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Abstract 

Process capability indices play a vital role in evaluating the conformity of the process properties to the required 

specifications. Process incapability indices are created by transformation in the process capability indices, leading 

to the separation of information related to the process accuracy and precision. This separation of information can 

be very beneficial to specify whether the process is capable or not and to detect deviations in the production 

processes that produce high-tech products, such as the electronics industry. The main goal of this study is to 

propose a process incapability index by considering the measurement error for processes with multivariate quality 

characteristics. The efficiency of this index is then examined by a numerical example using Monte Carlo 

simulation method. Moreover, the performance of proposed approach is compared with the case where there is no 

measurement error. In addition, as a practical example, this index is compared with a number of recently proposed 

indices in the literature, and sensitivity analysis is conducted, as well. The simulation results showed that the 

measurement error has a significant effect on process capability and incapability indices. Therefore, we strongly 

suggest that the measurement error has to be considered in the process analysis.  

Keywords: Multivariate process incapability index; Measurement errors; Multivariate normal distribution; High technology 

manufacturing processes. 

 

1. INTRODUCTION 

One of the most important factors to achieve customer’s 

satisfaction is producing high quality product. One aspect 

of the process quality analysis is the process capability 

analysis. Process capability indices are applied to analyze 

the capability of the process to achieve the required 

specifications. By using these indices, the process 

capability is reported as a number indicating the degree of 

conformity of the manufactured products to the 

determined specifications. Process capability indices are 

divided into two categories: univariate and multivariate 

indices. If the quality of the products can be described by 

one characteristic, univariate process indices, and if the 

quality of the products can be described by multiple 

characteristics, multivariate indices are used. 
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To monitor of processes in which the sensitivity of 

production is high and also the deviations are very low, 

the process capability indices are not suitable to use any 

more as they always show a great degree of capability; 

therefore, in such cases, applying process incapability 

indices can be helpful because these low deviations are 

well recognized by these indices. For example, the 

electronic products have more strict tolerance and 

specifications in comparison to other types of products. 

Accordingly, the process performance will have a greater 

impact on the product quality management. So, it is 

necessary to use a high accuracy index. 

The structure of this study is as follows: In the next 

section, the related literature will be reviewed. In Section 

3, the multivariate process incapability index is developed 

by considering the measurement error and its formulations 

are presented. Section 4 provides a numerical example 

using Monte Carlo simulation approach. Moreover, a 

practical example is also given and compared with the 

process incapability index without considering the 

measurement error. Finally, in Section 5, the findings are 

presented and some suggestions for future research are 

made. 

2. REVIEW OF THE LITERATURE 

In the following, we examine the studies that have been 

done so far on the univariate and multivariate process 

capability indices and univariate and multivariate 

incapability indices, as well as the measurement error. 

 

2.1. Univariate process capability indices  

Suppose that X is a quality characteristic and follows 

normal distribution with the mean 𝜇 and variance 𝜎2. 

Also, LSL and USL are the upper and lower specification 

limits and T is the target value of the quality characteristic. 

M is the midpoint of the specification limits. If 𝑇 = 𝑀 =
(𝐿𝑆𝐿+𝑈𝑆𝐿)

2
, then it is called symmetric tolerance, and if T ≠ 

M, it is called asymmetric tolerance. 

Vannman [1] introduced a new superstructure of process 

capability indices according to the Equation (1) for 

processes with the symmetric tolerance, which includes 

𝐶𝑝, 𝐶𝑝𝑘, 𝐶𝑝𝑚, and 𝐶𝑝𝑚𝑘 indices.  

(1) 

𝐶𝑝(𝑢, 𝑣)

=
𝑑 − 𝑢|𝜇 − 𝑀|

3√𝜎2 + 𝑣(𝜇 − 𝑇)2
                              𝑢, 𝑣 ≥ 0 

 

where 𝑑 =
(𝑈𝑆𝐿−𝐿𝑆𝐿)

2
  is half of the specification limit 

tolerance length and u and v are the weighting factors for 

the mean deviation from the target value and the process 

variation. By setting the values of 0 and 1 for the 

parameters u and v, the indices  𝐶𝑝(0, 0) = 𝐶𝑝, 𝐶𝑝(0, 1) =

𝐶𝑝𝑚,  𝐶𝑝(1, 0) = 𝐶𝑝𝑘, 𝐶𝑝(1, 1) = 𝐶𝑝𝑚𝑘 are made.  

The above indices are not, however, suitable for 

processes where the specification limits tolerance is 

asymmetric. Therefore, for such processes, the true 

specification limits (𝑇 − 𝐷𝑙 , 𝑇 − 𝐷𝑢) are placed with 

symmetric tolerance (𝑇 − 𝑑∗, 𝑇 − 𝑑∗), where 𝑑∗ =
min{𝐷𝑙 , 𝐷𝑢}, 𝐷𝑙 = 𝑇 − 𝐿𝑆𝐿 and 𝐷𝑢 = 𝑈𝑆𝐿 − 𝑇. A 

superstructure of capability indices is then introduced 

according to the Equation (2). 

  (2) 

𝐶𝑝
∗(𝑢, 𝑣)

=
𝑑∗ − 𝑢|𝜇 − 𝑀|

3√𝜎2 + 𝑣(𝜇 − 𝑇)2
                           𝑢, 𝑣 ≥ 0 

By setting the values 0 and 1 for the parameters u and v, 

the indices  𝐶𝑝
∗(0, 0) = 𝐶𝑝

∗, 𝐶𝑝
∗(0, 1) = 𝐶𝑝𝑚

∗ , 𝐶𝑝
∗(1, 0) =

𝐶𝑝𝑘
∗ , and 𝐶𝑝

∗(1, 1) = 𝐶𝑝𝑚𝑘
∗  are created [2-5]. In this 

method, in some processes, it leads to underestimation of 

capability because actual specification limits are replaced 

by smaller tolerance.  

Another approach in this case is to replace actual 

specification limits with (𝑇 − 𝑑´, 𝑇 − 𝑑´), where 𝑑′ =
(𝐷𝑙+𝐷𝑢)

2
 is midpoint of 𝐷𝑙  and 𝐷𝑢; so, a new superstructure 

of capability indices is developed according to the 

Equation (3). 

  (3) 

𝐶𝑝
′ (𝑢, 𝑣)

=
𝑑´ − 𝑢|𝜇 − 𝑀|

3√𝜎2 + 𝑣(𝜇 − 𝑇)2
                           𝑢, 𝑣 ≥ 0 

 

By setting the values of 0 and 1 for the parameters u and 

v, the indices 𝐶𝑝
′ (0, 0) = 𝐶𝑝

′ , 𝐶𝑝
′ (0, 1) = 𝐶𝑝𝑚

′ ,  𝐶𝑝
′ (1, 0) =

𝐶𝑝𝑘
′ , 𝐶𝑝

′ (1, 1) = 𝐶𝑝𝑚𝑘
′  are obtained [3, 5]. The class of 

indices in equation (3) leads to over estimation of 

capability in some processes and for some other processes, 

leads to underestimation. 

Chen and Pearn [2] stated that when the process standard 

deviation is fixed, the maximum value of the above 

indices doesn’t occur at  𝜇 =  𝑇 but between T and M. So 

presented a series of new indices according to the 

Equation (4). 

(4) 

𝐶𝑝
″(𝑢, 𝑣) =

𝑑∗ − 𝑢𝐹∗

3√𝜎2 + 𝑣𝐹2
                           𝑢, 𝑣 ≥ 0 

 

where, 

 

(5) 
𝐹∗ = max {

𝑑∗(𝑇 − 𝜇)

𝐷𝑙

,
𝑑∗(𝜇 − 𝑇)

𝐷𝑢

} 

and 

(6) 𝐹 = max {
𝑑(𝑇 − 𝜇)

𝐷𝑙

,
𝑑(𝜇 − 𝑇)

𝐷𝑢

} 

 

From the Equation (4), the indices 𝐶𝑝
″(0, 0) = 𝐶𝑝

″  ،

𝐶𝑝
″(0, 1) = 𝐶𝑝𝑚

″   ،𝐶𝑝
″(1, 0) = 𝐶𝑝𝑘

″   and  𝐶𝑝
″(1, 1) = 𝐶𝑝𝑚𝑘

″  are 

obtained. Abbasi Ganji and Sadeghpour Gildeh [6] 

declared that a major problem in the class of 𝐶𝑝
″(𝑢, 𝑣) 
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indices is that the process deviation from the target value 

is evaluated without considering the direction of the 

deviation. To solve this problem, they proposed a class of 

process capability indices 𝐶𝑝
‴(𝑢, 𝑣) as follows: 

(7) 

𝐶𝑝
‴(𝑢, 𝑣) =

𝑑∗ − 𝑢𝐴∗

3√𝜎2 + 𝑣𝐴2
                           𝑢, 𝑣

≥ 0 

 

where, 

 

(8) 
𝐴∗ =

(𝜇 − 𝑇)2

𝐷𝑢

𝐼{𝜇 > 𝑇} +
(𝑇 − 𝜇)2

𝐷𝑙

𝐼{𝑇 ≤ 𝜇} 

and 

(9) 

𝐴2 =
𝑑2(𝜇 − 𝑇)2

𝐷𝑢
2

𝐼{𝜇 > 𝑇}

+
𝑑2(𝑇 − 𝜇)2

𝐷𝑙
2 𝐼{𝑇 ≤ 𝜇} 

 
In the Equations (8) and (9), I{.} is an indicator function 

which is defined as follows: 

(10) 𝐼{𝑥} = {
1;      𝑥 ≥ 0
0;      𝑥 < 0

 

 
Based on the above indicator, process capability 

decreases faster as the mean shifts from the target value to 

the closer specification limit than the case that the mean 

deviates from the target value to the farther specification 

limit. 

 

2.2. Multivariate process capability indices 

Let us assume that X is defined as a (𝑝 × 1) vector of p 

quality characteristics which follows multivariate normal 

distribution with (𝑝 × 1) mean vector μ and (𝑝 × 𝑝) 

variance-covariance matrix 𝚺. Since 𝝁 and 𝚺 are unknown 

in most processes, a sample of size n is represented as a 

𝑝 × 𝑛 matrix for estimation of process parameters. �̅� is a 

(𝑝 × 1) vector that contains the sample mean of each 

quality characteristic, and S is a p×p variance-covariance 

matrix of the observed sample. For a better view please 

see Equations (11) to (16). 

(11) 𝝁 = (𝜇1, 𝜇2, … , 𝜇𝑝 )
′
 

(12) 𝚺 = (

𝜎11 ⋯ 𝜎1𝑝

⋮ ⋱ ⋮
𝜎𝑝1 ⋯ 𝜎𝑝𝑝

) 

(13) �̅� = (�̅�1, �̅�2, … , �̅�𝑝 )
′
 

(14) 𝐒 = (

𝑠11 ⋯ 𝑠1𝑝

⋮ ⋱ ⋮
𝑠𝑝1 ⋯ 𝑠𝑝𝑝

) 

 where, 

(15) �̅� =
∑ 𝑋𝑖

𝑛
𝑖=1

𝑛
 

and 

(16) 𝑆𝑖𝑗 =
∑ ((𝑥𝑖𝑘 − �̅�𝑖)(𝑥𝑗𝑘 − �̅�𝑗))

𝑛
𝑘=1

𝑛 − 1
                𝑖, 𝑗

= 1, 2, … , 𝑝 

 
In the Equation (14), 𝑠𝑖𝑗   is the sample covariance 

between the quality characteristic i and j (for 𝑖, 𝑗 =
1, 2, … , 𝑝). 

Taam et al. [7] presented a multivariate capability index 

as a ratio of two volumes as follows: 

(17) 𝑀𝐶𝑝 =
𝑣𝑜𝑙. (𝑅1)

𝑣𝑜𝑙. (𝑅2)
 

 
where 𝑅1 is modified tolerance region and the largest 

ellipsoid centering at the target vector that is completely 

within the actual tolerance region, and 𝑅2 is the elliptical 

process region, covering 99.73% of the multivariate 

normal process. They considered the possible shift of 

process mean from the target vector and taking into 

account an adjustment factor that measures the closeness 

between the target vector and the process mean. Then, 

they rewrote the 𝑀𝐶𝑝 index as: 

(18) 𝑀𝐶𝑝𝑚 =
𝑀𝐶𝑝

𝑫
 

 
Based on a random sample collected, the 𝑀𝐶𝑝𝑚 index 

estimator is obtained by Equation (19). 

 

𝑀�̂�𝑝𝑚 =
𝑀�̂�𝑝

�̂�
                                                              

(19) 

 

where, 

 

(20) 

𝑀�̂�𝑝

=
𝑣𝑜𝑙. (𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑟𝑒𝑔𝑖𝑜𝑛)

𝑣𝑜𝑙. (𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 99.73% 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑒𝑔𝑖𝑜𝑛)

=
𝑣𝑜𝑙. (𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑟𝑒𝑔𝑖𝑜𝑛)

|𝐒|
1
2(𝜋𝜒𝑝,0.9973

2 )
𝑝
2 (Γ (

𝑝
2

+ 1))
−1  

 

and 

 

(21) �̂� = [1 +
𝑛

𝑛 + 1
(�̅� − 𝑻)′𝐒−1(�̅� − 𝑻)]

1
2
 

 
In the Equation (20), 𝜒𝑝,0.9973

2  is 99.73 percentile of the 

chi-square distribution with p degrees of freedom, |𝐒| is 

the determinant of sample variance-covariance matrix and  

𝑟𝑖(𝑢) is the radius of ellipsoid and Γ (
𝑝

2
+ 1) is gamma 

function. 

Shahriari et al. [8] presented a multivariate process 

capability vector that had been developed based on 

Hubble et al. [9] study. Their capability vector consists of 
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three components, 𝑀𝑃𝐶𝑉 = [𝐶𝑝𝑀, 𝑃𝑉, 𝐿𝐼]. The first 

component of this vector is defined as follows: 

(22) 

𝐶𝑝𝑚 = [
∏ (𝑈𝑆𝐿𝑖 − 𝐿𝑆𝐿𝑖)

𝑝
𝑖=1

∏ (𝑈𝑃𝐿𝑖 − 𝐿𝑃𝐿𝑖)
𝑝
𝑖=1

]

1
2

 

 

where, 

 

(23) 𝑈𝑃𝐿𝑖 = 𝜇𝑖 + √
𝜒𝑝,𝛼

2 |𝚺𝑖
−1|

|𝚺−1|
 

and 

(24) 𝐿𝑃𝐿𝑖 = 𝜇𝑖 − √
𝜒𝑝,𝛼

2 |𝚺𝑖
−1|

|𝚺−1|
 

 
In the Equations (23) and (24), 𝜒𝑝,𝛼

2  is the upper αth 

percentile of the chi-square distribution with p degrees of 

freedom and |𝚺𝑖
−1| is the determinant of the matrix 𝚺𝑖

−1 

and 𝚺𝑖 is the matrix obtained by deleting the ith row and 

column of the matrix 𝚺. 

The second component of the above vector is the 

substantial level of the observed value with the 

Hotelling’s 𝑇2 statistic and is defined as: 

(25) 𝑃𝑉 = 𝑃 (𝐹𝑝,𝑛−𝑝 >
𝑛 − 𝑝

𝑝(𝑛 − 1)
𝑡2) 

where, 

 

(26) 𝑡2 = 𝑛(�̅� − 𝑻)′𝐒−1(�̅� − 𝑻) 

 
where 𝐹𝑝,𝑛−𝑝 is a random variable that follows Fisher 

distribution with p and n-p degrees of freedom. The PV 

value never exceeds 1, and when the PV value is close to 

zero, it indicates that the process mean is away from the 

target vector [10]. Finally, the third component of the 

above vector is defined as Equation 27: 

 

𝐿𝐼 = {
1    entire modified process region is contained within the tolerance region
0                                                                                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                        (27) 

  

Due to the 𝑀𝑃𝐶𝑉, the process is capable when the value 

of the first component is greater than 1, the value of the 

second component is greater than or equal to the 

substantial level, which is usually considered as 0.05, and 

the third component is equal to 1. 

Shahriari and Abdollahzadeh [11] modified the first 

component of the above vector and developed a 

multivariate vector as 𝑁𝑀𝑃𝐶𝑉 = [𝑁𝑀𝐶𝑝𝑀, 𝑃𝑉, 𝐿𝐼]. They 

claimed that the best way to introduce the modified 

tolerance region is to apply the largest ellipsoid, the center 

of which is the target vector and its axes are parallel to the 

axes of the process ellipsoid and should be completely 

within the actual tolerance region. Also, the direction of 

the process ellipsoid axes depends completely on the 

variance-covariance structure. 

Abbasi Ganji and Sadeghpour Gildeh [12] expressed that 

when the tolerance region is asymmetric, the main 

problem with the introduced multivariate indices is that 

the mean vector deviation from the target vector is 

evaluated without considering the direction of the 

deviation. To solve this problem they defined a 

multivariate capability vector with two components as 

𝑀𝑃𝐶𝑉𝐺 = [𝑀𝐶𝑃𝐺 , 𝑃𝑉]. The first component of this vector 

is defined as follows: 

 

(28) 
𝑀𝐶𝑃𝐺 =

𝐶

√𝜒𝑝,0.9973
2

 

 

where, 

 

(29) 
𝐶 = min {

(𝑈𝑆𝐿𝑖 − 𝜇𝑖)

𝜎𝑖

,
(𝜇𝑖 − 𝐿𝑆𝐿𝑖)

𝜎𝑖

} ; 𝑖

= 1, 2, … , 𝑝 

 

The second component of the above vector is similar to 

the Equations (25) and (26). According to this vector, a 

process is capable when the 𝑀𝐶𝑃𝐺  index is at least equal 

to 1 and PV is at least equal to α (which is usually 

considered as 0.05). 

 

2.3. Univariate process incapability indices 

Greenwich and Jahr-Schaffrath [13] created a new index 

by transformation on 𝐶𝑝𝑚
∗  index provided by Chan et al 

[14].  They called it the process incapability index, 𝐶𝑝𝑝 

which is introduced as follows: 

 

(30) 𝐶𝑝𝑝 = (
1

𝐶𝑝𝑚
∗

)

2

= (
𝜇 − 𝑇

𝐷
)

2

+ (
𝜎

𝐷
)

2

 

 

where 𝐷 =
𝑑∗

3
.  The 𝐶𝑝𝑝 can be written as 𝐶𝑝𝑝 = 𝐶𝑖𝑎 + 𝐶𝑖𝑝, 

which is the sum of the inaccuracy index 𝐶𝑖𝑎 = (
𝜇−𝑇

𝐷
)

2

and 

the imprecision index 𝐶𝑖𝑝 = (
𝜎

𝐷
)

2

. In the index 𝐶𝑖𝑎, 

subscript ia refers to inaccuracy and in the index 𝐶𝑖𝑝, 

subscript ip refers to imprecision. 

The inaccuracy index indicates the relative process 

departure (the process mean shift from the target value) 

and the imprecision index measures the process variation 



Journal of Industrial Engineering International, 17 (1):14-31, Spring 2021 

 

 J     I     E     I  

 

18 

relative to the specification limits. For a process that has 

more capability to meeting the required specifications, 𝐶𝑝𝑝 

has a smaller value, while for a process with less 

capability, it has a larger value. The process is in the most 

capable state when the variance is very small, next to zero 

(not zero), and the index 𝐶𝑝𝑝is next to zero (not zero). For 

this purpose, the process mean should be equal to the 

target value (𝜇 =  𝑇) and the process variance should be 

next to zero (not zero). 

We believe that 𝐶𝑝𝑝 is superior than 𝐶𝑝𝑚
∗ . Since the 

above conversion is a bijective transformation, the 𝐶𝑝𝑝 

index contains the same information as 𝐶𝑝𝑚
∗  does, i.e., 

inaccuracy and imprecision. In addition, the 𝐶𝑝𝑝 index 

provides uncontaminated separation (without integration) 

of process accuracy and precision; while this type of 

information separation is not achieved with the 𝐶𝑝𝑚
∗  Index. 

𝐶𝑝𝑚
∗  is often used to evaluate process capability. As the 

process accuracy is very important, this information 

separation is very useful as it emphasizes how much 

process inaccuracy is effective and the process being 

incapable of meeting the specifications. Unlike other 

process capability indices, process capability decreases 

with growing the 𝐶𝑝𝑝 value; for this reason, this index is 

named a process incapability index [13]. 

Chen [15] said that for processes with asymmetric 

tolerance, 𝐶𝑝𝑝 may not be able to accurately calculate 

process performance precisely because it measures the 

distance between the target value and the process mean 

without considering the mean position. To address this 

issue, he generalized the 𝐶𝑝𝑝 incapability index provided 

by Greenwich and Jahr-Schaffrath [13] and presented the 

𝐶𝑝𝑝
″  index as follows: 

(31) 

𝐶𝑝𝑝
″ = (

𝐴

𝐷
)

2

+ (
𝜎

𝐷
)

2

 

 

where, 

 

(32) 𝐴 = 𝑚𝑎𝑥 { 
(𝜇 − 𝑇)𝑑

𝐷𝑢

,
(𝑇 − 𝜇)𝑑

𝐷𝑙

} 

 

where 𝑑 =
(𝑈𝑆𝐿−𝐿𝑆𝐿)

2
. The 𝐶𝑝𝑝

″  Index can be rewritten as 

𝐶𝑝𝑝
″ = 𝐶𝑖𝑎

″ + 𝐶𝑖𝑝. 𝐶𝑝𝑝
″  includes asymmetric tolerance of the 

specification limits 𝐷𝑢 and 𝐷𝑙 . It makes the process 

capability index more accurate than 𝐶𝑝𝑝. 

Abbasi Ganji [16], using a transformation in the process 

capability index 𝐶𝑝𝑝
‴ (𝑢, 𝑣) that had been provided by 

Abbasi Ganji and Sadeghpour Gildeh [6],  proposed a new 

process incapability index, 𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣)  as follows: 

(33) 

𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣) = (

1

𝐶𝑝𝑝
‴ (𝑢, 𝑣)

)

2

= (
6𝜎

2(𝑑∗ − 𝑢𝐴∗)
)

2

+
9𝑣𝐴2

(𝑑∗ − 𝑢𝐴∗)2
            𝑢, 𝑣 ≥ 0 

 

where, 

 

(34) 
𝐼𝐶𝑝𝑝

‴ (𝑢, 𝑣) = 𝐶𝑖𝑎
‴(𝑢, 𝑣) + 𝐶𝑖𝑝

‴(𝑢)                𝑢, 𝑣

≥ 0 

where inaccuracy index is defined as 𝐶𝑖𝑎
‴(𝑢, 𝑣) =

9𝑣𝐴2

(𝑑∗−𝑢𝐴∗)2
  

and imprecision index is defined as 𝐶𝑖𝑝
‴(𝑢) =

(
6𝜎

2(𝑑∗−𝑢𝐴∗)
)

2

. If the value of 𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣)  exceeds 1, it is 

assumed that the process is "incapable". 

 

2.4. Multivariate process incapability indices 

As mentioned earlier, many studies have been done on 

the multivariate process capability indices. However, a 

few studies have been conducted on multivariate process 

incapability indices. Abbasi Ganji [16] first introduced a 

multivariate process incapability vector including of two 

components for processes in which the quality 

characteristic follows the multivariate normal distribution. 

This index is calculated due to the ratio of the volume of a 

tolerance region to the volume of the process region. 

According to her approach, the multivariate process 

incapability vector is defined as follows: 

(35) 𝑀𝑃𝐼𝐶𝑉 = [𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣), 𝐿𝐼] 

 

where, the first component of the above vector is 

formulated according to the Equation (36). 

(36) 
𝑀𝐼𝐶𝑝𝑝

‴ (𝑢, 𝑣) = 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣) + 𝑀𝐶𝑖𝑝

‴(𝑢)       𝑢, 𝑣

≥ 0 

 

where 𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣), 𝑀𝐶𝑖𝑎

‴(𝑢, 𝑣) and 𝑀𝐶𝑖𝑝
‴(𝑢) are the 

multivariate modes of 𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣), 𝐶𝑖𝑎

‴(𝑢, 𝑣) and  𝐶𝑖𝑝
‴(𝑢), 

respectively. In the multivariate mode, instead of the 

expression 2(𝑑∗ − 𝑢𝐴∗), as used in Equation (33), the 

ellipsoid and instead of 6σ, the region that covers 99.73% 

of the multivariate normal process is used. Finally, she 

presented the multivariate imprecision index as:  

(37) 

𝑀𝐶𝑖𝑝
‴(𝑢) = (

𝑣𝑜𝑙. (99.73% 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑒𝑔𝑖𝑜𝑛)

𝑣𝑜𝑙. (𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 𝑤𝑖𝑡ℎ 𝑟𝑎𝑑𝑖𝑢𝑠 𝑟𝑖)
)

2

=

[
 
 
 |𝚺|

1
2(𝜋𝜒0.0027,𝑣

2 )
𝑝
2 (Γ (

𝑝
2

+ 1))
−1

𝜋𝑟1(𝑢)𝑟2(𝑢) … 𝑟𝑝(𝑢)
]
 
 
 
2

          𝑢 ≥ 0 
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where 𝑣 = 𝑝 and p denotes the number of quality 

characteristics. The imprecision index for processes that 

have two quality characteristics is as follows: 

  (38) 𝑀𝐶𝑖𝑝
‴(𝑢) =

|𝚺| × 11.8292

(𝑟1(𝑢)𝑟2(𝑢))
2                 𝑢 ≥ 0 

 

In addition, the multivariate inaccuracy index is in 

accordance with the Equation (39). 

(39) 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣) =

9𝑣𝑨′𝑨

𝒓′(𝑢)𝒓(𝑢)
                𝑢, 𝑣 ≥ 0 

 

In the above Equations, the following equations hold: 

(40) 
𝑑𝑖

∗ = 𝑚𝑖𝑛{𝐷𝑙𝑖
, 𝐷𝑢𝑖

} , 𝐷𝑙𝑖
= 𝑇𝑖 − 𝐿𝑆𝐿𝑖 , 𝐷𝑢𝑖

= 𝑈𝑆𝐿𝑖 − 𝑇𝑖  

(41) 

𝐴𝑖 =
𝑑𝑖(𝜇𝑖 − 𝑇𝑖)

𝐷𝑢𝑖

𝐼{𝜇𝑖 > 𝑇𝑖}

+
𝑑𝑖(𝑇𝑖 − 𝜇𝑖)

𝐷𝑙𝑖

𝐼{𝜇𝑖 ≤ 𝑇𝑖} 

(42) 

𝐴𝑖
∗ =

(𝜇𝑖 − 𝑇𝑖)
2

𝐷𝑢𝑖

𝐼{𝜇𝑖 > 𝑇𝑖}

+
(𝑇𝑖 − 𝜇𝑖)

2

𝐷𝑙𝑖

𝐼{𝜇𝑖 ≤ 𝑇𝑖} 

(43) 𝑟𝑖(𝑢) = |𝑑𝑖
∗ − 𝑢𝐴𝑖

∗| 
 

The second component of the vector presented in the 

Equation (35) is defined as Equation 44: 

 

 

(44) 𝐿𝐼 = {
1;    𝑇ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑒𝑔𝑖𝑜𝑛 𝑖𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑙𝑦 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑟𝑒𝑔𝑖𝑜𝑛
0;                                                                                                            𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

If 𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣) ≥ 1 or LI = 0, the process is called 

"incapable". If 0.56 ≤ 𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣) < 1 and LI = 1, the 

process is called "capable".  

If 0.44 ≤ 𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣) < 0.56  and LI = 1, the process 

is called "satisfactory". If  0.25 ≤ 𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣) < 0.44 

and LI = 1, the process is called "excellent" and if  

𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣) < 0.25 and LI = 1, the process is called 

"super" [16]. 

 

2.5. Measurement error 

Measurement error is defined as the difference between 

the measured value and the original/actual value. It is 

almost impossible to accurately measure without error in 

any production and service environment. In other words, 

the error caused by the measuring instrument or the human 

is unavoidable. Due to the existence of errors, even if 

measured with the most advanced and accurate tools, the 

error value never reaches zero. Variations in the 

production process and measuring instruments can lead to 

incorrect measurements. In practical environments, the 

measured value of quality characteristic is often affected 

by measurement error. Accordingly, a proper process 

capability index is required to evaluate process 

performance under such conditions. 

 

2.5.1. The process incapability indices considering 
the measurement error 

There are many studies in the literature that have 

examined the impact of measurement errors on various 

aspects of statistical process monitoring. Maleki et al. [17] 

presented a review study regarding the impact of 

measurement errors on various aspects of statistical 

process monitoring, which includes many articles in this 

field. They reviewed 60 papers from 1954 to 2016, 19 of 

which were on process capability indices.  

Sadeghpour Gildeh and Abbasi Ganji [18], for the first 

time, presented the process incapability index by taking 

into account measurement errors and examined its 

statistical properties and obtained its Maximum 

Likelihood Estimation (MLE). They assumed that X is a 

quality characteristic and follows normal distribution, 

𝑁(𝜇, 𝜎2), and E is measurement error that is 

independently normally distributed with  mean of zero and 

variance 𝜎𝑒
2, i.e., 𝑁(0, 𝜎𝑒

2). For taking measurement errors 

into account, they consider the variable 𝐺 = 𝑋 + 𝐸, which 

is distributed as 𝑁(𝜇, 𝜎𝐺
2), where 𝜎𝐺

2 = 𝜎2 + 𝜎𝑒
2. 

Eventually, they proposed the 𝐶″𝑝𝑝
𝐺   index according to 

Equation (45) as a measure of the process incapability 

with measurement error. 

(45) 

𝐶″𝑝𝑝
𝐺 = (

𝐴

𝐷
)

2

+
𝜎2 + 𝜎𝑒

2

𝐷2

= (
𝐴

𝐷
)

2

+ (
𝜎

𝐷
)

2

+ (
𝜎𝑒

𝐷
)

2

= 𝐶𝑝𝑝
´´ + (

𝜎𝑒

𝐷
)

2

 

 
Table (1) summarizes the most important studies that 

have been done on the process capability index. According 

to the Table (1), the innovation of the present study is the 

combination of the following assumptions: 

• The process quality characteristics follows multivariate 

normal distribution. 

• Multivariate process incapability Index: In the 

practical environments, the quality characteristic often 

depends on more than one variable; so, considering this 

assumption leads to more practical results. 
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• Measurement error: As mentioned earlier, all processes 

have some errors and it is impossible to reduce the error to 

zero. Therefore, considering the measurement error leads 

to higher accuracy in calculating the performance indices 

and future decision making. 

 

 
TABLE 1. A REVIEW OF STUDIES CONDUCTED ON THE INCAPABILITY INDEX 

Author/s Year 

Assumptions 

Symmetric 

tolerance 

Asymmetric 

tolerance 
Univariate Multivariate 

Measurement 

error 

Greenwich and 

Jahr‐Schaffrath 

[13] 

1995 ✓  ✓   

Chen [15] 1998  ✓ ✓   

Sadeghpour Gildeh 

and Abbasi Ganji 

[18] 

2019  ✓ ✓  ✓ 

Abbasi Ganji [16] 2019  ✓ ✓ ✓  

Current research ✓ ✓  ✓ ✓ 

3. METHODOLOGY 

Let us suppose that the quality characteristic X is defined 

as a 𝑝 × 1 vector which follows multivariate normal 

distribution, 𝑁𝑝(𝝁, 𝚺) with mean vector μ and the 

variance-covariance matrix 𝚺. The upper and lower 

specification limits for each quality characteristic 𝑋𝑖,  𝑖 =
1, 2, … , 𝑝 are denotes by 𝑈𝑆𝐿𝑖  and 𝐿𝑆𝐿𝑖 , respectively. 

Target vector 𝑻 consists of p target values where each of 

its components is between the specification limits. A 

sample with the size n of the process can be represented as 

a 𝑝 × 𝑛 matrix. �̅� is a 𝑝 × 1 vector that includes the 

sample means of p characteristics and 𝐒 is 𝑝 × 𝑝 sample 

variance-covariance matrix. The measurement error (E) 

which defines as a 𝑝 × 1 vector follows multivariate 

normal distribution, 𝑁𝑝(𝝁𝐸 , 𝚺𝐸), with zero mean vector 

(𝝁𝐸 = 𝟎) and the variance-covariance matrix 𝚺𝐸 and E is 

independent of X.By considering the measurement error, 

the quality characteristic in the multivariate mode is 

defined as 𝑮 = 𝑿 + 𝑬, which has a distribution of 

𝑁𝑝(𝝁𝐺 , 𝚺𝐺  ), where 𝝁𝐺 = 𝝁 and 𝚺𝐺 = 𝚺 + 𝚺𝐸 . 

The index 𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣) provided by Abbasi Ganji [16] 

will be 𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣) in the presence of the measurement 

error and we call it “error-affected multivariate 

incapability index” where u and v are the weighting 

factors for the mean vector deviation from the target 

vector and the process variation. To calculate this index, 

we use the division of the tolerance region into the process 

region. Because the index 𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣) consists of two 

indices of inaccuracy and imprecision, the measurement 

error effect must be considered on both indices. Therefore, 

the error-affected multivariate imprecision index can be 

calculated as Equation 46:

 

(46) 

𝑀𝐶𝑖𝑝
‴𝐺

(𝑢) = (
𝑣𝑜𝑙. (99.73% 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑎𝑛𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 )

𝑣𝑜𝑙. (𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 𝑤𝑖𝑡ℎ 𝑟𝑎𝑑𝑖𝑢𝑠 𝑟𝑖)
)

2

= (
|𝚺𝐺|

1
2 (𝜋𝜒0.0027,𝑣

2 )
𝑝
2  (Γ (

𝑝
2

+ 1))
−1

𝜋𝑟1(𝑢)𝑟2(𝑢) … 𝑟𝑝(𝑢)
)

2

= (
|𝚺 + 𝚺𝐸|

1
2 (𝜋𝜒0.0027,𝑣

2 )
𝑝
2  (Γ (

𝑝
2

+ 1))
−1

𝜋𝑟1(𝑢)𝑟2(𝑢) … 𝑟𝑝(𝑢)
)

2

;       𝑢 ≥ 0 

 

where subscript ip means imprecision, and 𝜒0.0027,𝑣
2  is the 

upper 0.0027 percentile of the chi-square distribution with 

v degrees of freedom where 𝑣 = 𝑝 and p denotes the 

number of quality characteristic. Also, 𝑟𝑖(𝑢) is radius of 

ellipsoid and Γ (
𝑝

2
+ 1) is gamma function. In the 

following, the gauge capability in the multivariate mode is 

calculated by 
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(47) 
𝜆𝑀 =

𝑣𝑜𝑙. (99.73% 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑒𝑔𝑖𝑜𝑛)

𝑣𝑜𝑙. (𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 𝑤𝑖𝑡ℎ 𝑟𝑎𝑑𝑖𝑢𝑠 𝑟𝑖)
=

|𝚺𝐸|
1
2 (𝜋𝜒0.0027,𝑣

2 )
𝑝
2  (Γ (

𝑝
2

+ 1))
−1

𝜋𝑟1(𝑢)𝑟2(𝑢) … 𝑟𝑝(𝑢)
 

 

where superscript M in 𝜆𝑀 denotes the multivariate mode 

of gauge capability. The determinant of the variance-

covariance matrix E is obtained according to the Equation 

(48). 

(48) |𝚺𝐸|
1
2 =

𝜆𝑀(𝜋𝑟1(𝑢)𝑟2(𝑢) … 𝑟𝑝(𝑢))

(𝜋𝜒0.0027,𝑣
2 )

𝑝
2  (Γ (

𝑝
2

+ 1))
−1 

 

If A and B are two-dimensional matrices, the following 

Equation holds [49]: 

(49) 

|𝐀 + 𝐁| = |[
𝑎11 𝑎12

𝑎21 𝑎22
] + [

𝑏11 𝑏12

𝑏21 𝑏22
]| = |

𝑎11 + 𝑏11 𝑎12 + 𝑏12

𝑎21 + 𝑏21 𝑎22 + 𝑏22
|

= |
𝑎11 𝑎12

𝑎21 + 𝑏21 𝑎22 + 𝑏22
| + |

𝑏11 𝑏12

𝑎21 + 𝑏21 𝑎22 + 𝑏22
|

= |
𝑎11 𝑎12

𝑎21 𝑎22
| + |

𝑎11 𝑎12

𝑏21 𝑏22
| + |

𝑏11 𝑏12

𝑎21 𝑎22
| + |

𝑏11 𝑏12

𝑏21 𝑏22
| 

 

According to the above equation, the value of |𝚺 + 𝚺𝐸| 
can be obtained as follows: 

(50) 

|𝚺 + 𝚺𝐸| = |[
𝜎11 𝜎12

𝜎21 𝜎22
] + [

𝜎11
𝐸 𝜎12

𝐸

𝜎21
𝐸 𝜎22

𝐸 ]| = |
𝜎11 + 𝜎11

𝐸 𝜎12 + 𝜎12
𝐸

𝜎21 + 𝜎21
𝐸 𝜎22 + 𝜎22

𝐸 |

= |
𝜎11 𝜎12

𝜎21 + 𝜎21
𝐸 𝜎22 + 𝜎22

𝐸 | + |
𝜎11

𝐸 𝜎12
𝐸

𝜎21 + 𝜎21
𝐸 𝜎22 + 𝜎22

𝐸 |

= |
𝜎11 𝜎12

𝜎21 𝜎22
| + |

𝜎11 𝜎12

𝜎21
𝐸 𝜎22

𝐸 | + |
𝜎11

𝐸 𝜎12
𝐸

𝜎21 𝜎22
| + |

𝜎11
𝐸 𝜎12

𝐸

𝜎21
𝐸 𝜎22

𝐸 | 

 

where  |
σ11 σ12

σ21
E σ22

E | + |
σ11

E σ12
E

σ21 σ22
| is assumed as the 

constant value of C; so, the value of  |𝚺 + 𝚺E| can be 

rewritten as Equation 51. 

 

(51) |𝚺 + 𝚺𝐸| = |𝚺| + |𝚺𝐸| + 𝐶 

 

Therefore the 𝑀𝐶𝑖𝑝
‴𝐺

(𝑢) can be rewritten as follows: 

 

 

 

 

 

 

 

 

 

   (52) 

 

𝑀𝐶𝑖𝑝
‴𝐺

(𝑢) = (
|𝚺 + 𝚺𝐸|

1
2 (𝜋𝜒0.0027,𝑣

2 )
𝑝
2  (Γ (

𝑝
2

+ 1))
−1

𝜋𝑟1(𝑢)𝑟2(𝑢) … 𝑟𝑝(𝑢)
)

2

= (
(|𝚺| + |𝚺𝐸| + 𝐶)

1
2 (𝜋𝜒0.0027,𝑣

2 )
𝑝
2  (Γ (

𝑝
2

+ 1))
−1

𝜋𝑟1(𝑢)𝑟2(𝑢) … 𝑟𝑝(𝑢)
)

2

=

(

 
 
 

(
|𝚺|

1
2

|𝚺|
1
2

) (|𝚺| + |𝚺𝐸| + 𝐶)
1
2 (𝜋𝜒0.0027,𝑣

2 )
𝑝
2  (Γ (

𝑝
2

+ 1))
−1

𝜋𝑟1(𝑢)𝑟2(𝑢) … 𝑟𝑝(𝑢)

)

 
 
 

2

= 𝑀𝐶𝑖𝑝
‴(𝑢) × ((

|𝚺| + |𝚺𝐸| + 𝐶

|𝚺|
)

1
2

)

2

= 𝑀𝐶𝑖𝑝
‴(𝑢) × (1 +

(𝜆𝑀)2

𝑀𝐶𝑖𝑝
‴(𝑢)

+
𝐶

|𝚺𝐺 − 𝚺𝐸|
) 

 

Given that: 
(53) |𝚺 + 𝚺𝐸| = |𝚺𝐺| = |𝚺| + |𝚺𝐸| + 𝐶 

 

the value of C is obtained by Equation (54): 
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(54) 𝐶 = |𝚺 + 𝚺𝐸| − (|𝚺| + |𝚺𝐸|) = |𝚺𝐺| − (|𝚺| + |𝚺𝐸|) 

 
Finally, the 𝑀𝐶𝑖𝑝

‴𝐺
(𝑢) index can be obtained as follows: 

(55) 

𝑀𝐶𝑖𝑝
‴𝐺

(𝑢) = 𝑀𝐶𝑖𝑝
‴(𝑢) × (1 +

(𝜆𝑀)2

𝑀𝐶𝑖𝑝
‴(𝑢)

+
𝐶

|𝚺𝐺 − 𝚺𝐸|
) = 𝑀𝐶𝑖𝑝

‴(𝑢) × (
(𝜆𝑀)2

𝑀𝐶𝑖𝑝
‴(𝑢)

+
𝐶 + (|𝚺𝐺 − 𝚺𝐸|)

|𝚺𝐺 − 𝚺𝐸|
)

= 𝑀𝐶𝑖𝑝
‴(𝑢) × (

(𝜆𝑀)2

𝑀𝐶𝑖𝑝
‴(𝑢)

+
|𝚺𝐺| − |𝚺| − |𝚺𝐸| + (|𝚺𝐺 − 𝚺𝐸|)

|𝚺𝐺 − 𝚺𝐸|
)

= 𝑀𝐶𝑖𝑝
‴(𝑢) × (

(𝜆𝑀)2

𝑀𝐶𝑖𝑝
‴(𝑢)

+
|𝚺𝐺| − |𝚺𝐸|

|𝚺𝐺 − 𝚺𝐸|
) 

 

The 𝑀𝐶𝑖𝑝
‴𝐺

(𝑢) index can be rewritten such as: 

(56) 𝑀𝐶𝑖𝑝
‴𝐺

(𝑢) = (𝜆𝑀)2 + (𝑀𝐶𝑖𝑝
‴(𝑢) ×

|𝚺𝐺| − |𝚺𝐸|

|𝚺𝐺 − 𝚺𝐸|
)       𝑢 ≥ 0 

 

Note that, as there is no standard deviation σ in the 

inaccuracy index formulation 𝐶𝑖𝑎
‴(𝑢, 𝑣) =

9𝑣𝐴2

(𝑑∗−𝑢𝐴∗)2
, the 

measurement error has no effect in this part of the 

incapability index formula. So, the multivariate inaccuracy 

index 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣) is calculated according to Equation (57). 

   (57) 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣) =

9𝑣𝑨′𝑨

𝒓′(𝑢)𝒓(𝑢)
;       𝑢, 𝑣 ≥ 0 

 

where ia denotes inaccuracy and 𝑨′ denotes the transpose 

of vector 𝑨. Note that, in the above equations, the 

following equations hold. 
(58) 𝑑𝑖

∗ = min{𝐷𝑙𝑖
, 𝐷𝑢𝑖

} , 𝐷𝑙𝑖
= 𝑇𝑖 − 𝐿𝑆𝐿𝑖 , 𝐷𝑢𝑖

= 𝑈𝑆𝐿𝑖 − 𝑇𝑖 

(59) 𝑑𝑖 =
𝑈𝑆𝐿𝑖 − 𝐿𝑆𝐿𝑖

2
 

(60) 𝐴𝑖 =
𝑑𝑖(𝜇𝑖 − 𝑇𝑖)

𝐷𝑢𝑖

𝐼{𝜇𝑖 > 𝑇𝑖} +
𝑑𝑖(𝑇𝑖 − 𝜇𝑖)

𝐷𝑙𝑖

𝐼{𝜇𝑖 ≤ 𝑇𝑖} 

(61) 𝐴𝑖
∗ =

(𝜇𝑖 − 𝑇𝑖)
2

𝐷𝑢𝑖

𝐼{𝜇𝑖 > 𝑇𝑖} +
(𝑇𝑖 − 𝜇𝑖)

2

𝐷𝑙𝑖

𝐼{𝜇𝑖 ≤ 𝑇𝑖} 

(62) 𝑟𝑖(𝑢) = |𝑑𝑖
∗ − 𝑢𝐴𝑖

∗| 

(63) 𝒅∗ = (

𝑑1
∗

𝑑2
∗

⋮
𝑑𝑝

∗

),   𝑨 = (

𝐴1

𝐴2

⋮
𝐴𝑝

),   𝑨∗ = (

𝐴1
∗

𝐴2
∗

⋮
𝐴𝑝

∗

),   𝒓(𝑢) = (

𝑟1(𝑢)
𝑟2(𝑢)

⋮
𝑟𝑝(𝑢)

) 

 

In the Equations (60) and (61), I{.} is an indicator 

function which is defined as follows: 

(64) 𝐼{𝑥} = {
1;      𝑥 ≥ 0
0;      𝑥 < 0

 

 

Finally, the error-affected multivariate incapability index 

𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣) can be summarized and rewritten as 

Equation 65. 

(65) 𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣) = 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣) + 𝑀𝐶𝑖𝑝

‴𝐺
(𝑢) =

9𝑣𝑨′𝑨

𝒓′(𝑢)𝒓(𝑢)
+ (𝜆𝑀)2 + (𝑀𝐶𝑖𝑝

‴(𝑢) ×
|𝚺𝐺| − |𝚺𝐸|

|𝚺𝐺 − 𝚺𝐸|
)        𝑢, 𝑣 ≥ 0  

3.1. Estimation of the 𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣)  

Assume that 𝑿1, 𝑿2, … , 𝑿𝑛 are n random samples of a 

multivariate quality characteristic that follows multivariate 

normal distribution with the mean vector µ and the 

variance-covariance matrix 𝚺. �̅� is a 𝑝 × 1 vector that 

includes the sample means and 𝐒 is a 𝑝 × 𝑝 matrix which 

includes sample variance and covariance. �̅�𝐸 is a 𝑝 × 1 

vector that contains the sample means of errors, and 𝐒𝐸 is 

a p×p sample variance-covariance matrix of errors. To 

estimate the index 𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣), we use the estimators of 

𝝁 and 𝚺, according to the Equations (15) and (16). 

Therefore, we have 
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(66) 

𝑀�̂�𝑖𝑝
‴𝐺

(𝑢) = (
𝑣𝑜𝑙. (𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 99.73% 𝑜𝑓 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 − 𝑒𝑟𝑟𝑜𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑒𝑔𝑖𝑜𝑛 )

𝑣𝑜𝑙. (𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 𝑤𝑖𝑡ℎ 𝑟𝑎𝑑𝑖𝑢𝑠 𝑟𝑖)
)

2

= (
|𝐒𝐺|

1
2 (𝜋𝜒0.0027,𝑣

2 )
𝑝
2  (Γ (

𝑝
2

+ 1))
−1

𝜋𝑟1(𝑢)𝑟2(𝑢) … 𝑟𝑝(𝑢)
)

2

= (
|𝐒 + 𝐒𝐸|

1
2 (𝜋𝜒0.0027,𝑣

2 )
𝑝
2  (Γ (

𝑝
2

+ 1))
−1

𝜋𝑟1(𝑢)𝑟2(𝑢) … 𝑟𝑝(𝑢)
)

2

;       𝑢 ≥ 0 

(67) 𝑀�̂�𝑖𝑝
‴𝐺

(𝑢) = (𝜆𝑀)2 + (𝑀�̂�𝑖𝑝
‴(𝑢) ×

|𝐒𝐺| − |𝐒𝐸|

|𝐒𝐺 − 𝐒𝐸|
) ;       𝑢 ≥ 0 

(68) 
𝑀�̂�𝑖𝑎

‴(𝑢, 𝑣) =
9𝑣�̂�′�̂�

�̂�′(𝑢) �̂�(𝑢)
;       𝑢, 𝑣 ≥ 0 

 

Finally, 

 

(69) 𝑀𝐼�̂�𝑝𝑝
‴𝐺

(𝑢) = 𝑀�̂�𝑖𝑎
‴(𝑢, 𝑣) + 𝑀�̂�𝑖𝑝

‴𝐺
(𝑢) =

9𝑣�̂�′�̂�

�̂�′(𝑢) �̂�(𝑢)
+ (𝜆𝑀)2 + (𝑀�̂�𝑖𝑝

‴(𝑢) ×
|𝐒𝐺| − |𝐒𝐸|

|𝐒𝐺 − 𝐒𝐸|
) ;   𝑢, 𝑣 ≥ 0 

 

In the above Equations, the following equations hold: 

(70) �̂�𝑖 =
𝑑𝑖(�̅�𝑖 − 𝑇𝑖)

𝐷𝑢𝑖

𝐼{�̅�𝑖 > 𝑇𝑖} +
𝑑𝑖(𝑇𝑖 − �̅�𝑖)

𝐷𝑙𝑖

𝐼{�̅�𝑖 ≤ 𝑇𝑖} 

(71) �̂�𝑖
∗ =

(�̅�𝑖 − 𝑇𝑖)
2

𝐷𝑢𝑖

𝐼{�̅�𝑖 > 𝑇𝑖} +
(𝑇𝑖 − �̅�𝑖)

2

𝐷𝑙𝑖

𝐼{�̅�𝑖 ≤ 𝑇𝑖} 

(72) �̂�𝑖(𝑢) = |𝑑𝑖
∗ − 𝑢�̂�𝑖

∗| 

(73) 𝑀�̂�𝑖𝑝
‴(𝑢) =

[
 
 
 |𝐒|

1
2(𝜋𝜒0.0027,𝑣

2 )
𝑝
2 (Γ (

𝑝
2

+ 1))
−1

𝜋�̂�1(𝑢)�̂�2(𝑢) … �̂�𝑝(𝑢)
]
 
 
 
2

          𝑢 ≥ 0 

 

According to the relation G = X + E, the smaller E, the 

closer X and G get to each other, and it becomes more 

difficult to distinguish capability in sensitive and high-tech 

industries where a small percentage of error is 

catastrophic. If there is a measurement error, G is 

inadvertently inserted into the mean vector in Equation 

(70) because the collected data is contaminated with error 

and this leads to the superiority of the 𝑀𝐼�̂�𝑝𝑝
‴𝐺

(𝑢)index 

and the innovation of this article in Giving this 

incapability is transparent and separate information. 

4. ANALYSIS 

Here, in order to examine the performance of the 

proposed multivariate incapability index, a numerical 

example (Case (I)) will be presented and compared with 

the case where the measurement error is not considered. 

We applied Monte Carlo simulation approach for 

computing the indices. A practical example (Case (II)) is 

also provided and compared with other classical indices. 

 

4.1. Numerical instance (Case (I)) 

Here, a numerical instance which has been adopted from 

Ouyang [20] and is on the production process of H-type 

chip resistor is presented. The H-type chip resistor has five 

quality characteristics including length (a), upper width 

(b), width (c), height (d), and lower width (e) (see Figure 

(1)). 
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FIGURE 1. H-TYPE CHIP RESISTOR 

 

The constituent parts of this resistor, according to the 

numbering shown in Figure (1), are given in Table (2). 

 

 

TABLE 2. COMPONENTS OF THE H-TYPE CHIP RESISTOR 

Resistor Layer 7 Edge Electrode 4 Alumina Substrate 1 
Primary Overcoat 8 Barrier Layer 5 Bottom Electrode 2 
Secondary Overcoat 9 External Electrode 6 Top Electrode 3 

For this example, we used the Monte Carlo simulation 

method by coding in Matlab software. The steps of this 

approach are as follows: 

 

 

 

 

Step 1: Select a number randomly from the mean and variance intervals according to Table (3) for 

each quality characteristic and generate 100 data from normal distribution. According to Table (3), it 

is clear that the process tolerance is asymmetric 

 

Step 2: Calculate the relationships presented in the previous section and estimate the 𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣) and 

𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣) indices. 

 

Step 3: Go back to the step 1 and repeat the above steps 10,000 times. 

 
 TABLE 3. SPECIFICATIONS OF THE PRODUCTION PROCESS OF H-TYPE CHIP RESISTORS 

The intervals for 

generating variances 

The intervals for 

generating mean T (USL, LSL) Quality 

characteristic 
(0.025, 0.03) (1.6, 1.69) 2.03 (1.9, 2.1) a 

(0.025, 0.03) (0.88, 0.95) 1.21 (1.15, 1.35) c 
(0.035, 0.04) (0.5, 0.55) 0.52 (0.35, 0.65) d 
(0.45 0.05) (0.35, 0.4) 0.34 (0.15, 0.55) e 

(0.035, 0.04) (0.35,0.4) 0.36 (0.2, 0.5) b 
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Shishebori and Hamadani [21] studied the multivariate 

gauge capability as 𝜆𝑀 = 0.1 to calculate the 𝑀𝐶𝑝 

regarding to the gauge measurement error. In this case, we 

followed their approach and considered 𝜆𝑀 = 0.1. After 

10,000 replications, the mean, variance and coefficient of 

variation (CV) of 𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣) and 𝑀𝐼𝐶𝑝𝑝

‴𝐺
(𝑢, 𝑣) are 

obtained and summarized in Table (4). 

 

TABLE 4. SIMULATION RESULTS OF 𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣) AND 

𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣) 

CV Variance Mean Index 
0.106034 0.010050 0.945465 𝑀𝐼𝐶𝑝𝑝

‴ (𝑢, 𝑣) 

0.113200 0.014624 1.068278 𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣) 
 

Note that, The Coefficient of Variation is calculated by 

dividing the standard deviation by the mean i.e. CV =
𝜎

𝜇
× 100.  

As shown in the Table (4), when the measurement error 

is not considered, the value of the 𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣) is equal to 

0.945465 that shows the process is “capable”. However, 

by considering the measurement error, the value of the 

𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣) is  1.068278 that represents the process is 

“incapable”. Therefore, we can conclude that taking 

measurement error into account in calculating incapability 

indices affects the final decision about the performance of 

the process under study and can lead to wrong decisions. 

In other words, the process may actually be incapable, 

but indices that do not take into account the error 

measurement show that the process is capable. In this 

case, the manufactured products are considered without 

any problems and reach the customers, and it causes a lot 

of damage, including the loss of factory credit, the cost of 

rework and a lot of financial damage to the high 

technology industries. 

4.2. Comparative example (Case (II)) 

Jackson [22] studied the Film-developing solution 

process in which two components including Elon (E) and 

Hydroguinone (H) are monitored. Process information 

includes the specification limits and target value for both 

factors are as follows: 

(74) 𝐸 {
𝐿𝑆𝐿 = 235
𝑈𝑆𝐿 = 295
𝑇 = 250

 

(75) 𝐻 {
𝐿𝑆𝐿 = 440
𝑈𝑆𝐿 = 500
𝑇 = 460

 

 

According to above information, it is clear that the 

process tolerance is asymmetric. From a random sample of 

size 75 [22], the sample variance-covariance matrix is 

calculated as: 

(76) 𝐒 = [
102.65 68.87
68.87 107.96

] 

  

 

To compare the performance of our developed approach 

with that Abbasi Ganji [16] suggested, we used the mean 

vectors provided in Table (5) and assumed that 𝜆𝑀  =  0.1 

to calculate the 𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣) and 𝑀𝐼𝐶𝑝𝑝

‴𝐺
(𝑢, 𝑣). The results 

are summarized in Table (5). 

By taking into account the sample mean �̅� = (
251
461

) and 

the process information according to Equations (74), (75) 

and (76), the method of calculating the index 𝑀𝐶𝑖𝑝
‴𝐺

(1) in 

the first row of Table (5) will be explained. 

 The Equation (76) indicates the sample variance-

covariance matrix and its determinant value is equal to 

det(𝐒)  =  6339.017. By inserting the value 𝜆𝑀  =  0.1 

[21] in the Equation (48), the value of |𝐒𝐸|
1

2 =
𝜆

𝑀
(𝑟1(𝑢)𝑟2(𝑢))

11.829
=

0.1×14.97778×19.975

11.829
= 2.529217 is 

obtained. 

Shishebori and Hamadani [21] created a diagonal matrix 

to find the variance-covariance error matrix; the main 

elements of its main diagonal was the second root of the 

variance-covariance error matrix determinant. We also 

created a diagonal matrix with the elements √|𝐒𝐸| =
2.529217 to calculate the error variance-covariance 

matrix as follows: 

(77) 𝐒𝐸 = (
2.529217 0

0 2.529217
) 

 
As mentioned before, the error affected variance-

covariance matrix of data is created by the sum of 

Equations (76) and (77) as follows. 

(78) 𝐒𝐺 = (
105.1792 68.87

68.87 110.4892
) 

The determinant of 𝐒𝐺 matrix is equal to |𝐒𝐺| =
6878.092; and by inserting this number , |𝐒𝐸|  and 

|𝐒𝐺 − 𝐒𝐸| = |𝐒| values  into  the Equation (67), the index 

𝑀�̂�𝑖𝑝
‴𝐺

(1) = 10.75  is obtained. 

As mentioned earlier, each of Indices 𝑀𝐼𝐶𝑝𝑝
‴ (1, 1) and 

𝑀𝐼𝐶𝑝𝑝
‴𝐺

(1, 1) consists of two parts, imprecision index and 

inaccuracy index. According to the Table (5), as you can 

see, by considering the measurement error the value of 

𝑀𝐼𝐶𝑝𝑝
‴𝐺

(1, 1) is larger than 𝑀𝐼𝐶𝑝𝑝
‴ (1, 1). For example, for 

the case 2, the 𝑀𝐼𝐶𝑝𝑝
‴ (1, 1) is equal to 10.09 while the 

𝑀𝐼𝐶𝑝𝑝
‴𝐺

(1, 1) is equal to 10.93. 

The same trend is observed for 𝑀𝐶𝑖𝑝
‴𝐺

(1) compared to 

the 𝑀𝐶𝑖𝑝
‴(1). For example in case 2, 𝑀𝐶𝑖𝑝

‴(1) is equal to 

10, while the 𝑀𝐶𝑖𝑝
‴𝐺

(1) is equal to 10.84. In addition, it is 

observed that the 𝑀𝐶𝑖𝑎
‴(1, 1) is the same in both classical 

and proposed indices; as there is no standard deviation σ 
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in the inaccuracy index 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣), the measurement error 

has no effect  in this part. 

According to the Table (5) the index 𝑀𝐼𝐶𝑝𝑝
‴ (1, 1) 

calculates the inaccuracy and imprecision of the process 

separately. The main problem of the previous index is that 

it does not take into account the measurement error and 

this leads to an erroneous estimation of capability, but in 

the new proposed index, the indices of inaccuracy and 

imprecision are calculated along with the measurement 

error. 

For sensitivity analysis, we set the process information as 

follows: 

(79) 𝐸 {
𝐿𝑆𝐿 = 235
𝑈𝑆𝐿 = 295
𝑇 = 265

  

(80) 𝐻 {
𝐿𝑆𝐿 = 440
𝑈𝑆𝐿 = 500
𝑇 = 470

 

 

From a random sample of size 75 [22], the sample mean 

vector is shown in Equation (81). 

(81) 𝐗 = [
264.32
471.48

] 

 

 

 
TABLE 5. COMPARISON OF THE DEVELOPED INDICES WITH THE CLASSICAL ONES 

Proposed Indices Classical Indices Mean  

𝑀𝐼𝐶𝑝𝑝
‴𝐺

(1, 1) (𝑀𝐶𝑖𝑎
‴(1, 1),𝑀𝐶𝑖𝑝

‴𝐺
(1)) 𝑀𝐼𝐶𝑝𝑝

′′′(1, 1) (𝑀𝐶𝑖𝑎
‴(1, 1),𝑀𝐶𝑖𝑝

‴(1)) �̅� Case 

10.76 (0.01, 10.75) 9.92 (0.01, 9.91) (
251
461

) 1 

10.93 (0.09, 10.84) 10.09 (0.09, 10) (
249
459

) 2 

10.98 (0.06, 10.92) 10.13 (0.06, 10.07) (
252
462

) 3 

11.65 (0.37,11.28) 10.79 (0.37, 10.42) (
248
458

) 4 

11.35 (0.13,11.22) 10.49 (0.13, 10.36) (
253
463

) 5 

12.94 (0.86, 12.08) 12.05 (0.86, 11.19) (
247
457

) 6 

11.88 (0.24,11.64) 11.01 (0.24, 10.77) (
254
464

) 7 

14.93 (1.60,13.33) 13.99 (1.60,12.39) (
246
456

) 8 
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Given the Equations (79) and (80), it is clear that the 

target vector is set to the midpoint of the specification 

limits and we are dealing with the symmetric tolerance. 

The variance-covariance matrix and the sample mean are 

obtained according to the Equations (76) and (81), 

respectively. 

Tables (6) to (8) shows the values of the 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣), 

𝑀𝐶𝑖𝑝
‴𝐺

(𝑢) and  𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣) for different values of u and 

v, which are the weighting factors for the mean vector 

deviation from the target vector and the process variation. 

According to the Table (6) when u increases, the value 

of 𝑀𝐶𝑖𝑝
‴𝐺

(𝑢) increases and leads to an increased 

imprecision; for example for 𝑢 = 0, the value of 

𝑀𝐶𝑖𝑝
‴𝐺

(𝑢) is 1.381859 and for 𝑢 = 0.2, the value of 

𝑀𝐶𝑖𝑝
‴𝐺

(𝑢) is 1.383315.  
According to the Table (7) and Figure (2) for 𝑣 = 0, the 

value of 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣) for different value of u is equal to 

zero; because v is in the numerator of 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣). As u 

and v grow simultaneously, the value of the 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣) 

increases. If u is fixed and v increases, the value of the 

𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣) increases, and if v is fixed and u increases, the 

value of the index 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣) also increases. The 

increasing rate of the case where u is constant and v is 

incremental is higher than the case where v is constant and 

u is incremental.  
According to the Table (8) and Figure (3) when u and v 

grow simultaneously, the value of the 𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣) 

increases. If u is considered to be fixed and v increases, 

the value of the 𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣) increases, and if v is fixed 

and u increases, the value of the 𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣) also 

increases. The increasing rate of the case where u is fixed 

and v is incremental is higher than the case where v is 

fixed and u is incremental.  

According to the Table (9), as 𝜆𝑀 increases, the value of 

the 𝑀𝐼𝐶𝑝𝑝
‴𝐺

(1, 1) increases and leading to an increase 

incapability; for example when 𝜆𝑀 = 0.05, the value of 

𝑀𝐼𝐶𝑝𝑝
‴𝐺

(1, 1) is equal to 1.256147 while for 𝜆𝑀 = 0.1, the 

value of 𝑀𝐼𝐶𝑝𝑝
‴𝐺

(1, 1) is equal to 1.415765. 

The gauge capability (𝜆𝑀) is directly related to the 

measurement error. Therefore, increasing the 𝜆𝑀 leads to 

increase the values of variance-covariance error matrix 

elements. It should be noted that this matrix is usually 

calculated by the calibration or quality control department. 

To manage and prevent the increase of 𝜆𝑀, which leads to 

the rejection, it is recommended to use calibrated, new, 

quality measuring devices, as well as expert operators. 

According to Figure (4), the simultaneous increase of the 

weighting factors u and v as well as the increase in the 𝜆𝑀 

leads to an increase in the value of the 𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣).  

It is clear that, increasing the 𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣) index leads 

to increase of process incapability. To manage this fact, 

the following headlines can be considered: 

✓ apply accurate and advanced devices as well as calibrated 

and quality instruments for measurement to use by trained 

operators and experts, 

✓  estimate the variance-covariance matrix accurately,  

✓ the target of the process should be set accurately, 

✓ the process design and specification limits should be 

determined carefully,  

✓ all the factors that affect the process including intrinsic, 

human and environmental factors should be evaluated for 

future decisions. 

We calculated the ratio of 𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣) and 

𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣) denoted by R as follows: 

(82) 𝑅 =
𝑀𝐼𝐶𝑝𝑝

‴𝐺
(𝑢, 𝑣)

𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣)

 

 

By increasing the values of weighting factors, both 

𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣) and 𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣) increases, however the R 

values decrease according to the Figure (5). Based on 

Figure (5), it is clear that considering the measurement 

error has improved the 𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣); because by 

increasing the value of weighting factors, the increase rate 

of the 𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣) is less than the increase rate of the 

𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣). 
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TABLE 6. VALUES OF 𝑀𝐶𝑖𝑝
‴𝐺

(𝑢) FOR DIFFERENT VALUES OF U 

u 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

𝑀𝐶𝑖𝑝
‴𝐺

(𝑢) 1.381859 1.383315 1.384772 1.386232 1.387694 1.389159 1.390625 1.392094 1.393565 1.395039 1.396514 

 
 

TABLE 7. THE VALUES OF 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣) FOR DIFFERENT VALUES OF U AND V 

 u 

v 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

0 0 0 0 0 0 0 0 0 0 0 0 

0.2 0.002653 0.002654 0.002656 0.002657 0.002659 0.002661 0.002662 0.002664 0.002665 0.002667 0.002668 

0.4 0.005306 0.005309 0.005312 0.005315 0.005318 0.005321 0.005324 0.005328 0.005331 0.005334 0.005337 

0.6 0.007958 0.007963 0.007968 0.007972 0.007977 0.007982 0.007987 0.007991 0.007996 0.008001 0.008005 

0.8 0.010611 0.010617 0.010624 0.01063 0.010636 0.010643 0.010649 0.010655 0.010661 0.010668 0.010674 

1 0.013264 0.013272 0.01328 0.013287 0.013295 0.013303 0.013311 0.013319 0.013327 0.013335 0.013342 

1.2 0.015917 0.015926 0.015936 0.015945 0.015954 0.015964 0.015973 0.015983 0.015992 0.016002 0.016011 

1.4 0.01857 0.018581 0.018592 0.018602 0.018613 0.018624 0.018635 0.018646 0.018657 0.018668 0.018679 

1.6 0.021222 0.021235 0.021247 0.02126 0.021273 0.021285 0.021298 0.02131 0.021323 0.021335 0.021348 

1.8 0.023875 0.023889 0.023903 0.023917 0.023932 0.023946 0.02396 0.023974 0.023988 0.024002 0.024016 

2 0.026528 0.026544 0.026559 0.026575 0.026591 0.026606 0.026622 0.026638 0.026653 0.026669 0.026685 
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TABLE 8. THE VALUE OF 𝑀𝐼𝐶𝑝𝑝

‴𝐺
(𝑢, 𝑣) FOR DIFFERENT VALUES OF U AND V 

 u 

v 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

0 1.381859 1.383315 1.384772 1.386232 1.387694 1.389159 1.390625 1.392094 1.393565 1.395039 1.396514 

0.2 1.384512 1.385969 1.387428 1.38889 1.390353 1.391819 1.393287 1.394758 1.39623 1.397705 1.399183 

0.4 1.387165 1.388623 1.390084 1.391547 1.393012 1.39448 1.39595 1.397422 1.398896 1.400372 1.401851 

0.6 1.389818 1.391278 1.39274 1.394205 1.395671 1.39714 1.398612 1.400085 1.401561 1.403039 1.40452 

0.8 1.39247 1.393932 1.395396 1.396862 1.39833 1.399801 1.401274 1.402749 1.404227 1.405706 1.407188 

1 1.395123 1.396586 1.398052 1.39952 1.40099 1.402462 1.403936 1.405413 1.406892 1.408373 1.409857 

1.2 1.397776 1.399241 1.400708 1.402177 1.403649 1.405122 1.406598 1.408077 1.409557 1.41104 1.412525 

1.4 1.400429 1.401895 1.403364 1.404835 1.406308 1.407783 1.409261 1.41074 1.412223 1.413707 1.415194 

1.6 1.403082 1.40455 1.40602 1.407492 1.408967 1.410444 1.411923 1.413404 1.414888 1.416374 1.417862 

1.8 1.405734 1.407204 1.408676 1.41015 1.411626 1.413104 1.414585 1.416068 1.417553 1.419041 1.420531 

2 1.408387 1.409858 1.411332 1.412807 1.414285 1.415765 1.417247 1.418732 1.420219 1.421708 1.423199 

 
 

TABLE 9. THE VALUES OF 𝑀𝐼𝐶𝑝𝑝
‴𝐺

(1, 1) FOR DIFFERENT VALUES OF 𝜆𝑀 

𝜆𝑀 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 

𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣) 1.256147 1.402462 1.553777 1.710091 1.871406 2.037721 2.209036 2.385351 2.566666 2.752981 2.944269 
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FIGURE 2. THE VALUES OF 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣) FOR DIFFERENT VALUES OF U AND V 

FIGURE 3. THE VALUE OF 𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣) FOR DIFFERENT VALUES OF U AND V AND 

𝜆𝑀 = 0.1 

FIGURE 4. THE VALUE OF 𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣) FOR DIFFERENT VALUES OF U AND V AND 𝜆𝑀 
FIGURE 5. RATIO OF 𝑀𝐼𝐶𝑝𝑝

‴𝐺
(𝑢, 𝑣) AND 𝑀𝐼𝐶𝑝𝑝

‴ (𝑢, 𝑣) FOR DIFFERENT VALUES OF U AND 

V 
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5. CONCLUSION 

For processes in which the production process is very 

sensitive and high-tech, it is necessary to use the process 

incapability indices. Process incapability indices can be 

defined as numerical values to monitor the process 

performance in conformance with the process specifications. 

In several processes in practical environment, the 

characteristic measurements are affected by errors, which 

over/underestimates the process incapability. 

In this paper, a multivariate process incapability index is 

presented for the first time by taking into account the 

measurement error. Then, the performance of the developed 

index was compared with the previous classical index. The 

simulation results showed that the new developed index is 

superior to the previous classical ones. 

In addition, a sensitivity analysis was carried out on the 

parameters u, v and 𝜆𝑀. Due to the simulation findings, the 

following conclusions could be drawn.  

Not considering the measurement error will lead to the 

miscalculation of process capability and to financial and 

credit losses. If both or one of the parameters u and v 

increases, the value of the proposed index also increases and 

as the value of the gauge capability (𝜆𝑀) grows, the 

proposed index increases as well. Increasing the value of the 

proposed index indicates more capability of the process. As 

suggestions for future research in this direction, calculation 

of the multivariate process incapability index considering the 

measurement error in the fuzzy environment could be 

helpful. In the practical environment, there are several 

situations that we cannot cluster the parameters exactly; so 

using fuzzy sets can solve this problem in statistical quality 

control methods and calculation of the process incapability 

index. 
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