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Abstract 

This paper proposes two methods of evaluating the Space and Time Characteristics of the product within the Process 

Capability Analysis framework with the introduction of two Multivariate Capability Indices that incorporate the 

product lifetime estimation based on accelerated Time to Failure data. The measures proposed were applied to the 

manufacturing process of LED luminaires to provide a numerical example for the proposed methodology. Light-

Emitting-Diode technology has been increasingly adopted by end-users over the past few decades because of its 

durability and efficacy, which result in low cost of ownership and higher energy savings. However, the research on 

LED technology reliability and expected lifetime has been limited due to the development of robust failure 

mechanism for this product. The results indicate that the integration of both technical specification compliance and 

product reliability into a global index can be beneficial for manufacturing process assessment since it provides a 

new insight into process capability. The product reliability dimension of the product supports decision-making and 

process optimization, which subsequently increases customer satisfaction. 
 

Keywords – LED technology; Multivariate Capability Analysis; Process Capability; Product Reliability; Quality. 
 

INTRODUCTION 

LED-based technologies have become ubiquitous over the past couple of decades due to their efficacy and environment-friendly 

characteristics. Additionally, this technology is more durable than conventional products, such as incandescent or halogen 

lighting, which translates into a lower cost of ownership that, in turn, drives increasing adoption rates. The combination of 

these factors has led manufacturers to focus on the quality of LED solutions, revealing that despite the current advancements, 

there is room for further improvement in both the efficacy and functionality of LED products [1].  

Since its conception, reliability has been a common feature of LED technology. According to Pattison, the average usable 

life of the top performing LED products is approximately 45,714 hours, compared to the 12,628 hours for conventional lighting 

solutions. However, product reliability became a consequential characteristic of the product due to the focus on failure 

mechanisms development. Therefore, methods of evaluation and lifetime prediction have not been neither standardized nor 

widely implemented for LED systems [2]. 

Many authors have proposed different methods to analyze this important factor of LED technologies. The methodologies 

range from data-driven solutions to accelerated degradation experiments that contribute to the estimation of lifetime length and 

comparison with manufacturer’s warranty promises. In this paper, the reliability of LED luminaires was analyzed using 
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accelerated Time to Failure (TTF) data with a model based on the Rayleigh distribution, which considers an increasing function 

of time to estimate the product reliability factor. 

This estimation was integrated into the process capability analysis of the LED luminaire manufacturing process. The 

process performance was evaluated through three important quality characteristics of the luminaire manufacturing: length, 

diameter and brightness. This required the implementation of multivariate analysis techniques that considered the correlation 

between the variables and summarized the result in a global index. Therefore, two different proposals of Multivariate Capability 

Indices are introduced, based on traditional multivariate analysis methods, such as the Principal Component Analysis and 

Modified Tolerance Region ratio.  

BACKGROUND 

I. Multivariate Capability Analysis 

Process Capability Analysis is a highly effective tool to evaluate process performance and its ability to meet specific criteria 

determined by its various stakeholders [3]. One of the most common expressions of the Process Capability Analysis is the 

Process Capability Index (PCI), which is a numeric value that indicates if the products comply with quality requirements 

presented by manufacturers and customers [4]. Univariate PCIs are utilized when processes are being evaluated in relation to 

only one quality characteristic and several authors have introduced their measures for normal processes such as 𝐶𝑝, 𝐶𝑝𝑘, 𝐶𝑝𝑚 

and 𝐶𝑝𝑚𝑘. On the other hand, Multivariate Capability Indices (MPCIs) are engaged when assessing process variation in a 

multivariate setting i.e., in cases when a process is dependent on multiple quality variables.  

Since manufacturing processes are rarely focused on meeting quality standards in only one of the features of their 

products, MPCIs have been widely implemented to present a comprehensive summary of all relevant product characteristics. 

In the past, researchers and manufacturers have applied univariate PCIs to all quality variables in the process and then analyzed 

them separately in the final product, however this method becomes inadequate when one or two of the variables are correlated 

[5]. Consequently, MPCIs are not only a convenient compilation of all quality variables into one global numeric tool but also 

present the advantage of exploring quality characteristic correlation in the process. This is especially significant in products 

with quality variables that are correlated and share a causal relationship, where the performance of one or two variables directly 

affects the results of a third one.  

As [6] explain, multivariate capability measures, such as the MPCIs, constitute a statistical indicator that quantify how 

adequately a multivariate process performs. This method analyses the variability of multiple product characteristic measures 

compared to the accepted quality standard of the same measures. However, not every Multivariate PCI follow the same strategy 

and the results and application vary depending on the needs of researchers or stakeholders.  

There are several approaches to obtaining a MPCI for a particular process, some of them do not consider the correlation 

between product characteristics as they are a direct derivation of existing Univariate PCIs. On the other hand, MPCIs that do 

consider the correlation between product characteristics can be classified into three different categories: MPCIs based on 

principal component analysis, MPCIs based on the relation between Process Region and Specification Region and MPCIs 

based on the inverse function of the cumulative distribution function [6].  

This paper is focused on two proposed Multivariate Process Capability Indices, each one with a different approach to 

multivariate analysis. The first index is based on the Principal Component Analysis technique, which consists of transforming 

a number of related variables into a set of linear functions that are, in contrast, uncorrelated and derived from the original 

measurements. The principal components linearly combine the original variables and the variation among them. The second 

proposed index belongs to the category of MPCIs that are based on the relation between the Process Region (PR) and 

Specification Region (SR). Within this category, four distinct cases can be identified according to their approach to the PR and 

SR comparison: original PR and original SR ratio, original PR and modified SR ratio, modified PR and original SR ratio and 

modified PR and modified SR ratio. 

In the univariate case, the PR is defined as the interval that encompasses 99.73% of values in a normal distribution centered 

on the mean value of the measured product characteristics, which can be represented at its lowest point by 𝜇 − 3𝜎 and at its 

highest point by 𝜇 + 3𝜎. The SR, on the other hand, is the interval between the lower and upper specification limits (LSL and 

USL, respectively). A traditional univariate PCI, such as the 𝐶𝑝 index, compares the width of the SR (USL – LSL) and the 

width of the PR (6σ) with the formula 𝐶𝑝 = (𝑈𝑆𝐿 − 𝐿𝑆𝐿)/6𝜎. 

In multivariate settings, the PR is defined by surface that includes 99.73% of the values drawn from a normal distribution 

and which is centered on the mean vector of the data sample [6]. This PR surface has a 𝑣-dimensional shape, where v is the 

number of product characteristics taken into consideration. The process region can be mathematically represented by (𝑋 −
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𝜇)′ 𝛴^(−1) (𝑋 − 𝜇) = 𝑐2, where μ and Σ are the mean vector and variance-covariance matrix and 𝑐2 is defined by the number 

of product characteristics. It is generally accepted that this PR equation follows a 𝜒𝑣
2 distribution with 𝑣 degrees of freedom. 

Figure 1 is an example of the PR defined for a 𝑣 = 2 multivariate process.  

 

 

 
FIGURE 1 

MULTIVARIATE PR DEFINITION  

 

It is important to note that the definition of the SR and PR need to be extended and adapted to multivariate processes in 

order to correctly assess process capability based on these parameters. The Multivariate Capability Indices proposed in this 

paper analyse the ratio of these regions with two different approaches to develop global indices that allow the integration of 

space and time product characteristics. 

II. LED Luminaires and Product Reliability 

Light-emitting-diodes (LEDs) have been increasingly adopted over the last decade as a more efficient lighting solution than 

traditional incandescent or fluorescent lighting. This shift has progressed rapidly in the lighting market due to the technological 

advances in LED efficacy and decreasing cost of LED packages, which has allowed manufacturers to improve colour 

performance and compete with traditional lighting technologies. In fact, the efficacy of LED packages for cool white light has 

improved from 25 lm/W (lumens per Watt) to 160 lm/W in the last decade. These factors have contributed to low manufacturing 

costs and high performance for end-users, who not only make a lower initial investment when acquiring the product but also 

see the benefits in long-term usage for significantly lower energy consumption [1].  

Another factor that has led to the increasing interest of LED lighting solutions is their longer lifetime. Product reliability 

is one of the most important aspects of manufacturing engineering and customer service. Users need the assurance that a product 

will perform adequately and efficiently throughout its useful life in order to make a purchasing decision [7]. This is especially 

important for LED solutions, where brand recognition and product design are not as prominent as with other manufactured 

goods. Despite its importance, LED technology reliability has not been a topic of particular interest among manufacturers, 

resulting in a lack of standardized method to predict or evaluate this aspect of LED manufacturing [2].  

Wang and Chu [8] proposed a procedure to accelerate the degradation of LED-based lights in order to predict its lifetime. 

In their research, forward current and temperature were considered the two major contributing variables to LED degradation. 

This was tested exposing LED-based light bars to different conditions by manipulating the two variables and measuring light 

output at the various stress points. The results showed that a degradation model based on an exponential function can effectively 

predict the lumen depreciation of a light bar with an estimate of 11,571 hours, which is congruent with the 10,000 hours 

promised by the LED supplier’s warranty.  
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Other authors have proposed data-driven degradation tests to predict LED technology lifetime. Fan et al. [2] analyzed the 

lumen maintenance data of High-Power White Light-Emitting Diodes (HPWLEDs) by applying a degradation-data-driven 

method, which encompasses the approximation, analytical and two-stage methods. The study focused on the Mean Time to 

Failure (MTTF) to predict product reliability. The two-stage method, which is based on the Weibull distribution and the 

simulation of different failure times, predicts LED lifetime with 95% accuracy. The estimation result using this method was a 

MTTF of 101,763 hours.  

In this paper, a similar model based on the Rayleigh distribution was utilized to include the reliability factor in the 

Capability Analysis of LED luminaire manufacturing. The Rayleigh distribution is a special case of the Weibull distribution 

and is related to the chi-square and extreme value distributions. The adequacy of this method to analyze accelerated lifetime of 

a product is due to its consideration of an increasing function of time, which means than when failure times are distributed 

according to the Rayleigh principles the equipment undergoes an intense process of aging [10]. 

As Taha explains, the Rayleigh distribution is a commonly used tool to model the performance of products with increasing 

failure rates, making it a simple yet effective solution for the analysis of lifetimes and the reliability of technical equipment. 

Consequently, the accelerated time to failure (TTF) data collected for this study was analyzed using the Rayleigh distribution 

function in order to evaluate the LED luminaire lifetime probability in the context of the multivariate capability indices 

proposed. Thus, the Process Capability Analysis developed in this research is a global measure that combines the technical 

standards of the product with the intangible value of product reliability while simultaneously encompassing the benefits of 

multivariate setting-based assessment.  

PROPOSED APPROACH TO MULTIVARIATE CAPABILITY ANALYSIS 

Given the importance of product reliability in the manufacturing industry, it is important to explore the possibility of including 

this factor in the process capability analysis methodology. Traditional univariate methods have limitations in this regard since 

product reliability is not considered within capability indices such as 𝐶𝑝 or any of its variations. This extends to the multivariate 

capability analysis in case of multivariate measures that are derived from univariate techniques or simply disregard product 

reliability as a process capability matter.  

Product reliability is often related to time and lifetime of the products, which can be challenging to include in capability 

analysis techniques that are centered on specifications and set acceptance criteria for these measures. If the product reliability 

factor were to be simply added as another quality characteristic in these methodologies, there would be inconsistencies related 

to data distribution discrepancies and estimation of adequate parameters for evaluation. The lifetime of a product, the time to 

failure of a device or time series in general behave differently than technical specifications, which complicates the mere addition 

of these characteristics to a traditional PCI due to incompatibility.  

In order to solve this issue, the proposed method in this paper introduces two multivariate capability indices that separate 

these quality characteristics into different categories and implement more adequate analysis techniques for each subgroup. 

Thus, the Space Characteristics ¬are defined as the standard technical specifications that described the dimension of the product 

in relation to a give set of criteria that deem them acceptable. The Time Characteristics describe the behavior of the product 

over time and its ability to maintain functionality as well as the expected lifetime of the product.  

The advantage of this approach, aside from solving the limitations described before, relies on the possibility to analyze the 

process in a new dimension, where other criteria such as product warranty and manufacturer’s promises to the customer 

influence the process capability while simultaneously evaluating the performance of the process in the standard specified 

dimensions required. Additionally, the proposed MPCIs allow decision-makers to decide which of these sets of characteristics 

is more valuable in the global index, facilitating the customization of the measure according to the fluctuations of customer 

satisfaction needs, stakeholder’s requirements, or market evolution.  

 

II. Principal Component Space-Time Multivariate Capability Index (𝑀𝐶𝑃𝐶:𝑡) 

Wang and Chen [11] introduced a multivariate capability index based on the Principal Component Analysis. The Principal 

Component Analysis is a methodology that can transform large sets of correlated data into a more accessible set of variables 

that still possess the characteristics of the original data. Using the PCA technique, it is possible to obtain the main axes of the 

Process Region and a description of the Specification Region represented as the eigenvectors and the diagonal variance-

covariance matrix, respectively [6].  

Wang and Chen [11] state that if the data collected from a multivariate process follow a normal distribution, a capability 

study using Principal Component Analysis can be applied to the process. The result of applying the PCA is a new set of 
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variables (Principal Components) that are mutually independent and normally distributed as well. Thus, [11]’s capability index 

for the multivariate processes data is calculated as 

 

MC𝐶𝑝 = [∏ |Cp;𝑃𝐶i
|𝑟

i=1 ]
1

𝑟                                                                                                                                                             (1) 

 

Where r is the number of selected principal components and 𝐶𝑝;𝑃𝐶𝑖
 represents the univariate measure of process capability 

for the i_th principal component, with 

 

Cpu =
𝑈𝑆𝐿−𝜇

3𝜎
                                                                                                                                                                                (2)                                     

and  

Cpu =
𝜇−𝐿𝑆𝐿

3𝜎
                                                                                                                                                                                   (3)                                   

 

for the Upper and Lower Specifications Limits, respectively. Additionally, Cp;PCi
 in (1) can be replaced with Cpk;PCi

, 

Cpm;PCi
 and Cpmk;PCi

, obtaining similar measures for the more traditional univariate capability indices.  

The Principal Component Space-Time Multivariate Capability Index based on the Principal Component Analysis is a 

modification of the index in equation (1). The new measure includes the value of the traditional PCA-based index and considers 

a new variable that depends on the lifetime of the product. Thus, the proposed index is determined by 

 

MC𝐶𝑝;𝑡 = w1[∏ |Cp
PCi|r

i=1 ]
1

r + w2   {Φ−1[𝑇(t)]
3

⁄ }                                                                                                                      (4) 

 

Where 𝑇(𝑡) is a probability function expressing the time, it takes for a product to fail i.e., the time before it stops performing 

as expected under normal conditions. For this model, the TTF was analyzed using the Rayleigh distribution, which adequately 

describes the linear increase failure rate over time. In the Rayleigh distribution, the accelerated TTF is determined by ℎ(𝑡) =
𝜆𝑠𝑡. Consider, 

 

𝜆𝑠 =
2𝑟

∑ 𝑡𝑖
2𝑟

𝑖=1 +∑ 𝑡𝑖
2+𝑛−𝑟

𝑖=1

                                                                                                                                                                    (5) 

 

And 

𝜆0 =
1

(𝐴𝐹)2 𝜆𝑠                                                                                                                                                                               (6) 

 

Thus, the proposed model considers the reliability of a given product as a probability expression of TTF, determined by  

𝑓0(𝑡) = 𝜆0𝑡𝑒
−𝜆0𝑡2

2                                                                                                                                                                        (7) 

 

𝐴𝐹 in (6) is the acceleration factor applied to the evaluated component. The Rayleigh distribution density function is   

 

𝑇(𝑡) = 𝑒
−𝜆0𝑡2

2                                                                                                                                                                              (8) 

 

On the other hand, ∑ 𝑤𝑖 = 12
𝑖=1 , where 𝑤𝑖  (𝑤1 and 𝑤2) is the assigned weight to the principal component and lifetime 

factors, respectively. It is important to note that the importance assigned to each aspect is subjective, dependent on the 

circumstances of the process and the relevance of each criterion in it. 

 

II. Modified SR Space-Time Multivariate Capability Index (𝑀�̂�𝐶𝑝;𝑡) 

Taam et al. [5] define a multivariate capability index as a summary of the conditions of a multivariate process in relation to its 

specifications. They proposed that given the technical specifications of a product, the tolerance region can be modified 
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according to the process distribution and compared to a scaled PR. Based on this principle, the multivariate capability index 

𝑀𝐶𝑝𝑚 is defined as  

 

𝑀𝐶𝑝𝑚 =
𝑣𝑜𝑙.(𝑅1)

𝑣𝑜𝑙.(𝑅2)
                                                                                                                                                                          (9) 

 

Where 𝑅1 is the modified tolerance region and 𝑅2 is a scaled 99.73% PR, which describes an elliptical region in the 

particular case of the normal distribution.  

Taam et al. [5] defined his modified tolerance region as the largest ellipsoid centered at the target value within the original 

tolerance region. There are two main reasons for this particular assumption. Firstly, the multivariate normal distribution has an 

elliptical probability region and secondly, this method offers a shape correction factor for indices where the original tolerance 

region is not elliptical. Therefore, equation (9) can be modified to: 

 

𝑀𝐶𝑝𝑚 = 𝑠ℎ𝑎𝑝𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ×
𝑉𝑜𝑙.(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑇𝑅)

𝑉𝑜𝑙.(𝑅2)
  

 

=
𝑉𝑜𝑙.(𝑅1)

𝑉𝑜𝑙.(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑇𝑅)
×

𝑉𝑜𝑙.(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑇𝑅)

𝑉𝑜𝑙.(𝑅2)
                                                                                                                                           (10) 

 

Figure 2 is a representation of the modified tolerance region proposed by [5] for a 𝑣 = 2 product characteristics. In this 

case, the original tolerance region is bound by the Upper and Lower specification limits and the modified region is the ellipsoid 

within this region. If the process data falls within the modified tolerance region and around the target value, then the process is 

considered capable. In contrast, if the data is scattered within this region or falls outside the ellipsoid, the multivariate capability 

index will reflect a lower value. 

 
 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

FIGURE 2 
MODIFIED TOLERANCE REGION PROPOSED BY [12] 

 

 

Given the considerations previously exposed, the second MPCI proposed in this paper follows the logic described by [5] 

with the introduction of a modified Specification Region B, approximated by the formula 

 

𝐵 = ρij (
|min(𝑈𝑆𝐿i−μ,μ−𝐿𝑆𝐿i)|

√χv,0.9973
2

) (
| min(𝑈𝑃𝐿j−μ,μ−𝐿𝑆𝐿𝑗)|

√χv,0.9973
2

)                                                                                                                                          (11)                            
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∀ 𝑖, 𝑗 = 1, 2, 3 … 𝑣 

 

Where 𝜌𝑖𝑗  is the correlation coefficient between the 𝑖𝑡ℎ and 𝑗𝑡ℎ quality characteristics and 𝑣 is the total number of product 

characteristics.  

Now, consider a diagonal variance-covariance matrix that describes the PR [11]. Let |𝑆| be the determinant of this PR 

variance-covariance matrix, then a ratio of the form  
𝑣𝑜𝑙.(𝑅1)

𝑣𝑜𝑙.(𝑅2)
 in terms of the 𝐵 matrix is calculated as  

 

[
|𝐵|

|𝑆|
]

1

2
                                                                                                                                 (12) 

 

Note that in equation (12), the variance-covariance matrix and the sample mean are 

 

𝑆 = (𝑛 − 1)−1 ∑ (𝑋𝑖 − �̂�)(𝑋𝑗 − �̂�)
𝑟𝑛

𝑖=1  and  X̂ = n−1 ∑ XI
n
i=1                                                                                              (13) 

 

In this case, |𝐵| represents the modified tolerance region 𝑅1 proposed in Taam’s methodology, while the covariance matrix 

determines the standard process region 𝑅2. 

In order to consider the reliability factor in the second proposed index, equation (12) was modified to include the TTF 

analysis based on the Rayleigh distribution. Thus, the Modified SR Space-Time Multivariate Capability Index is determined by 

 

MC𝐶𝑝;𝑡 = w1 [
|B|

|Σ|
]

1

2
+ w2   {Φ−1[𝑇(t)]

3
⁄ }                                                                                                                                  (14) 

 

Where 𝑇(t) is a probability function for the TTF of the product and ∑ 𝑤𝑖 = 12
𝑖=1 , where 𝑤𝑖  (𝑤1 and 𝑤2) is the assigned 

weight to the modified SR and lifetime factors, respectively. 

 

NUMERICAL ANALYSIS  

I. Case Study 

Throughout the manufacturing process of a LED filament light bulb used for exterior areas, four main quality characteristics 

are considered: brightness, measured in lumens (lm), diameter (mm), length (mm) and lifetime expectancy, measured in hours. 

The collected data from the process is summarized in Table 1. In this study, the quality characteristics of the LED filament 

light bulb were classified into two categories. Firstly, the brightness, diameter, and length, corresponding to the technical 

specifications and deemed Space Characteristics and secondly, the reliability factor that corresponds to the Time to Failure 

(TTF) and lifetime of the product, which were categorized as the Time Characteristics. 
 

TABLE I 

QUALITY CHARACTERISTICS EVALUATED IN LED FILAMENT LIGHT BULBS MANUFACTURING 

Unit 
Brightness 

(lm) 

Diameter 

(mm) 

Length 

(mm) 

Accelerated 

Time to 

Failure (hrs)1 

1 49,92 39,96 69,87 
2145 

2 50,02 39,97 70,07 

3 49,99 39,99 69,99 
4390 

4 50,03 40,05 69,98 

5 49,94 40,00 70,01 
5560 

6 49,98 40,05 70,06 

7 49,96 39,98 69,93 
8990 

8 50,05 39,99 70,06 

9 49,97 39,97 70,01 
10700 

10 50,06 40,03 70,02 

11 49,96 40,01 69,98 
13485 

12 50,03 39,98 70,06 

 
1 Censored data labeled with “+”.  
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13 50,02 39,90 69,92 
15000+ 

14 50,04 39,99 70,01 

15 50,03 39,92 69,98 
15000+ 

16 50,02 40,00 70,00 

17 50,02 40,05 70,05 
3215 

18 49,94 40,04 70,03 

19 50,04 39,98 69,95 
5360 

20 50,02 39,90 69,98 

21 49,97 40,02 69,98 
7590 

22 50,03 40,05 70,04 

23 49,98 39,98 69,95 
9840 

24 49,97 40,05 70,09 

25 50,00 40,04 69,97 
12300 

26 49,96 40,01 69,95 

27 49,95 39,88 70,03 
15000+ 

28 50,06 40,01 70,09 

29 50,05 39,90 69,98 
15000+ 

30 50,04 39,90 69,93 

 

 

This information was then compared with the technical quality specifications for the LED filament light bulbs. The 

acceptance criteria for each variable are described in the table below. 

 
TABLE II 

ACCEPTANCE CRITERIA FOR LED QUALITY CHARACTERISTICS 

Variable Acceptance Criteria Unit 

Brightness 50 ± 2 lm 

Diameter 40 ± 0.05 mm 

Length 70 ± 0.05 mm 

Reliability 10000 hrs 

 

II. Applied Methodology 

The Principal Component Analysis proposed by [11] was applied to the Space Characteristics of the LED filament light bulbs 

data presented in Table 1, i.e., the Brightness, Diameter and Length characteristics. First, the mean vector (μ) and variance-

covariance matrix (S) were calculated.  

μ = [
50.002
39.987
69.999

] 

And 

 

𝑆 = [
0.001571 −0.000097 0.000645

−0.000097 −0.002433 0.000911
−0.000645 0.000911 0.002680

] 

 
 

The eigenvalues and cumulated percentage were obtained through the application of the eigen-decomposition theorem.  
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TABLE III 

EIGENVALUES AND VARIANCE PERCENTAGE PER PRINCIPAL COMPONENT 

 

Component Eigenvalue 
Variance 

Percentage (%) 
Cumulated 

Percentage (%) 

1 1.4377 47.924 47.924 

2 1.0911 36.368 84.292 

3 0.4712 15.708 100.000 

 

The eigenvalue results indicate that the first and second component account for 84% of the variability in the quality space 

characteristics evaluated for the product. The number of components to include in the analysis depends on the criteria of the 

researcher. Commonly used rules in this regard are including eigenvalues greater than 1 or the number of components that 

account for most of the variability of the sample, as shown in Figure 3. For the purposes on this investigation, all three 

components will be considered. 

 
 

 
FIGURE 3 

PRINCIPAL COMPONENT SEDIMENTATION 

 

Table 4 describes the component coefficients for each variable. These indicate the magnitude and direction of each 

eigenvector derived from the matrix calculations between each of the variables.  

 
TABLE IV 

PRINCIPAL COMPONENT COEFFICIENTS 

 Component 1 Component 2 Component 3 

Brightness 0.291865 0.848688 0.441071 

Diameter 0.611193 -0.520204 0.596515 

Length 0.735702 0.0954777 -0.670542 

 
 

Thus, these coefficients lead to the next step in the PCA methodology, which corresponds to the determination of the 

normalized eigenvectors and subsequent linear combinations calculation as follows, 
 

�̂�1 = (0.291865;  0.611193;  0.735702) 
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û2 = (0.848688; −0.520204; 0.095478) 

 

û3 = (0.441071;  0.596515; −0.670542) 

 

 

 

 
 

FIGURE 4 

PRINCIPAL COMPONENT BIPLOT 
 

Figure 4 is a representation of how each variable influences the components and the level of correlation between them. 

The further away a vector is from the origin of the component, the more it influences said component. In this case, Length and 

Diameter are the most influential in Principal Component 1, while Brightness influences Principal Component 2 the most. On 

the other hand, Length is positively correlated with the other two variables and Diameter and Brightness are the least correlated 

of the characteristics presented.  

Following the PCA methodology, the specification criteria and the component weight coefficient are utilized to calculate 

the linear combinations for each component 𝑃𝐶𝑖. For the first component, consider 
 
 

LSL: LPC1
 = (48 × 0.291865 + 39.95 × 0.611193 + 69.95 × 0.735702) = 89.8890  

USL: UPC1
= (52 × 0.291865 + 40.05 × 0.611193 + 70.05 × 0.735702) = 91.1912 

 

For the second and third components, 

 

LSL: LPC2
 = (48 × 0.848688 + 39.95 × (−0.520204) + 69.95 × 0.0954777) = 26.6335  

USL: UPC2
= (52 × 0.848688 + 40.05 × (−0.520204) + 70.05 × 0.0954777) = 29.9858 

 

LSL: LPC3
 = (48 × 0.441071 + 39.95 × 0.596515 + 69.95 × (−0.670542)) = −1.9022  

USL: UPC3
= (52 × 0.441071 + 40.05 × 0.596515 + 70.05 × (−0.670542)) = −0.1453 

 

The capability indices of each component are calculated as 

 

CpPCi
=

(USLPCi
−LSLPCi

)

6σ
                                                                                                                                                          (15) 

 

 

Where σ is the square root of each corresponding component eigenvalue for and USLPCi
 and LSLPCi

 are the upper and 

lower specification limits calculated for the components. Thus,  

Component 1 
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Cp
PC1 = [|

(91.1912 − 89.8890)
(6 × 1.1990)⁄ | ] = 0.18099 

 

Cp
PC2 = [|

(29.9858 − 26.6335)
6 × 1.0446⁄ |] = 0.53488 

 

Cp
PC3 = [|

(−0.1453 − (−1.9022))
6 × 0.6864

⁄ |] = 0.42657 

 

Using (1) with 𝑟 = 3, the traditional global multivariate capability index for the technical specifications is  

 

MCCp = [0.18099 × 0.53488 × 0.42657]
1
3 =  0.345653 

 

II. Estimation of the Principal Component Space-Time Multivariate Capability Index (𝑀𝐶𝐶𝑝;𝑡) 

So far, the analysis has focused on the space characteristics capability through the Principal Component Analysis. The first 

proposed multivariate capability index is a variation of the traditional method previously exposed, which includes a time 

parameter based on the Time to Failure of the product. Let r be the number of non-censored data in the sample, then 𝜆𝑠 is 

determined with (5) 

 

𝜆𝑠 =
2(11)

776731575+9×108 = 1.3121 × 10−8                                                                                                                                       

 

 

With an acceleration factor 𝐴𝐹 = 15, then 𝜆0 is calculated using (6) as 

 

𝜆0 =
1

(15)2 × 1.3121 × 10−8 = 5.8315 × 10−11   

Next, the reliability factor of the LED luminaires was calculated applying the Rayleigh distribution probability function. 

The manufacturer expects the product to maintain adequate functionality for at least 1000 hours. Thus, evaluating the 

probability function for an expected TTF of 𝑡 = 1000 hours with (8), the result obtained is 

  

𝑇(1000) = 𝑒
−(5.8315×10−11)(1000)2

2 = 0.99997 

 

Indicating that there is a 99.99% probability that the product will outlast this threshold. Then, the Principal Component 

Space-Time Multivariate Capability Index 𝑀𝐶𝐶𝑝;𝑡 is then determined by (4), as follows 

 

MC𝐶𝑝;𝑡 = (0.5)(0,345653) + (0,5) {Φ−1[0,99997]
3

⁄ } = 0,8427 

 

In this case, both the space and time aspects of the manufacturing process were given the same weight in the final result, 

corresponding to 50% for each type of variables. However, it is the responsibility of researchers and decision-makers of the 

manufacturing process to assign the respective importance to each area, depending on the goals of process and perceived quality 

assessments. In order to evaluate the result of the Capability Index, Tsai and Chen [12] propose an interval-based approach to 

determine the capability performance level of a given process. 

 
TABLE V 

PROCESS CAPABILITY PERFORMANCE CRITERIA 

Capability Index 

Interval 

Assessment 

𝐶𝑝 > 2.00   Super Excellent 
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1.67 ≤ 𝐶𝑝 ≤ 2.00 Excellent 

1.33 ≤ 𝐶𝑝 ≤ 1.67   Satisfactory 

1.00 ≤ 𝐶𝑝 ≤ 1.33 Capable 

0.67 ≤ 𝐶𝑝 ≤ 1.00 Inadequate 

𝐶𝑝 < 0.67 Poor 

 
Based on this appreciation and considering that the product reliability factor shows positive results for this particular 

product, the global value of the Principal Component Space-Time Multivariate Capability Index reflects that the LED 

manufacturing process is performing inadequately, i.e., the current process is not capable of producing LED luminaire units 

that comply with the product technical specifications, which has a direct impact on product lifetime it the expected value were 

to be higher that the 𝑡 = 1000 hrs threshold.  

II. Estimation of the Principal Component Space-Time Multivariate Capability Index (𝑀𝐶𝐶𝑝;𝑡) 

As explained in previous sections, the second multivariate capability index is a variation of [12]’s proposal, which incorporates 

a tolerance region analysis as the space quality characteristics of the product and, similar to the first proposal, the time to failure 

factor related to the LED luminaire reliability. The covariance matrix for the given length, diameter, and brightness data in 

Table 1 is 

 

𝑆 = [
0.00157059 −0.00009694 0.00064466

−0.00009694 0.00243295 0.00091103
0.00064466 0.00091103 0.00267962

] 

 

Next, the correlation matrix was calculated as  

 

𝜌𝑖𝑗 = [
1.00000000 −0.04958856 0.31423812

−0.04958856 1.00000000 0.35680550
0.31423812 0.35680550 1.00000000

] 

 

Let 𝐶𝑝𝑘𝑣 = min (𝑈𝑆𝐿 − 𝜇, 𝜇 − 𝐿𝑆𝐿) for the 𝑣 quality characteristics, then 

 

𝜇𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = 39.9867 

𝜇𝑙𝑒𝑛𝑔𝑡ℎ = 69.9990 

𝜇𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 = 50.0017 

 

Then, based on the upper and lower specification limits defined in Table 2, consider 

 

𝐶𝑝𝑘𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
= min(40.0500 − 39.9867, 39.9867 − 39.9500) = 0.0367 

𝐶𝑝𝑘𝑙𝑒𝑛𝑔𝑡ℎ
= min(70.0500 − 69.9990, 69.9990 − 69.9500) =  0.0490 

𝐶𝑝𝑘𝑏𝑟𝑖𝑔𝑡ℎ𝑛𝑒𝑠𝑠
min(52.0000 − 50.0017, 50.0017 − 48.0000) =  1.9983 

 

With a significance level of 0.0027 and 𝑣 = 3, the Chi-square value is χv,0.9973
2 =  14.1563. Thus, √χv,0.9973

2 = 3.7624 

and matrix 𝐵 is calculated using (10) as follows 

 

𝐵 = [
0,28208992 0,00025667 0,00217358
0,00025667 0,00009497 0,00004529
0,00217358 0,00004529 0,00016961

] 

 

Subsequently, the determinant values for matrix |𝐵| and covariance matrix |𝑆| are 
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|𝐵| = 3.5561 × 10−9 

|𝑆| = 7.7856 × 10−9 

 

Thus, the proposed Modified SR Ratio Space-Time Multivariate Capability Index (𝑀�̂�𝐶𝑝;𝑡) is calculated as 

 

MĈ𝐶𝑝;𝑡 = (0.5) [
3.5561 × 10−9

7.7856 × 10−9
]

1
2

+ (0.5) {Φ−1[0.99997]
3

⁄ } = 1.0067 

 

Based on the criteria described in Table 5, this result shows that the process is capable of producing LED luminaires that 

are technically acceptable, while maintaining product reliability in terms of TTF expectancy. 

 

CONCLUDING REMARKS AND FUTURE WORK 

This paper presented two different MPCIs as a proposed approach to analyse the process capability of a standard LED luminaire 

manufacturing process. In addition to the traditional methods such as Principal Component Analysis and Tolerance Region 

Modification introduced by [5] and [11] respectively, these proposals considered the impact of product reliability and lifetime 

prediction on the capability assessment of the manufacturing process. The Space Characteristics were analysed with modified 

traditional techniques that highlight the correlation between the quality characteristics studied: Brightness, Diameter and 

Length of the luminaires. On the other hand, the Time Characteristics were studied with an analysis of the TTF failure of the 

luminaires to estimate product lifetime.  

The first proposed MPCI is the Principal Component Space-Time Multivariate Capability Index 𝑀𝐶𝐶𝑝;𝑡, which combines 

the PCA approach with the lifetime estimation techniques. With a global result of 𝑀𝐶𝐶𝑝;𝑡= 0.8427, this measure shows that the 

LED luminaire manufacturing process is not capable of producing units that comply with the technical specifications criteria, 

according to the scale presented by Tsai and Chen to assess process capability performance. Within this measure, the reliability 

aspect was tested with an expectation of 1000 hours of lifetime and 50% of weighted impact on the global result. It is important 

to note that while specifications compliance has been traditionally used as an indicator or process capability, the TTF analysis 

in this context must not be considered as a unilateral indicator of process performance, rather a complementary measure to help 

understand process behavior.  

Similarly, the second index Modified SR Space-Time Multivariate Capability Index 𝑀�̂�𝐶𝑝;𝑡 is similarly comprised of a 

space characteristics component and a TTF analysis. The reliability factor was not modified for this measure, which means that 

the main difference between the two MPCIs proposed is the approach to technical specification compliance assessment. 

Although both the PCA and [5]’s methods are a form of tolerance region modification, the latter relies more heavily of quality 

characteristics correlation with the inclusion of the correlation coefficient in the 𝐵 matrix calculation. The global index value 

for 𝑀�̂�𝐶𝑝;𝑡 is 1.0067, resulting in a less stringent measure than 𝑀𝐶𝐶𝑝;𝑡 with an acceptable process performance, based on Tsai 

and Chen evaluation scale.  

Comparing the MPCIs proposed with their traditional counterparts, the Principal Component Method resulted in a 0.3457 

global index, showing poor process capability in LED luminaire manufacturing. The tolerance region ratio analysis had a 

similar result with an index value of 0.6758, which indicates an inadequate process performance level. Despite the fact that the 

proposed MPCIs seem to be more lenient than the traditional methods, they present the advantage of including product 

reliability into the same measure. This is especially significant if the parameters of the two indices are adjusted to better suit 

the needs of a particular process. Firstly, the weighted impact of the space and time characteristics can be modified to represent 

the needs of the process stakeholders and the aspects that they consider most relevant for a certain product to enter the market. 

Secondly, the lifetime expectations can be set higher than the 1000 hours considered in this experiment, depending on the 

specific type of product that are being evaluated and the warranty promised by the manufacturers. This consideration could 

then become an asset for any company whose end-users value reliability and plan to use it as a competitive advantage in any 

given market.  

The main contribution of this paper is presenting a viable way to integrate product reliability within the process capability 

analysis, in order to gain insight into the impact of this variable on process performance. However, this methodology opens the 

door to other time-related variables that behave similarly or differently than product lifetime. By adjusting the distribution 
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function and parameters of the Time Characteristics there is a possibility to evaluate process capability along with reliability 

elements such as Mean Time to Failure (MTTF), Mean Time to Repair (MTTR), Mean Time between Failures (MTBF) and 

Failure in Time (FIT).  
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