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Abstract 

Today, producing a product with high quality, according to the customer needs requires a clear strategy of the 

manufacturers in the market. To produce a good product, measures are taken to measure and control products at all 

production levels among, which the analysis of process capability indices is of great importance in the industry. In 

this context, the usability indicators can be effective when the data follow a normal distribution. On the other hand, 

if the data aren't standard normal, evaluation of the process's capability based on these indices will typically be 

confronted with the problem. In this paper, after investigating the behavior and characteristics of the median 

absolute deviation (MAD) and interquartile range (IQR) and (𝑄𝑛), their analysis is conducted for the Gamma 

distribution. Then, the bias errors and standard errors are obtained using the jackknife method. Three estimators are 

evaluated in three different modes according to the bootstrap methods and based on their confidence intervals. 

Finally, by analyzing the results of this research, the reliability, and performance of the estimators are evaluated in 

different states. 

Keywords- Robust estimators; Gamma distribution; Process capability indices; Bootstrap confidence intervals 

 

INTRODUCTION 

In recent years, massive research on capability indices has been done. Today, several process capability indices have been 

introduced by researchers. Process capability indices can be helpful when products follow a normal distribution. Careful 

examination of process capabilities is important to identify strengths and weaknesses of the reliability and to produce the 

products with high quality. Estimators such as mean and variance are used to evaluate classical process capability indices. 

However, some of the essential features in the industry perhaps move away from the normal situation.  This leads to the study 

of non-normal behavior, which even affects reliability, from another aspect. With the change of the problem data, the process 

characteristic dispersion may fluctuate and change the index. Most quality features ignore the assumption of normality. 

Therefore, standard-based process capability indices are not widely used and cannot express the process performance well. 

Besseris refers to determining the capability indicators based on the median absolute deviation for abnormal data and concludes 

that much progress is achieved if the issue data are highly asymmetric. Study the robust interquartile range (IQR) and (𝑄𝑛) for 

Weibull process capability indices using bootstrap techniques has been performed to obtain 95% confidence intervals[1]-[2].. 

By examining Gamma and normal distributions, we can see some features of Gamma distribution in many studies [3]. If the 
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distribution deviates from the normal state, the index formula loses its process capability efficiency. Non-normal distribution 

has a significant effect on classical PCI. Because the standard deviation for non-normal distributions loses its effective 

performance. Therefore, the terms IQR and MAD are using for analysis [4]. In some studies, mentioned that MAD is a good 

approximation of the standard deviation for non-normal distribution. Confidence intervals in the correct interpretation of 

process capability indices can be effective [2]. Creating confidence intervals was first considered by researchers in [5]. The 

creating confidence intervals was first used in Chou's research [6].  Ouyang et al. (2024) studied the development of robust 

confidence intervals for the cost-based process capability index, and by using bootstrap methods, it evaluates process capability 

indices in normal mode [7]. Saha et al. (2022) also used six different methods of estimation to obtain the estimates of the PCI 

and also compare three bootstrap confidence intervals (BCIs)[8]. Various methods based on process capability indicators have 

been further studied by other researchers, including Afshari et al. (2022), Day et al. (2023)[9]-[10]. Afshari has studied the 

effects of measurement tool error on multivariable process capability estimation and assessment. Day et al. has pointed out the 

applications of process capability indicators based on cost and loss in electronics industries. And it studies 5 bootstrap methods 

in normal mode to compare process capability indicators. and Kashif et al. (2023) investigated PCIs under non-normal 

distributions, particularly for applications involving the Weibull process[11].  Many researchers claim that the median absolute 

deviation of the best alternative to the standard deviation for the data is non-normal. In Weibull distribution, IQR and MAD are 

used to measure PCI variability. Kashif points out that MAD performs better than IQR considering the Weibull distribution and 

the bootstrap percent confidence interval [12]-[13]. Statistical tools are necessary to improve the process performance. One of 

these methods is the applying process capability indices (PCI), Which the most important of them are 𝐶𝑝 and 𝐶𝑝𝑚 and 𝐶𝑘 and 

𝐶𝑚𝑘. Other indices are derived from these indices [2]. 

      Bootstrap is a nonparametric method based on the observed n-sample. Some studies suggest bootstrap resampling to 

estimate the accuracy of estimators.  The bootstrap method, the size of the bias accuracy, variance, confidence interval, and 

hypothesis test can be estimated. First, the bootstrap sample 𝑋1
∗, 𝑋2

∗, … , 𝑋𝑛
∗  is obtained by placing the observed sample 𝑥1,

𝑥2, … ,  𝑥𝑛 by random sampling method. Then, the bootstrap estimator is calculated [14]. The jackknife method works somewhat 

similar to the bootstrap method, and researchers have contributed a lot to the progress of this approach. It is noteworthy that 

the jackknife method is also a method for calculating bias error, and standard error, which according to Quenouille studies and 

the invention of this method in 1950, much progress was made in the industry. However, the jackknife method performs better 

than the bootstrap methods when the data are fewer, which follows more straightforward calculations. When the number of 

data is more than 200, it is best to use bootstrap methods because the jackknife method loses its usefulness [15]-[16]. Process 

capability indices have a wide range that directly or indirectly affects the evaluation, and production of products. For example, 

MAD is used in producing synthetic composite composites. If the confidence interval or accuracy of the process capability 

indices don't include in the design or production of the product, it may lead to erroneous decisions and causing losses on the 

line. Even getting waves of frequencies is accomplished by antennas in a given range that can be measured and analyzed 

through the capability indices of the process to achieve a specific frequency. Statistical distributions have much application in 

the issue of quality control and decisions. Many processes in production do not follow normal distributions, and Clements was 

the first person to broach the subject [17].  

        One of the reasons for the emergence of process capability indices is the need in factories to estimate and measure the 

efficiency of production processes in producing standard items. Our goal is to evaluate and identify the best estimator to 

examine the behavior of problem data in the production processes and control the deviation and variance of an abnormal 

process. In this way, the customer reaches the appropriate quality product. So far, the evaluation of capability indices has not 

been done considering the Gamma distribution. The Gamma distribution can show a more excellent attribute of the evaluation 

of the process capability indices. In this study, we intend to study three robust process capability indices with Gamma 

distribution to see how changes in the number of data studied, along with the shape and scale parameter, change the evaluation 

of the indices. In the present study, the formulas are expressed in the software format after reviewing the points and definitions. 

In the following, the discussion of results is discussed. Finally, the conclusion is derived from the data. 

Gamma distribution, like Weibull distribution, is one of the non-normal distributions, and each of them has many 

applications in data evaluation in the industry. Gamma distribution can cover gaps in industry and other distributions. Gamma 

distribution is used in military industries such as telecommunication systems and similar in fiberglass industry and power 

generation. It is worth mentioning that so far, no research has been done using the gamma distribution. Wang et al. Studied 

process capability indices for abnormal distributions. To show the efficiency of robust process capability indices, he mentioned 

abnormal distributions such as Weibull distribution. He also mentioned the gamma distribution as a new candidate in future 

studies, which can also be used in future studies [18]. In their study, Lee et al. Evaluated LCD products using process capability 

and gamma distribution indices and came to a satisfactory conclusion [19]. Piao et al noted that if data distribution is not normal, 
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gamma distribution can be used to study process capability indices [20]. Evaluation of classical process capability indices is 

not possible everywhere, and for more accurate evaluation, robust process capability indices are used, which can lead us to a 

better answer [21]. Even process capability indices can be studied in other studies for fuzzy sets [22]. 

PROCESS CAPABILITY INDICES (PCI) 

The classical process capability indices, 𝐶𝑝, was first introduced by Juran after World War II to provide consultative services 

to the Japanese industry and expressed as follows [3]: 

𝑐𝑝 =
𝑈𝑆𝐿 − 𝐿𝑆𝐿

6�̂�
 

(1) 

USL and LSL, are the upper and lower specification limits of a process characteristic, respectively. The standard deviation, 

which is one characteristic of a process, is defined with the Sigma notation.  As mentioned in the previous sections, if the data 

deviates from normal, then the above formula loses its effectiveness. The difference expression (USL-LSL) is the process 

characteristic specification range (PCSS), and the expression (6�̂�) is the process characteristic spread (PCS). It requires 99.73% 

coverage, which is limited in Gaussian distributions between 0.013% and 99.865%. The Gamma distribution density function 

can be defined as follows Gamma distribution is closely associated with exponential distribution because, when the shape 

parameter is equal to one, the exponential distribution will be achieved: 

  𝑓(𝑥) =
𝜆

Γ(𝑟)
(𝜆𝑥)𝑟−1𝑒−𝜆𝑡         ,    𝑥 ≥ 0, 𝑟 > 0, 𝜆 > 0 (2) 

In the above formula, r is called the shape parameter, and λ is called the scale parameter. The cumulative Gamma distribution 

function is defined as follows. By integrating the density function, the distribution function is obtained, and according to the 

function parameters, the value of the function is between zero and one: 

𝐹(𝑎) = 1 − ∫
𝜆

Γ(𝑟)
(𝜆𝑡)𝑟−1𝑒−𝜆𝑡

∞

𝑎

𝑑𝑥 
(3) 

Different values have been stated for LSL and USL values, but Park has used the following method [23]: 

F(0)=LSL , F(0.995)=USL                                                                           (4) 

                                                                                               

I. Median absolute deviation (MAD) 

  Suppose that 𝑥1, 𝑥2, … , 𝑥𝑛 is a random sample, and M is the sample's median. Then, the median absolute deviation is defined 

as follows [24]: 

{  }   0, ,| |ix nMAD b median iM    (5) 

For symmetric distributions, it is worth noting that the median is equal to the mean, i.e., Md = μ. For finite-state or an 

example, we have: 

𝑚𝑑𝑛 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑥𝑘+1:𝑛 , 𝑛 = 2𝑘 + 1 (6) 

𝑚𝑑𝑛 = 𝑎𝑋𝑘:𝑛 + (1 − 𝑎)𝑋𝑘+1:𝑛  ; 0 ≤ 𝑎 ≤ 1, 𝑛 = 2𝑘 (7) 

 

In general, a=1/2. Also, mo≤M≤μ, that mo is the same mode and Md or M is the median [25].  If we follow a Gaussian 

distribution, the variable of b is a fixed value for better compatibility. It's equal to 1.4826.  The median absolute deviation is 

directly related to the mean distance of the observations from the median of the distribution, and for variables with a normal 

distribution, this value is 0.6745 times the standard deviation and 0.8453 times the mean deviation. Thus, it is a robust estimator 

of the standard deviation of the sample, which calculates the deviation of the data from the median, and was first proposed by 

Hempel, who attributed it to Gauss [26]. The expression 𝑏𝑛MAD can be considered a non - bias approximation of Sigma that 

the expression 𝑏𝑛 acts as a correction factor. When the number of data is large, this number tends to 1 [24]. For n≤ 9, the values 

of 𝑏𝑛 are obtained as follows: 

 
TABLE 1 

THE CORRECTION FACTORS FOR MAD  

9 8 7 6 5        4 3 2 n 

1.107 1.129 1.140 1.1200 1.206 1.363 1.495 1.192 𝑏𝑛 
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Moreover, numbers greater than nine are obtained from the following equation: 

𝑏𝑛 = 𝑛

𝑛−0.8
 (8) 

When there is more number, the more this number goes to 1, and for data that follows a normal distribution, this number will 

be 1.4826. So, it can be said for the normal state that [2]: 

�̂� = 1.4826 MAD (9) 

As mentioned earlier, the above statement is a strong estimate of the standard deviation. Of course, if the problem is uncorrected, 

the value of b can be considered 1. Now for distributions whose data does not follow the Gaussian distribution, their value b is 

slightly different depending on the problem's circumstances. In the case of non-normal distribution, its value is equal to: 

 b=1/Q (0.75) (10) 

In normal distributions, b = 1 / Q (0.75) = 1.4826 [27]. 

 

II. Interquartile range (IQR) 

    The interquartile range is another process capability estimator. To understand it, we must have sufficient knowledge of the 

concept of quartiles. The interquartile range is defined as follows: 

IQR=𝑄3 − 𝑄1                                                                                                                                            (11) 

The above relation shows the difference between the upper and lower value. That is the first and third quartile. Moreover, it 

says that 75% and 25% probability of data are: 

 𝐹𝑟,𝜆(𝑄3) = 0.75                                            (12) 

 

𝐹𝑟,𝜆(𝑄1) = 0.25                                            (13) 

 

That: 

∫ 𝑓(𝑥)𝑑𝑥
𝑄1

−∞
= 0.25                                           (14) 

 

∫ 𝑓(𝑥)𝑑𝑥
𝑄3

−∞
= 0.75                                            (15) 

 

According to the definition of interquartile range, the process capability indices can be defined based on the interquartile range 

as follows [12]: 

𝐶𝑃 =
𝑈𝑆𝐿−𝐿𝑆𝐿

2∗𝐼𝑄𝑅
                                                                                                                                              (16) 

 

Process capability indices based on MAD and IQR should not be directly compared. Because (2) ×IQR distribution range 

indicates 100 % nominal coverage, but for normal mode, (8.9) × MAD, shows 99.73 coverage [28]. 

 

III. 𝑄𝑛estimator 

    Another estimator that has many applications in the discussion of process capability is the 𝑄𝑛 estimator, which has a 

breakpoint of 50% and an efficiency of 82% for Gaussian distributions and is defined as follows [2]: 

𝑄𝑛 = 𝑑{|𝑥𝑖 − 𝑥𝑗|; 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}𝑙                                                                                                           (17) 

 

That: 

𝑙 = (ℎ
2
)  ; ℎ = [

𝑛

2
] + 1                                                                                                                                (18) 

 

That is, the state for " l " can be imagined. Moreover, d is a correction factor whose value for normal data is initially equal to 

2.2219, which is later corrected and included in the software 2.21914. This expression is equal to ((1 / (sqrt (2) × qnorm (5 / 

8)). If we consider an estimate of Sigma, due to the differences caused by the experiments, we have to use the correction 

factor 𝑑𝑛. Th correction factors are slightly different for the even and odd mode. So, we have [29]: 
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TABLE 2 

THE CORRECTION FACTORS FOR  𝑄𝑛 ESTIMATOR 

9 8 7 6 5       4 3 2 n 

0.872 0.669 0.857 0.611 0.844 0.512 0.994 0.399 𝑑𝑛 

 

If 9 < n and it is odd, then the above correction factor is defined as follows: 

𝑑𝑛 =
𝑛

𝑛 − 1.4
 (19) 

 

However, if n is even, the above expression is considered as follows: 

𝑑𝑛 =
𝑛

𝑛 − 3.8
 

(20) 

 

𝑄𝑛 = 𝑑𝑛 × 2.21914{|𝑥𝑖 − 𝑥𝑗  | ; 𝑖 < 𝑗} 
(21) 

 

The process capability indices based on 𝑄𝑛is defined as follows: 

𝐶𝑃 =
𝑈𝑆𝐿 − 𝐿𝑆𝐿

6 ∗ 𝑄𝑛

 
(22) 

 

 

The estimators that used the correction factor are in the corrected state because if their coefficients are considered one, it 

would be on unmodified form. 

 

IV. Jackknife method 

   In 1950, Quenouille developed a method for estimating standard error and bias error, later known as the jackknife method. 

Assume that �̂� = (𝑋1, 𝑋2, … , 𝑋𝑛)estimates the parameter θ. In this method, one observation removes in each step, and then �̂� 

calculates based on the remaining observations[4]. 

𝑋(𝑖) = (𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛)    𝑖 = 1,2, … , 𝑛                                                                                        

 

(23) 

Therefore, the 𝑖𝑡ℎsample of jackknife 𝑋(𝑖) i = 1, 2, …, n  is obtained by removing the 𝑖𝑡ℎpoint. 

�̂�(𝑖) = 𝑆(𝑋(𝑖))      𝑖 = 1,2, … , 𝑛                                                                                                                   
 

(24) 
 

For the substitution statistic �̂� = 𝑡(�̂�), �̂�(𝑖) is equal to t (�̂�(𝑖)), where �̂�(𝑖)is the experimental distribution for n-1 points. The 

jackknife bias and standard estimates are defined as follows [15][16][30]: 

𝐵𝑖𝑎�̂�𝑗𝑎𝑐𝑘 = (𝑛 − 1)(�̂�(0) − �̂�(𝑖))                                                                                                                (25) 

𝑆�̂�𝑗𝑎𝑐𝑘 = [
𝑛−1

𝑛
∑(𝜃(𝑖) − 𝜃(0))2]

1

2
                                                                                                                 (26) 

�̂�(0) = ∑ �̂�(𝑖)
𝑛
𝑖=1                                                                                                                                           (27) 

 

 BOOTSTRAP CONFIDENCE INTERVALS    

In this section, there are several methods for estimating the confidence interval for the target parameter in bootstrap. Methods 

include standard normal bootstrap (SB), base bootstrap confidence interval (BB), percentile bootstrap confidence interval (PB), 

bootstrap confidence interval with bias-corrected accelerated (BCa).Suppose (𝑥1, 𝑥2, … , 𝑥𝑛) are observations with random 

variables (𝑋1, 𝑋2, … , 𝑋𝑛)from the distribution F, i.e., F~𝑋1, 𝑋2, … , 𝑋𝑛. That is, X = {𝑋1, 𝑋2, … , 𝑋𝑛 } show all sets.  we select a 

random instance by placing it from the set X to the size n, and we show them with 𝑋∗ = 𝑋1
∗, 𝑋2

∗, … , 𝑋𝑛
∗ . There are 𝑛𝑛 resampling 

sets, it calculates 𝑛𝑛values of �̂�∗, and θ as efficiency indices. Each of them is an estimate of 𝜃∗, and the set of them all forms 
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the bootstrap distribution �̂�. The bootstrap sample is equivalent to the placement sample of the experimental distribution 

function. Thus, the bootstrap distribution �̂� is an estimate of the experimental distribution θ [31]. 

 

I. Bootstrap percentile confidence interval (PB) 

   The bootstrap percent confidence interval was first expressed by Efron[29]. Moreover, it is similar to the standard bootstrap 

confidence interval. Consider 𝑋1, 𝑋2, … , 𝑋𝑛 that contain n independent samples of a community with unknown parameter θ. �̂� 

is the estimator of θ. In this method, the bootstrap samples 𝑋1
∗, 𝑋2

∗, … , 𝑋𝑛
∗  are created randomly by placing the observed 

samples 𝑥1, 𝑥2, … , 𝑥𝑛. Then the bootstrap estimator �̂�∗is calculated and generated. By repeating the B step of the bootstrap 

estimators �̂�1
∗, �̂�2

∗, … , �̂�𝑛
∗ are calculated. Finally, the bootstrap percentile confidence interval with a coefficient of 1-α is 

calculated as follows[5][30]: 

(�̂�
[B(

�̂�

2
)]

∗ ; �̂�
[B(1−

�̂�

2
)]

∗ ) 
(28) 

 

II. Bias Corrected accelerated bootstrap confidence interval (BCa) 

Efron introduced an edited version of the bootstrap percent confidence interval called the bias-corrected accelerated bootstrap 

confidence interval, which covered some of the problems of the previous version [29]. We denote by two values of bias-

corrected  �̂�0 and the acceleration of �̂�. The task of bias correction is to return the intended distribution. If we delete the 𝑖𝑡ℎ 

point of the sample and �̂�𝑖 = 𝑡(𝑋(𝑖))the estimate of the parameter θ is by omitting the observation of 𝑖𝑡ℎ, and 𝑈𝑖  as (�̂�(0) − �̂�(𝑖)) 

is defined as we have [30]:  

�̂�(0) =
1

𝑛
∑ �̂�(𝑖)

𝑛
𝑖=1                                                                                                                                            (29) 

�̂� =
∑ U𝑖

3𝑛
𝑖=1

6[∑ Ui
2𝑛

𝑖=1 ]
3
2

                                                                                                                                               (30) 

 

Finally, the Bias Corrected accelerated (BCa) bootstrap confidence interval with 1-α coefficient is calculated as follows [31]: 

(�̂�
[B(

�̂�

2
)]

∗ ; �̂�
[B(1−

�̂�

2
)]

∗ ) (31) 

 

 

III. Standard normal bootstrap confidence interval (SB)   

   The standard normal bootstrap confidence interval is one of the simplest methods, but it is not necessarily the best option for 

this purpose. Assume that �̂� is an estimate of the parameter θ.  Se(�̂�) is the standard error estimator. If E(�̂�) is the sample 

average and the sample size is also large, according to the central limit theorem, distribution 

Z= 
�̂�−𝐸(�̂�) 

𝑠𝑒(�̂�)
 

(32) 

is the normal standard. Therefore, if �̂� is non-bias for θ, then an approximate confidence interval of 100 (α - 1) % for θ is 

[12]: 

(�̂� − 𝑧𝛼

2
𝑠𝑒(�̂�),�̂� + 𝑧𝛼

2
𝑠𝑒(�̂�)) (33) 

 

IV. Basic Bootstrap confidence interval (BB) 

The bootstrap confidence intervals change the basis of the repeated distribution by reducing the observed statistics. Quantile of 

sample distributions provides samples of simulated samples. From the set of �̂�𝑖
∗, the basic bootstrap confidence intervals are 

represented as follows [32]: 

(2�̂� − 𝑧
1−

𝛼

2
,2�̂� − 𝑧𝛼

2
)   

(34) 

The basic bootstrap confidence interval is based on axial quantity and can be easily calculated. 
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V. Method of analysis and study of the behavior of estimators 

Using the R software, the analysis process begins for three values in the form (a, b). The first component is the scale parameter, 

and the second component is the shape parameter. After compiling and selecting the data, MAD, IQR and 𝑄𝑛 were obtained for 

sizes 20, 50, and 100. By selecting boot from the package section, boot () can apply to each of the estimators. Then any kind 

of their confidence intervals can be easily calculated [32]. One can determine the bias error or the standard error using the 

jackknife method. Then, using the Excel software, the radar diagram of confidence intervals can be drawn and analyzed. On 

this basis, the behavior of the Gamma distribution density function for different parameters is present in Fig. 1. 

 

 

FIGURE 1 
GAMMA DISTRIBUTION DENSITY FUNCTION DIAGRAM 

It is noticed that the R and Excel softwares are among the simplest and most powerful software in the field of programming. 

Accordingly, the R software was used to write formulas and evaluate data. In additions, Excel software was used to analyze the 

data due to its suitable convenience. 

DISCUSSION 

 Three robust estimators were studied to estimate the process capability for stochastic data derived from the Gamma 

distribution. The discussion of robust estimators is very complex and could be the subject of further research. Three different 

types of curves with different sample sizes corresponding to Fig 1 considered for Gamma distribution. The values obtained for 

MAD and 𝑄𝑛in Table 3 are regardless of the final correction factor. After multiplying by the correction factor, it can be 

considered as an approximation of the standard deviation, which is shown in Table 4. The standard error and the bias error 

values in Table 3 are given by the jackknife method in Table 5. After reviewing Table 3, it can be seen that when the number 

of data is small, the estimator values are small at first. As the number of data increases, it is observed that the mentioned values 

first increase and then decrease. As the shape values increase, the density value decreases. The value of 𝑄𝑛 decreases as the 

shape values increase and the number of data increases. It can even be seen that when the shape values are large, the same 

happens for IQR as the number of data increases compared to the previous state. In general, the IQR value is higher than other 

estimators. Because it covers a wide range of information, which is 50%. The value of MAD is higher than 𝑄𝑛 , so in general, 

one can say that IQR has the highest value and 𝑄𝑛has the lowest value. 

We chose shape and scale values hypothetically and inspired by basic papers on Weibull distribution. Considering keeping 

the scale values constant, we fluctuated the shape values a little and then by increasing the sample, we tried to check the 

behavior of the 3 estimators in different states using the gamma distribution and see if there is any behavior with different shape 

values. They show. As we know that different situations may happen in the industry, we assumed that something similar to this 

research may happen in the industry. Therefore, we have briefly explained all the situations. According to Table 5, when the 

difference between the values of the shape and scale is high, that is, the shape values are small, the jackknife standard error 

value is generally lower than 𝑄𝑛 
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TABLE 3 

ESTIMATION OF MAD, IQR, 𝑄𝑛 FOR THREE SAMPLES OF THE GAMMA DISTRIBUTION 

value Scale type Sample size Scale Shape 

0.2363 MAD 

20 

2 0.5 

0.5657 IQR 

0.1763 𝑄𝑛 

0.4438 MAD 

50 1.6069 IQR 

0.3242 𝑄𝑛 

0.2431 MAD 

100 1.1572 IQR 

0.1877 𝑄𝑛 

0.1596 MAD 

20 

2 1.5 

1.4118 IQR 

0.1244 𝑄𝑛 

0.2821 MAD 

50 2.2936 IQR 

0.1890 𝑄𝑛 

0.2739 MAD 

100 2.5147 IQR 

0.1690 𝑄𝑛 

0.2597 MAD 

20 

2 3 

5.1542 IQR 

0.1988 𝑄𝑛 

0.2823 MAD 

50 4.2206 IQR 

0.1613 𝑄𝑛 

0.2262 MAD 

100 3.4906 IQR 

0.1359 𝑄𝑛 

 
TABLE 4 

ESTIMATION OF MAD, AND 𝑄𝑛 BY CONSIDERING THE SECOND CORRECTION FACTOR 

value Scale type Sample size Scale Shape 

0.2462 MAD 
20 

2 0.5 

0.1481 𝑄𝑛 

0.4510 MAD 
50 

0.3015 𝑄𝑛 

0.2470 MAD 
100 

0.1809 𝑄𝑛 

0.1663 MAD 
20 

2 1.5 

0.1045 𝑄𝑛 

0.2866 MAD 
50 

0.1758 𝑄𝑛 

0.2761 MAD 
100 

0.1630 𝑄𝑛 

0.2706 MAD 
20 

2 3 

0.1670 𝑄𝑛 

0.2868 MAD 
50 

0.15 𝑄𝑛 

0.228 MAD 
100 

0.1311 𝑄𝑛 
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 As the shape approaches symmetry and the sample number increases, MAD jackknife standard error becomes more significant 

than 𝑄𝑛. When the data number is low, the IQR standard error increases with increasing the shape values. If there is a significant 

difference between the scale values and shape values, when the data number increases, the standard error 𝑄𝑛 increases and then 

decreases. If the shape values increase, these changes become smaller, and the standard error decreases. In all cases, the standard 

error of MAD and 𝑄𝑛 is less than IQR. In general, MAD contains less standard error than 𝑄𝑛, and is shown in the radar diagram.  

 For the MAD and 𝑄𝑛 bias error, it can be said that it has fewer fluctuations than IQR. In each stage, IQR bias error has almost 

gone down by increasing the sample. Often, 𝑄𝑛 bias error is less than IQR, but there is no specific order for comparing these 

two estimators. It can even be said that the 𝑄𝑛 bias error is less than MAD. In the case of 𝑄𝑛 and IQR, a typical trend for change 

can not be predicted, but in most cases, the 𝑄𝑛 bias error is less than IQR. These bias error fluctuations are shown in Fig. 3. 

TABLE 5 

ESTIMATION OF BIAS ERROR AND STANDARD ERROR USING THE JACKKNIFE METHOD 

ias error 
Standard 

error 
Scale type Sample size Scale Shape 

0 0.016 MAD 

20 

2 0.5 

0.0225- 0.2802 IQR 

-0.0894 0.0223 𝑄𝑛 

0 0.0019 MAD 

50 -0.0864 0.5055 IQR 

-0.5771 0.0515 𝑄𝑛 

0 0.0018 MAD 

100 0.6298 0.2437 IQR 

-0.3793 0.0295 𝑄𝑛 

0 0.0039 MAD 

20 

2 1.5 

0.4239 0.4869 IQR 

-0.1683 0.0209 𝑄𝑛 

0 0.0154 MAD 

50 -0.1076 0.4728 IQR 

0.4037 0.0413 𝑄𝑛 

0 0.0327 MAD 

100 -1.1169 0.1596 IQR 

-0.5129 0.0218 𝑄𝑛 

0 0.0273 MAD 

20 

2 3 

0.3688 1.5233 IQR 

-0.4168 0.0617 𝑄𝑛 

0 0.0374 MAD 

50 -0.1131 0.4344 IQR 

-0.2919 0.0215 𝑄𝑛 

0 0.0152 MAD 

100 2.8626 0.5689 IQR 

-0.3019 0.0114 𝑄𝑛 
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TABLE 6 

UPPER AND LOWER BOUNDS OF BOOTSTRAP CONFIDENCE INTERVALS FOR MAD AND IQR AND 𝑄𝑛 

BCa Percentile Basic Normal 
Scale 

type 

Sample 

size 
Scale Shape 

UL LL UL LL UL LL UL LL 

0.2594 0.0923 0.2660 0.0929 0.3796 0.2065 0.3957 0.1528 MAD 

20 

2 0.5 

1.7230 0.2093 1.6466 0.1955 0.9359 0.5152 -1.193 -0.217 IQR 

0.3093 0.1245 0.2902 0.0980 0.2547 0.0624 0.2720 0.0760 𝑄𝑛 

0.5802 0.3814 0.5908 0.3819 0.5056 0.2967 0.5279 0.3499 MAD 

50 4.7720 0.617 3.062 0.592 2.231 -0.239 2.680 0.064 IQR 

0.5621 0.2218 0.4948 0.1888 0.4595 0.1535 0.4801 0.1610 𝑄𝑛 

0.2577 0.2206 0.2577 0.2206 0.2656 0.2286 0.2636 0.2245 MAD 

100 9.0230 2.030 8.223 1.681 8.627 2.086 8.870 2.268 IQR 

0.2783 0.1197 0.2673 0.1081 0.2673 0.1081 0.2676 0.1105 𝑄𝑛 

0.2272 0.0686 0.2285 0.0717 0.2476 0.0908 0.2323 0.0854 MAD 

20 

2 1.5 

2.451 1.203 2.393 1.151 2.062 0.821 2.259 0.878 IQR 

0.2254 0.0786 0.1913 0.0628 0.1860 0.0576 0.1942 0.0725 𝑄𝑛 

0.3513 0.2236 0.3514 0.2258 0.3384 0.2129 0.3424 0.2203 MAD 

50 3.806 1.776 3.446 1.644 2.943 1.141 3.094 1.560 IQR 

0.2861 0.1405 0.2470 0.1293 0.2487 0.1309 0.2608 0.1374 𝑄𝑛 

0.3137 0.2116 0.3142 0.2139 0.3339 0.2335 0.3289 0.2327 MAD 

100 6.585 3.056 6.464 3.030 5.412 1.974 5.711 2.579 IQR 

0.0710 0.0305 0.0684 0.0280 0.0679 0.0275 0.0682 0.0281 𝑄𝑛 

0.3944 0.0747 0.4289 0.0983 0.4212 0.0906 0.3930 0.1184 MAD 

50 

2 3 

1.691 0.762 1.649 0.738 1.576 0.665 1.0630 0.600 IQR 

0.1092 0.0379 0.0915 0.0295 0.0896 0.0275 0.0931 0.0347 𝑄𝑛 

0.3453 0.2181 0.3475 0.2181 0.3464 0.2169 0.3420 0.2237 MAD 

50 3.626 1.845 3.373 1.806 3.223 1.656 3.348 1.693 IQR 

0.2173 0.1322 0.1985 0.1150 0.2075 0.1240 0.2091 0.1246 𝑄𝑛 

0.2812 0.1758 0.2889 0.1764 0.2760 0.1633 0.2819 0.1699 MAD 

100 4.554 2.613 4.616 2.670 4.311 2.365 4.360 2.473 IQR 

0.1626 0.1172 0.1550 0.1100 0.1617 0.1168 0.1617 0.1172 𝑄𝑛 
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TABLE 7 

BOOTSTRAP CONFIDENCE INTERVALS DOMAIN FOR MAD AND IQR AND 𝑄𝑛  

BCa Percentile Basic Normal Scale type Sample size Scale Shape 

0.1671 0.1731 0.1731 0.2494 MAD 

20 

2 0.5 

1.5137 1.4511 1.4511 1.41 IQR 

0.1848 0.1992 0.1923 0.196 𝑄𝑛 

0.1988 0.2089 0.2089 0.178 MAD 

50 4.101 2.47 2.47 2.616 IQR 

0.3403 0.306 0.306 0.3191 𝑄𝑛 

0.0371 0.0371 0.037 0.0931 MAD 

100 6.993 6.542 6.541 6.602 IQR 

0.1586 0.1592 0.1592 0.1571 𝑄𝑛 

0.1586 0.568 0.1568 0.1469 MAD 

20 

2 1.5 

0.248 1.242 1.241 1.381 IQR 

0.1468 0.1285 0.1284 0.1217 𝑄𝑛 

0.1277 0.1256 0.1255 0.1221 MAD 

50 2.03 1.802 1.802 1.534 IQR 

0.1456 0.1177 0.1178 0.1234 𝑄𝑛 

0.1021 0.1003 0.1004 0.0962 MAD 

100 3.529 3.343 3.438 3.312 IQR 

0.0405 0.0404 0.0404 0.0401 𝑄𝑛 

0.3197 0.3306 0.3306 0.2746 MAD 

20 

2 3 

0.929 0.911 0.911 1.655 IQR 

0.0713 0.062 0.0621 0.0584 𝑄𝑛 

0.1272 0.1294 0.1295 0.1183 MAD 

50 1.781 1.567 1.556 1.658 IQR 

0.0851 0.0835 0.0835 0.0845 𝑄𝑛 

0.1056 0.1125 0.1125 0.112 MAD 

100 1.941 1.946 1.946 1.887 IQR 

0.0454 0.045 0.0449 0.0445 𝑄𝑛 

 

Figure 4 shows the nine-mode bootstrap confidence interval radar diagram for the two types of MAD and 𝑄𝑛estimators. Figure 

5 shows the bootstrap confidence interval radar diagram with nine modes for IQR. As can be seen, IQR is wider than MAD and 

𝑄𝑛, and for IQR in the four bootstrap modes, this range is almost identical. In each step, by data increase, it is observed that the 

confidence interval moves away from the center, but it is noticeable that the closer the graph is to the symmetry state, the 

fluctuations of these confidence intervals occur near the origin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2 

 MAD AND 𝑄𝑛  STANDARD ERROR RADAR DIAGRAMS 
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FIGURE 3 

 MAD , IQR, AND 𝑄𝑛  BIAS ERROR RADAR DIAGRAM 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4 

 MAD AND 𝑄𝑛  BOOTSTRAP CONFIDENCE INTERVAL RADAR DIAGRAMS 
 

 

0

0.1

0.2

0.3

0.4
1

2

3

4

5 6

7

8

9

Basic Bootstrap:95% CI

MAD Qn

0

0.1

0.2

0.3

0.4
1

2

3

4

5 6

7

8

9

Normal Bootstrap:95% CI

MAD Qn

0

0.1

0.2

0.3

0.4
1

2

3

4

5 6

7

8

9

Percentile Bootstrap:95% CI

MAD Qn

0

0.1

0.2

0.3

0.4
1

2

3

4

5 6

7

8

9

BCa Bootstrap:95% CI

MAD Qn

-2
-1
0
1
2
3

1

2

3

4

5

6

7

8

9

10

Bias error

MAD Qn IQR



    Journal of Industrial Engineering International, 19(3), September 2023 

 

78 

 J     I     E     I  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
FIGURE 5 

 IQR BOOTSTRAP CONFIDENCE INTERVAL RADAR DIAGRAMS 

 

When we study the confidence interval for a particular subject, we must ensure that when the confidence interval coverage is 

more focused, meaning that the product's reliability is higher than the produced products. Regarding IQR, one can say that 

according to the radar diagram of confidence intervals in Fig. 5, the bootstrap by BCa method is slightly wider than the other 

items in this figure. Regarding MAD, the standard bootstrap is slightly wider. So, the BCa bootstrap for 𝑄𝑛it is a little better 

than the rest. So, we can point out that in our decisions, if we were going to use bootstrap and if the methods and data studied 

are following this research; it is better to use the BCa bootstrap method. Process capability indices have many applications, 

including composites and insulation between two liquids. Finally, if we want to produce such products, the quality of these 

products must be examined in the first step, which requires the use of process capability indices in controlling the quality of 

products and examining fluctuations. If we consider a non-normal process that follows the Gamma distribution, to calculating 

the process capability indices and evaluate them in their decisions, if 𝑄𝑛 is used, it can be pointed out that they had a lower 

value than other cases. Moreover, it is worth noting that if one reduces the difference between shape values and scale, one can 

see that the bias error and jackknife error were acceptable compared to other cases. The BCa method can be used to check their 

confidence interval. When we increase the shape values, 𝑄𝑛 behavior was better than the others. 

 

CONCLUSION 

Process capability indicators are an effective tool for measuring process quality and efficiency. They are used in manufacturing 

industries and are a criterion for evaluating the accuracy, precision, and performance of production processes. They can be 

effective in analyzing reliability because they provide helpful information about reliability behavior and its improvement. IQR 

contains 50% of the information, and so it is clear that it covers a little more than the rest. From the data in the tables, it's clear 

that it always has higher values than the other two estimators. Also observed that 𝑄𝑛is smaller than MAD due to the data 
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selection type and its correction factor. To produce any product, we need to study and calculate the related formulas, which can 

have many errors. Therefore, it is better to consider a method for calculations with fewer errors. It's noticeable that every 

product produced has deviations that should be tried to calculate and improve. The study also noted that a product might don't 

follow a standard process. It makes calculating deviations a little more complicated. The method of calculating them with 

Gamma distribution and considering process capability indices was discussed. It was observed that the MAD standard error 

was more stable than 𝑄𝑛. For IQR, it is clear that it was more unstable than the other two estimators and took on more value. 

If we consider the bias error, the IQR again shows unstable behavior. However, this time 𝑄𝑛 seems more stable than MAD and 

IQR. According to the data of this research, it's noticeable that the BCa bootstrap method is better for 𝑄𝑛and IQR and the 

standard bootstrap method are better for MAD. In other researches, no gamma function was used and they did not focus on the 

characteristics of q. If we consider all the characteristics of gamma and q distributions, we can reduce costs in the industry.    

Therefore, according to what was said, the topic of process capability indices has a wide scope and more features can be 

presented in relation to process capability indices. In this research, the characteristics of process capability index estimators 

and gamma distribution and their bootstrap confidence intervals have been combined. Therefore, considering the extent of 

statistical distributions and quality control topics, this research is considered as a small part of quality control topics in this field 

and there are many materials to fill the existing gaps. The following topics can be mentioned for future research. 

- Examining the estimators of process capability indicators in multivariable mode by considering the error of the 

measurement tool. 

-  Communication between bootstrap confidence intervals of univariate and multivariate process capability indicators. 

- Evaluation of process capability estimators in fuzzy mode; In the industry, many parameters. 

It cannot be clearly obtained. And this issue cannot be ignored simply, this issue makes the analysis of the fuzzy set of great 

importance. 
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