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Abstract 

The reliability of a system with three components, A, B, and C, coupled in series and parallel is 

investigated in this study. System A is a two-out-of-two linear consecutive system, System B is a one-out-

of-one linear consecutive system, and System C is a two-out-of-four linear consecutive system. The failure 

of system B, or the failure of all system A and C components, can cause the entire system to fail. The 

system was evaluated using the Markov birth–death process, which resulted in clear expressions for 

availability and mean time to system breakdown. The effect of failure and repair rates on mean time to 

failure and availability has been graphically explored based on numerical values presented in a table and 

graph and assigned to system characteristics to demonstrate the effect of failure and repair rates on mean 

time to failure and availability, The results reveal that system effectiveness indicators like availability and 

mean time to system failure rise with repair rates and fall with failure rates. 
 

Keywords – Accessibility; Availability; Repair Rate; Failure Rate 
 

1. INTRODUCTION 

In power plants, backup systems, and engineering systems, 

system dependability is becoming increasingly critical. The 

systems must often maintain a high or needed level of 

reliability. In reliability analysis, the investigation of 

repairable systems is critical. In addition, repairmen are an 

important component of repairable systems and can have a 

direct or indirect impact on the system's economy. Reliability 

engineering's main goal is to boost a system's performance. 

The allocation of redundancy during the initial design phase 

is a direct way to improve any system's reliability. Active and 

standby redundancy are the two types of redundancy 

strategies. Active redundancy occurs when all redundant 

systems function simultaneously from time zero, even though 

the system only requires one at any one time. Standby 

redundancy, on the other hand, comes in three flavors: cold, 

warm, and hot. The component in the cold standby 

redundancy is more prone to failure before operation than the 

components in the cold standby redundancy. The failure 

pattern of a component in hot standby redundancy is 

independent of whether the component is active or not. Hot 

standby and active standby arrangements use the same 

mathematical models. 

Diverse researchers have contributed to this field's research. 

Nakagawa and Osaki (1975) and Okumato (1997) 

investigated the behavior of a two-unit redundant system, 

assuming that when the operating unit fails, the system enters 

into repair mode. Gopalan and Naidu (1981) looked at the 

stochastic behavior of a two-unit repairable system under 

various inspection procedures, whereas Singh and Srinivasu 

(1987) looked at a two-unit cold standby system using the 

idea of repair preparation time. The three-unit subsystem was 

studied by Gupta and Bansal in 1990. Gupta and Sharma 

(1993) looked at a two-unit standby system that had two 
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different sorts of repairs. A standby system with a waiting for 

repair strategy was investigated by Ram et al. (2013). 

Muhammad (2007) employed fuzzy theory to add uncertainty 

into the alpha factor model, and a linear programming model 

to determine the mean time between failures of the system 

(MTBF). 

In conducting out analysis in evaluating the reliability 

measures, Monika and Mangey (2013) used extra variables 

approaches and Laplace transformation. Ibrahim and Bashir 

(2014) created a probabilistic model for two dissimilar 

redundant systems with replacement for each common cause 

failure, analyzing and comparing some reliability 

characteristics for different parameter values. Uba et al. 

(2013) used the Kolmogorov forward equation approach to 

evaluate the reliability and availability of a two dissimilar 

unit cold standby system with three modes. Pravindra pankaj 

and Anil (2016) investigated the probabilistic analysis of a 

two-unit warm standby system with subject to hardware and 

human error failures . Pourhassan et al. (2020) presented 

simulation approach to reliability assessment of complex 

system under stochastic degradation and random shock. 

Raissi and Ebadi (2018) dealt with computer simulation 

model for reliability estimation of a complex system.  

Pourhassan (2021) analyzed the reliability of power station 

subject fatal and nonfatal shocks. Pourhassan et al. (2019) 

investigated the impact of fault in component reliability 

estimation on system designing. Attar et al. (2016) developed 

a simulation-based optimization model for free distributed 

repairable multi-state availability-redundancy allocation 

problems. 

Reliability, availability, mean time to failure, and cost 

analysis are all standard system reliability measurements. Are 

the techniques for probabilistic risk assessment in system 

design, operation, and maintenance effective and efficient? 

The purpose of this article is to examine the reliability of a 

two-cold standby system using model formulation, 

availability analysis, reliability analysis, and mean time to 

failure. 

2. MATERIAL AND METHODS 

2.1 Description of the Model and Its Premises  

The paper considered a repairable system which consists of 

four sub systems namely A, B, and C in series Parallel. 

System B is a single unit, failure of it causes the complete 

failure of the system. Systems A consists of two units, one 

unit of subsystems A is active and other one unit in cold 

standby mode. Complete failure of the system will occur due 

to Subsystem A  when one active unit and one standby unit 

of Subsystem A  failed at a time, Subsystem C Consist of four 

units . The system can be repaired in both cases. For the 

failures, the repairs are done absolutely, so after the repair 

every system is as good as new. Failure and repair rates are 

assumed to be exponentially distributed. 

Explicit availability and Mean Time to System Failure 

expressions are developed. 

 

2.2. Notation 

 t: Time scale. 

𝛽𝑖: Failure rates of the system where i=1, 2, 3 

𝛾𝑗: Repair rates of the system where j=1, 2, 3 

𝑠0: All Three units  are in good working condition., 

𝑠1: Subsystem C one  unit failed  and one standby unit is 

 working. 
𝑠2: Subsystem  C two units  failed and two standby units are 

working. 

𝑠3: Subsystem A one unit  failed and other one unit is at 
 ideal state therefore system failed. 

𝑠4: Subsystem A all the two units are at ideal state, subsystem 

B failed ,subsystem C all the two units are at ideal state  the 

system failed. 

𝑠5: Subsystem A one unit failed and other one unit is at ideal 

state, subsystem B is at ideal state, subsystem C one unit 

failed and other unit is at ideal state therefore the system 

failed . 

𝑠6:  Subsystem A all the two units are at ideal state, 

subsystem B failed ,subsystem C all the two units are at ideal 

state the system failed state. 

𝑠7: Subsystem A one unit is failed and other unit is at ideal 

state, subsystem B is at ideal state subsystem C all the two 

units failed and standby units are at ideal state the system 

failed. 

𝑠8: Subsystem A all the two units are at ideal state 

subsystem B failed, subsystem C all the two units failed  
and standby units are at ideal state the system failed 

𝑠9: Subsystem A all the two units are at ideal state subsystem 

B is at ideal state subsystem C failed and one standby unit 

failed and other unit is at ideal state the system failed. 

𝑃0, 𝑃1, 𝑃2 Transition state probability of the state 

 𝑆0, 𝑆1, 𝑆2: when all the system A, B, and C are in good 

 condition. 
𝑃3, 𝑃4, 𝑃5, 𝑃6, 𝑃7, 𝑃8, 𝑃9: Tran sition state probabiliies of the 

 state  
𝑆3𝑆4,𝑆5,𝑆6,𝑆7, 𝑆8, 𝑆9: When system A, B , and C are in failed 

condition respectively. 

The following assumptions are associated with the Model: 

Initially the system is in good state, the System has two states, 

working and Failed states, the System has completely failed 

after the failure of system B, and failure of the unit of system 

of A and C , all failure and repair rates are constant, the 

System can be repaired when it is in complete failed mode, 

the repaired system works like a new one.  
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2.3. State Transition and block diagrams of the model 

 

 

 
Figure.1: Block Diagram of the System 

 

 
Figure.2: Schematic Diagram of the System 

 

2.4 Formulation and solution of the mathematical model 

We can derive the following set of differential equations 

regulating the current mathematical model from the 

likelihood of the considerations and continuity arguments. 
𝑑𝑝0

𝑑𝑡
= −(3𝛽3 + 2𝛽1 + 𝛽2)𝑃0(𝑡) + 𝛾3𝑃1(𝑡) + 𝛾1𝑃3(𝑡) +

𝛾2𝑃4(𝑡), 
𝑑𝑝1

𝑑𝑡
= −(2𝛽1 + 𝛽2 + 2𝛽3 + 𝛾3)𝑃1(𝑡) + 2𝛽3𝑃0(𝑡) +

𝛾3𝑃2(𝑡) + 𝛾1𝑃5(𝑡) + 𝛾2𝑃6(𝑡), 

𝑑𝑝2

𝑑𝑡
= −(2𝛽1 + 𝛽2 + 2𝛽3 + 𝛾3)𝑃2(𝑡) + 2𝛽3𝑃1(𝑡)

+ 𝛾1𝑃7(𝑡) + 𝛾2𝑃8(𝑡) + 𝛾3𝑃9(𝑡), 
𝑑𝑝3

𝑑𝑡
= −𝛾1𝑃3(𝑡)+2𝛽1𝑃0(𝑡),          

𝑑𝑃4

𝑑𝑡
= −𝛾2𝑃4(𝑡) + 𝛽2𝑃0(𝑡) , 

𝑑𝑃5

𝑑𝑡
= −𝛾1𝑃5(𝑡) + 2𝛽1𝑃1(𝑡),  

𝑑𝑃6

𝑑𝑡
= −𝛾2𝑃6(𝑡) + 𝛽2𝑃1(𝑡)  ,        

𝑑𝑃7

𝑑𝑡
= −𝛾1𝑃7(𝑡) + 2𝛽1𝑃2(𝑡) , 
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𝑑𝑃8

𝑑𝑡
= −𝛾2𝑃8(𝑡) + 𝛽2𝑃2(𝑡) , 

𝑑𝑃9

𝑑𝑡
= −𝛾3𝑃9(𝑡) + 𝛽3𝑃2(𝑡).                                                            (1) 

 

2.3 Steady state availability Analysis for System 

In the availability instance depicted in Fig. The basic 

conditions for this system, according to El-said and El-Hamid 

(2006), are as follows: 

P(0)=[𝑃0(0), 𝑃1(0), 𝑃2(0), 𝑃3(0), 𝑃4(0), 𝑃5(0),

 𝑃6(0), 𝑃7(0), 𝑃8(0), 𝑃9(0)] 

= [0,0,0,0,0,0,0,0,0,1]                                                          (2) 

The differential equations in (1) above is transformed into 

matrix as �̇� = 𝐴𝑃̇ (∞)                    (3)     

For the system above, the system of differential equations in 

(1) can be written in matrix form as:  

 

[
 
 
 
 
 
 
 
 
 
 
 
 
  𝑃0̇ 

𝑃1̇

𝑃2̇

𝑃3̇

𝑃4̇

𝑃5̇

𝑃6̇

𝑃7̇

𝑃8̇

𝑃9̇

   ]
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
−𝐾0

2𝛽3  
0

2𝛽1

𝛽2

0
0
0
0
0
  

    

𝛾3

−𝐾1

2𝛽3

0
0

2𝛽1

𝛽2

0
0
0
  

   

0
𝛾3

−𝐾2

0
0
0
0

2𝛽1

𝛽2

2𝛽3

  

  

𝛾1

0
0

−𝛾1

0
0
0
0
0
0
  

  

𝛾2

0
0
0

−𝛾2

0
0
0
0
0
  

  

0
𝛾1

0
0
0

−𝛾1

0
0
0
0
  

  

0
𝛾2

0
0
0
0

−𝛾2

0
0
0
  

  

0
0
𝛾1

0
0
0
0

−𝛾1

0
0
  

  

0
0
𝛾2

0
0
0
0
0

−𝛾2

0
  

  

0
0
𝛾3

0
0
0
0
0
0

−𝛾3

  ]
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
  𝑃0(∞) 

𝑃1(∞)

𝑃2(∞)

𝑃3(∞)

𝑃4(∞)

𝑃5(∞)

𝑃6(∞)

𝑃7(∞)

𝑃8(∞)

𝑃9(∞)
   ]

 
 
 
 
 
 
 
 
 
 
 

 

𝐾0 = (2𝛽1 + 𝛽2 + 2𝛽3),𝐾1 = (2𝛽1 + 𝛽2 + 2𝛽3 + 𝛾3), 𝐾2 = (2𝛽1 + 𝛽2 + 2𝛽3 + 𝛾3) 

 

The solutions for P i (t)= 0,1,2, ..., 9 can be used to calculate 

the system availability. 1,2,3 are the values of i. The system's 

functioning states are zero, one, and two. The steady-state 

availability is given by El-Said (2008), Haggag (2009), and 

Wang et al (2006):  

AV(∞) = 𝑃0(∞) + 𝑃1(∞) +𝑃2(∞)                                   (4) 

The derivatives of the state probabilities become 0 in the 

steady state, hence the left hand side of (4) is set to zero. 

𝐴𝑃(∞) = 0                                                                                     (5) 

[
 
 
 
 
 
 
 
 
 
 
  0 
0
0
0
0
0
0
0
0
0
   ]

 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
−𝐾0

2𝛽3  
0

2𝛽1

𝛽2

0
0
0
0
0
  

    

𝛾3

−𝐾1

2𝛽3

0
0

2𝛽1

𝛽2

0
0
0
  

   

0
𝛾3

−𝐾2

0
0
0
0

2𝛽1

𝛽2

2𝛽3

  

  

𝛾1

0
0

−𝛾1

0
0
0
0
0
0
  

  

𝛾2

0
0
0

−𝛾2

0
0
0
0
0
  

  

0
𝛾1

0
0
0

−𝛾1

0
0
0
0
  

  

0
𝛾2

0
0
0
0

−𝛾2

0
0
0
  

  

0
0
𝛾1

0
0
0
0

−𝛾1

0
0
  

  

0
0
𝛾2

0
0
0
0
0

−𝛾2

0
  

  

0
0
𝛾3

0
0
0
0
0
0

−𝛾3

  ]
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
  𝑃0(∞) 

𝑃1(∞)

𝑃2(∞)

𝑃3(∞)

𝑃4(∞)

𝑃5(∞)

𝑃6(∞)

𝑃7(∞)

𝑃8(∞)

𝑃9(∞)
   ]

 
 
 
 
 
 
 
 
 
 
 

    

𝐾0 = (2𝛽1 + 𝛽2 + 2𝛽3),𝐾1 = (2𝛽1 + 𝛽2 + 2𝛽3 + 𝛾3), 𝐾2 =
(2𝛽1 + 𝛽2 + 2𝛽3 + 𝛾3)  

using the normalizing condition 

𝑃0(0) + 𝑃1(0)+ 𝑃2(0)+ 𝑃3(0)+𝑃4(0)+ 𝑃5(0)+ 𝑃6(0) +
𝑃7(0) + 𝑃8(0) + 𝑃9(0)=1                   (7) 

we substitute (7) in the last row of (5) following [5,6,7]. The 

resulting matrix is 



Journal of Industrial Engineering International, 18(1), March 2022  

 

 

 J     I     E     I  

 

5 

[
 
 
 
 
 
 
 
 
 
 
  0 
0
0
0
0
0
0
0
0
1
   ]

 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
−𝐾0

2𝛽3  
0

2𝛽1

𝛽2

0
0
0
0
1
  

    

𝛾3

−𝐾1

2𝛽3

0
0

2𝛽1

𝛽2

0
0
1
  

   

0
𝛾3

−𝐾2

0
0
0
0

2𝛽1

𝛽2

1
  

  

𝛾1

0
0

−𝛾1

0
0
0
0
0
1
  

  

𝛾2

0
0
0

−𝛾2

0
0
0
0
1
  

  

0
𝛾1

0
0
0

−𝛾1

0
0
0
1
  

  

0
𝛾2

0
0
0
0

−𝛾2

0
0
1
  

  

0
0
𝛾1

0
0
0
0

−𝛾1

0
1
  

  

0
0
𝛾2

0
0
0
0
0

−𝛾2

1
  

  

0
0
𝛾3

0
0
0
0
0
0
1
  ]
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
  𝑃0(∞) 

𝑃1(∞)

𝑃2(∞)

𝑃3(∞)

𝑃4(∞)

𝑃5(∞)

𝑃6(∞)

𝑃7(∞)

𝑃8(∞)

𝑃9(∞)
   ]

 
 
 
 
 
 
 
 
 
 
 

 

To get the state probabilities, we need to solve the set of 

linear equations above.  

AV(∞) thus is  

AV(∞)=
𝐷1

𝑁1
 ,                                                                                                                                     

 Where 

 𝐷1 = 𝛾1𝛾2𝛾3
3 + 2𝛽3𝛾1𝛾2𝛾3

2 + 4𝛽3
2𝛾1𝛾2𝛾3, 

   𝑁1

= 2𝛽1𝛾2𝛾3
3 + 𝛽2𝛾1𝛾3

3 + 8𝛽3
3𝛾1𝛾2 + 𝛾1𝛾2𝛾3

3 + 4𝛽1𝛽3𝛾2𝛾3
2

+ 8𝛽1𝛽3
2𝛾2𝛾3 + 2𝛽1𝛽3𝛾1𝛾3

2 + 4𝛽2𝛽3
2𝛾1𝛾3 + 2𝛽3𝛾1𝛾2𝛾3

2

+ 4𝛽3
2𝛾1𝛾2𝛾3  .                                                                                                                                                                    

 

Mean Time System Failure for the System 

MT

P(0)(−Q1
−1 ) ⌈

1
1
1
⌉                                                                                                                     (8) 

Which in matrix form is: 

 

MTSF=⌈ 1 0 0⌉ ⌈
−𝐾0

𝛾3

0
   

2𝛽3

−𝐾1

𝛾3

  
0

2𝛽3

−𝐾2

⌉ ⌈
1
1
1
⌉                                                                       

MTSF=
𝐷2

𝑁1
= 𝑤ℎ𝑒𝑟𝑒 𝐷2 = 2𝛽1𝛾2𝛾3

3 + 4𝛽1𝛽3𝛾2𝛾3
2 +

2𝛽2𝛽3𝛾1𝛾3
2 + 8𝛽1𝛽3

2𝛾2𝛾3 + 4𝛽2𝛽3
2𝛾1𝛾3 + 8𝛽1

3𝛾1𝛾2, 𝑁1 =
 2𝛽1𝛾2𝛾3

3 + 𝛽2𝛾1𝛾3
3 + 8𝛽3

3𝛾1𝛾2 + 𝛾1𝛾2𝛾3
3 + 4𝛽1𝛽3𝛾2𝛾3

2 +
8𝛽1𝛽3

2𝛾2𝛾3 + 2𝛽1𝛽3𝛾1𝛾3
2 + 4𝛽2𝛽3

2𝛾1𝛾3 + 2𝛽3𝛾1𝛾2𝛾3
2 +

4𝛽3
2𝛾1𝛾2𝛾3                                                                                        

 

3. RESULTS AND DISCUSSION 

It is obvious from Fig. 1 and Fig. 3 that System Availability 

and MTSF decline as the number of users increases 𝛽𝑖 While 

the System Availability and MTSF increase as the MTSF 

increases, as seen in Figs. 2 and 4, the System Availability 

and MTSF decrease when the MTSF decreases. 𝛾𝑗 decreases. 

 
Figure 3: Availability against failure rates 
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Figure 4: Availability against Repair Rates 

 
Figure 5: Availability against Failure Rates 

 
Figure 6: Availability against Repair Rates 

 

4. CONCLUSION 

For the considered system, this study generated precise 

terms for metrics of system effectiveness such as Mean time 

to system breakdown and availability analysis. Important 

findings were highlighted via graphs. The results reveal that 

system effectiveness indicators like availability and mean 

time to system failure rise with repair rates and fall with 

failure rates. 
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