11483.01 5389.534 8 

95627.67 19790.36 20591.36 45696.81 22203.53 10175.23 82616.33 17097.64 17789.64 39479.19 19182.47 8790.766 9 

89241.15 19321.97 21077.98 44333.17 17333.15 9164.314 77500.85 16780.03 18305.02 38500.83 15052.85 7958.686 10 
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103067.8 18742.79 21868.59 52688.63 23358.95 10359.67 85176.19 15489.21 18072.41 43542.37 19304.05 8561.329 11 

91996.93 19740.81 21534.88 53411.52 23648.84 10567.58 76247.07 16361.19 17848.12 44267.48 19600.16 8758.416 12 

99469.88 21194.5 20963.04 42205.51 23640.17 9662.766 78876.12 16806.5 16622.96 33467.49 18745.83 7662.234 13 

88609.21 18641.11 21569.26 46750.57 17467.48 8803.318 75678.79 15920.89 18421.74 39928.43 14918.52 7518.682 14 

As can be seen from the above table, we are faced with a large-scale table which, based on previous theories, the analysis of 

which and consequently evaluation the performance of the proposed control charts will be difficult. Therefore, first we reduce 

its dimensions using the better method specified in the previous section. Based on the previous results, it has been determined 

that the use of genetic algorithm has a better effect on the performance of control charts, so in this section, this algorithm is 

used to reduce the dimensions, in which the table below is a reduced 5 x 3 one. In other words, the initial table, which has 14 

rows and 12 columns, has become a small table with 5 rows and 3 columns.  

 
TABLE 8 

REDUCED CONTINGENCY TABLE OF RENEWABLE ENERGY INDUSTRY USING GENETIC ALGORITHM 

 

X2 
X3 

X1_2 X1_2 X1_1 

812000 663800 1563400 X3_1 

109900 91500 176100 X3_2 

95600 82600 220800 X3_3 

89200 77500 207800 X3_4 

92000 76200 235700 X3_5 

 

Now, in order to evaluate the performance of the proposed control charts in detecting the out-of-control status in the real 

world, the data of Table (8) are used and the results of the case studies can be observed in Figures 2 and 3. 
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FIGURE 2 

PERFORMANCE OF THE CMH CONTROL CHART IN DETECTING THE STATUS OF THE RENEWABLE ENERGY PROCESS 

FIGURE 3 

PERFORMANCE OF T2 CONTROL CHART IN DETECTING THE PROCESS STATUS OF RENEWABLE ENERGY 

 

 

As can be seen from the above two figures, the CMH control chart shows the out-of-control status at point 28th and the T2 

control diagram shows the out-of-control status at point 65th. The results show that the CMH control chart performed better 

than the other control charts, which is also the case in the simulated studies. 

 

CONCLUSIONS AND FURTHER SUGGESTIONS 

In this study, two proposed control charts, CMH and T2 
were developed to monitor classified multivariate processes based on 

large-scale contingency tables in phase 2. As stated in this study, the large size of the contingency tables has an adverse effect 

on the performance of control charts in order to detect the out-of-control status in a certain period of time, in which case the 

results of control charts will face significant computational error. One of the best ways to reduce the negative effects is to 

reduce the dimensions of the contingency table. In this study, an existing method called correspondence analysis was used. In 

addition, in order to improve the performance of the proposed control charts, a powerful meta-heuristic algorithm called the 

genetic algorithm was used to reduce the dimensions of the contingency table to minimize the distance between the observed 

values and the expected values. Then, the performance of the two proposed control charts was evaluated based on the reduced 

contingency tables according to the two reduction methods, and the simulation results represent better performance of the CMH 

control graph along with the genetic algorithm than the other control graph. In addition, in order to efficiently demonstrate the 

proposed control charts in the real world, a case study in the field of renewable energy was used and the results also confirmed 
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the simulation results. Thus, in this field, effective measures can be taken in order to reduce energy losses, increase reliability, 

modernize distribution networks, reduce energy theft, and also identify wasteful routes, which will undoubtedly lead to 

improvement of services using the results obtained. Besides, the present study will be a fundamental and significant factor in 

the management of sustainable livable cities. 

Another point is about the proposed methods limitation. As, these approaches have been developed to monitor the 

multivariate categorical processes, therefore, the use of these methods for metric processes may reduce the effectiveness of 

control charts in detecting the process status. Among the suggestions that can be made for future research is the development 

of other meta-heuristic algorithms to reduce the data that the more the dimensions of the contingency table are reduced with 

higher efficiency, the more positive impact will have on the performance of the proposed control charts. Furthermore, the 

development of proposed methods for monitoring classified multivariate processes based on large-scale contingency tables 

taking into account the correlations between neighboring cells will be a suggestion for future research. 
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